Giuseppe Natalini

Jun 042020
 

Proseguendo il ciclo di post per rispondere collettivamente alle tante domande che mi sono arrivate durante l’emergenza COVID-19, è il momento della Airway Pressure Release Ventilation (APRV) nei pazienti con COVID-19. Alcuni colleghi ne hanno intravisto i possibili effetti positivi, altri invece i potenziali rischi.

Se vuoi capire meglio come funziona questa modalità di ventilazione, ti rimando al post del 15/02/2015.

Mi piace ribadire che qualsiasi modalità di ventilazione può essere ottimale o inadeguata: il suo esito dipende 1) dalle caratteristiche fisiopatologiche della malattia polmonare, 2) dalla fase clinica della malattia, 3) dalla impostazione della ventilazione e 4) dall’interazione con il paziente. E la APRV non fa eccezione. Analizziamo questi 4 aspetti con considerazioni specifiche per i pazienti con COVID-19.

Le caratteristiche fisiopatologiche della malattia polmonare.

La APRVV ha un proprio senso nei pazienti caratterizzati da una costante di tempo breve (vedi anche post del 30/06/2016 e del 17/07/2016). La costante di tempo breve consente l’espirazione (e la successiva rapida re-inflazione) di un significativo volume polmonare anche nei brevi rilasci di pressione, caratteristica precipua di questa modalità di ventilazione. Nella pratica clinica non misuriamo la costante di tempo, ma capiamo se essa è sufficientemente breve per la APRV se, durante le fugaci riduzioni della pressione delle vie aeree, il flusso espiratorio si riduce rapidamente dal proprio picco ed il paziente espira passivamente un volume significativo (mi sbilancio dicendo tra i 250 ed i 350 ml).

Se consideriamo la costante di tempo, l’indicazione alla APRV nella COVID-19, che è una ARDS su polmoni spesso sani, è ottimale. Mentre la APRV è assolutamente sconsigliabile nei pazienti ostruttivi, anche quando sviluppano una ARDS perchè la lunga costante di tempo che li caratterizza ostacola l’espirazione durante i rilasci di pressione.

In alcuni casi di COVID-19 ho osservato una espirazione tipica da paziente ostruttivo, cioè con flusso espiratorio che si riduce molto lentamente, pur in assenza di anamnesi positiva per malattie ostruttive respiratorie croniche. Pertanto la APRV può andare bene nella maggior parte dei pazienti con COVID-19, ma non in tutti.

La fase clinica della malattia.

La fase clinica in cui la APRV potrebbe fare la differenza è il momento della sospensione di sedazione e paralisi utilizzate durante il primo periodo di ventilazione protettiva. In questa fase molti pazienti con ARDS hanno un elevato drive respiratorio, cioè uno stimolo respiratorio molto intenso che li porta a respirare con un elevato volume corrente ad una alta frequenza respiratoria. Tutto il contrario della ventilazione protettiva che vorremmo proseguire anche con l’inizio della ventilazione assistita.

In queste condizioni le modalità di ventilazione ben sincronizzate con il paziente (come ad esempio la pressione di supporto) possono essere deleterie: ogni volta che il paziente inspira (intensamente), il ventilatore contemporaneamente eroga il supporto inspiratorio. Il volume generato dall’ispirazione del paziente si somma sempre con il volume prodotto dalla pressurizzazione del ventilatore e il risultato può essere devastante, con volume corrente spesso superiori a 10-12 ml/kg. Questo può essere un ottimo modo per indurre un ulteriore danno a polmoni che dovrebbero invece essere messi nelle condizioni di guarire.

In questo contesto, la APRV può diventare una buona soluzione, sfruttando la caratteristica di essere una ventilazione asincrona. Anche se qualche modello di ventilatore, volendo fare l’intelligente, non ci aiuta cercando la sincronizzazione con il paziente e facendo quindi perdere l’utile prerogativa (eccezionalmente, in questo caso) della asincronia. Nella APRV i brevi rilasci della pressione delle vie aeree ad un livello basso di pressione (Pbassa) sono seguiti da un immediato ripristino di una pressione più elevata (Palta), e garantiscono una parte della ventilazione. I rilasci di pressione sono asincroni rispetto alla attività respiratoria del paziente, che normalmente trova lo spazio per il proprio respiro spontaneo durante il periodo di Palta senza alcun supporto inspiratorio, cioè facendo di fatto una CPAP ad alta PEEP. Ventilatore e paziente ventilano indipendentemente l’uno dall’altro, senza quasi mai “pestarsi i piedi”, grazie al fatto che quasi sempre il ventilatore è a Palta.

L’impostazione della APRV.

È una ventilazione difficile da impostare e da seguire correttamente. La sconsiglio a chi non abbia una buona conoscenza teorica e pratica della ventilazione meccanica.

A puro titolo di esempio, ti dico con che impostazione referisco iniziarla,  senza pretendere che questa sia la verità, è solo il mio punto di partenza nella gestione della APRV.

Alla sospensione di sedazione e paralisi, inizio la APRV ai primi segni di attività respiratoria del paziente, meglio se ancora appena accennata. Non la inizio a paziente ancora totalmente passivo perché sarebbe nulla di più che una pressione controllata a rapporto invertito, ventilazione di cui ho imparato a fare a meno da almeno 20 anni. Finchè il paziente è passivo preferisco sfrutta la tradizionale ventilazione protettiva.

Imposto quindi un tempo di Palta a 2.5 secondi, un tempo di Pbassa di 0.5 secondi. Imposto la Palta a circa 20 cmH2O  e la Pbassa a 0 cmH2O. Quando la frequenza respiratoria spontanea del paziente aumenta, prolungo progressivamente il tempo di Palta fino ad arrivare ad un massimo di circa 4 secondi. Valuto l’appropriatezza del livello di Palta sulla base delle variazioni di volume durante i passaggi da Pbassa a Palta: esse dovrebbero essere un po’ più piccole del volume corrente della ventilazione protettiva (vedi sotto).

L’espirazione durante Pbassa deve essere incompleta per garantire la persistenza di una pressione positiva polmonare in qualsiasi fase del ciclo ventilatorio. Non devi quindi temere che impostare a 0 cmH2O la Pbassa porti a 0 cmH2O anche la pressione alveolare in espirazione: sfruttiamo l’autoPEEP a Pbassa.

In APRV non si può parlare di una PEEP (Positive End-Expiratory Pressure) e di una pressione inspiratoria, come purtroppo alcuni ventilatori indicano nel pannello di impostazione. Infatti in APRV inspirazione ed espirazione avvengono sia a Palta che a Pbassa. Nel paziente attivo molte inspirazioni ed espirazioni si hanno nei respiri spontanei a Palta: in queto caso la Palta è sia pressione inspiratoria che PEEP. La Pbassa è PEEP dei rilasci di pressione (difficilmente il paziente riesce ad inspirare durante il breve tempo di Pbassa). Quindi il paziente ha due PEEP, Palta e Pbassa, e teoricamente due autoPEEP, quella a Palta e quella a Pbassa.

L’interazione paziente-ventilatore.

L’interazione paziente-ventilatore in APRV non è semplice da giudicare. Spesso il paziente, proprio per l’asincronia con i rilasci del ventilatore, non ha una respirazione esteticamente “bella”, con due ritmi respiratori indipendenti e che si alternano, quello del paziente equello del ventilatore. L’obiettivo principale però è una somma ragionevole tra il volume corrente generato dal paziente a Palta e l’incremento di volume che si è prodotto nel passaggio da Pbassa a Palta. E’ difficile dare una indicazione precisa su cosa si intenda per volume ragionevole, però potremmo in linea di massima concordare su un volume certamente inferiore a 8-10 ml/kg di peso ideale. Qui è decisivo il tipo di monitoraggio del volume fatto dal ventilatore: il ventilatore migliore è quello che mantiene la somma di questi volumi, evitando di resettare il segnale ad ogni espirazione.

Cerco si spiegarmi meglio con due esempi. Nella figura 1 puoi vedere un paziente che inizia la APRV, con una attività respiratoria spontanea appena accennata. Il passaggio da Pbassa a Palta determina mediamente un incremento di volume di circa 220 ml (tratteggio bianco), mentre durante gli atti respiratori spontanei a Palta il paziente somma fino a circa 130 ml, giungendo ad un totale di 350 ml (tratteggio rosso).

Figura 1

Quando il paziente diventa più attivo, come nella figura 2, il volume che inspira spontaneamente lo porta a raggiungere variazioni totali di volume che oscillano tra i 455 ed i 630 ml. Anche in questa figura il tratteggio bianco indica la variazione di volume ottenuta con il passaggio da Pbassa a Palta (che come vedi è variabile) e la linea tratteggiata rossa il volume massimo ottenuto con la somma dell’attività respiratoria spontanea.

Figura 2

Di solito ricorro alla APRV in circa la metà delle ARDS “difficili” ed in circa il 50% di questi pazienti mi consente di mantenere sospesa la paralisi e traghettare in 1-2 giorni il paziente ad una accettabile ventilazione assistita convenzionale. Nell’altra metà dei pazienti il pattern respiratorio non è invece accettabile nemmeno in APRV e proseguo con un’altra giornata di sedazione e paralisi.

Ed ora la mia esperienza della APRV nei pazienti con COVID-19.  Nei pazienti COVID la sospensione di sedazione e paralisi determina un drive respiratorio “feroce”, uno stato di agitazione e polipnea indomabili. In molti casi (più del solito) l’APRV non ha evitato una ventilazione con elevato volume totale, con utilizzo della muscolatura accessoria della ventilazione ed una frequenza respiratoria molto elevata. Per questo motivo ho spesso fatto marcia indietro, ripiegando nuovamente alla sedazione e quindi alla sospensione della APRV. Dopo una serie di fallimenti, ho quindi di fatto desistito dal proporre la APRV ai pazienti che ho seguito personalmente, preferendo associare una sedazione più prolungata a modalità di ventilazione assistite o assistite-controllate.

Per concludere, la APRV è una arma in più nel nostro repertorio, ma come tutte le modalità di ventilazione non è di per sé buona o cattiva, ma dipende dalle caratteristiche fisiopatologiche della malattia polmonare, dalla fase clinica, dall’impostazione e dall’interazione con il paziente.

La APRV è una ventilazione “difficile, che richiede attenzione e competenza, non solo da parte di chi la imposta ma di tutta la catena dei medici che si susseguono nella cura del paziente.

Nel paziente con COVID mi ha risolto molto meno problemi di quanto non accada nelle altre forme di ARDS, anzi spesso ho dovuto abbandonarla precocemente e con il tempo l’ho utilizzata sempre meno.

Ciò non toglie che, valutata caso per caso, non possa essere utile in alcuni pazienti. Ma prima di utilizzarla sui COVID, è meglio aver acquisito una buona esperienza su pazienti in cui è meno problematico il passaggio dalla sedazione/paralisi alla ventilazione assistita.

Come sempre, un sorriso a tutti gli amici di ventilab.

May 102020
 

Oggi un altro post di risposta collettiva alle domande e dubbi degli amici di ventilab. Affronteremo sinteticamente3 argomenti che hanno appassionato in questi due mesi di COVID-19: ventilazione non-invasiva, reclutamento alveolare e pronazione.

Ventilazione non-invasiva

Come in tutte le forme di ARDS moderata-grave, la ventilazione non-invasiva deve essere utilizzata con molta cautela e sospesa tempestivamente se non si ha un rapido ed evidente miglioramento di dispnea ed ipossiemia, se persiste l’utilizzo dei muscoli accessori della ventilazione e se il volume corrente ottenuto è elevato (approssimativamente > 10 ml/kg di peso ideale).

Questo in teoria, nel mondo ideale, quando non è critica la disponibilità di accesso alla Terapia Intensiva e ventilazione invasiva. In condizioni di risorse limitate, ovviamente anche la ventilazione non-invasiva diventa una risorsa da utilizzare in maniera più estensiva.

Nei pazienti ipossiemici con COVID-19 vi è stato spesso il dibattito tra i sostenitori della CPAP e quelli della pressione di supporto. Premesso che la CPAP è meglio di niente, a mio parere nel paziente dispnoico con elevato carico dei muscoli respiratori è di norma preferibile l’applicazione di un supporto inspiratorio piuttosto della sola CPAP. In questi casi il supporto respiratorio non aumenta significativamente il volume corrente, ma semplicemente riduce lo sforzo dei muscoli respiratori e la negatività pleurica da essi generata. In altre parole riduce il lavoro respiratorio senza aumentare la pressione transpolmonare e quindi il possibile danno indotto dalla ventilazione meccanica (vedi anche post del 30/04/2017).

Reclutamento.

Le manovre di reclutamento alveolare spesso sono applicate ripetutamente nello stesso paziente per migliorare l’ossigenazione. Non è il mio modo di intendere il reclutamento. Nel periodo COVID-19 nel mio reparto abbiamo sottoposto a ventilazione invasiva oltre 180 pazienti, quasi tutti con ipossiemia molto grave. Tra tutti questi pazienti ricordo un solo caso in cui il reclutamento, seguito da alta PEEP, ha avuto un evidente effetto positivo sul decorso clinico. Rina, una signora con obesità grave (48 di body mass index) durante le prime ore di ventilazione meccanica aveva una SpO2 in progressiva riduzione, arrivata a  80% con FIO2 1 e PEEP 12 cmH2O. Rina era ventilata con un obsoleto ventilatore da anestesia senza possibilità di occlusioni e con un monitoraggio grafico in miniatura incomprensibile. Ma questo era ciò che avevamo a disposizione quando è arrivata Rina (e poteva anche andarle decisamente peggio…). Abbiamo eseguito una manovra di reclutamento portando la PEEP a 20 cmH2O (il massimo possibile per quel ventilatore) e mettendo una PCV a 25 cmH2O per alcuni minuti. La SpO2 è rapidamente salita a 96 %. Al termine abbiamo portato la PEEP a 16 cmH2O con ventilazione volumetrica con 300 ml di volume corrente, ma la saturazione è nuovamente crollata a 80% in breve tempo. Abbiamo verificato che Rina manteneva una ossigenazione sufficiente solo con 20 cmH2O di PEEP, già a 18 cmH2O precipitava in ipossiemie gravissime. Anche in un caso come questo, la manovra di reclutamento è stata fatta solo una volta.

Questo caso è l’eccezione e non la regola, e comunque il reclutamento, anche quando efficace per conquistare alla ventilazione aree alvelari escluse ma recuperabili, può essere eseguito una tantum se fatto correttamente. Su questo argomento se vuoi puoi rileggere un vecchio post del 12/04/2014, che a distanza di anni resta comunque sostanzialmente valido, ed il post del 01/10/2017.

Pronazione.

Rina non si è fatta mancare nemmeno la pronazione, nel suo caso veramente scomoda per la grave obesità. Ma in questa posizione aveva un drammatico miglioramento dell’ossigenazione che consentiva anche una netta riduzione della FIO2.

Nonostante l’efficacia della pronazione sia solitamente valutata per l’effetto sull’ossigenazione, penso che però il suo reale valore aggiunto non sia quello di migliorare la PaO2, se non in casi estremi come quello di Rina. La signora Rina, tra pronazione e reclutamento, è stata pure fortunata, perchè dopo un mese e mezzo di ospedale è stata dimessa in buone condizioni. Un esito favorevole che purtroppo è capitato solo a circa la metà dei pazienti intubati…

Nella ARDS grave la pronazione è probabile che eserciti principalmente un effetto protettivo sul parenchima polmonare, favorendo la distribuzione più omogenea del volume corrente e quindi riducendo la sovradistensione delle aree polmonari maggiormente esposte al Ventilator-Induced Lung Injury. Purtroppo spesso questo effetto non riusciamo a verificarlo perchè la driving pressure non si riduce. Questo accade perchè perchè la pronazione riduce la compliance della gabbia toracica. Ma se la driving pressure rimane costante in posizione prona e la gabbia toracica ha una minor compliance, ciò significa che la compliance polmonare è aumentata. E dopo, gli ultimi due post, si può capire quale possa essere il vantaggio.

Alcuni mi hanno chiesto se la posizione prona è utile anche in ventilazione non-invasiva. Devo rispondere che non lo so, non ho visto dati convincenti e non ho un’esperienza personale. Quindi giudizio sospeso. Faccio solo la solita considerazione: allo stato delle attuali conoscenze, se un paziente ipossiemico non va bene con la ventilazione non-invasiva, penso sia meglio intubarlo senza ricorrere a iniziative estreme e di esito incerto.

Per oggi mi fermo qui. Nei prossimi giorni concluderemo questo ciclo di post parlando di APRV, terapia farmacologica, weaning, sedazione e tracheotomia.

Prometto che non farò un post per commentare le affermazioni di coloro che sostengono che i pazienti con COVID-19 non hanno bisogno di essere ventilati se fanno l’eparina. Sono portato a credere che nessuno di questi abbia mai visto un paziente con COVID-19 ed insufficienza respiratoria grave, altrimenti mi preoccuperei…

Nel frattempo il solito sorriso a tutti gli amici di ventilab.

May 022020
 

Nel post precedente abbiamo visto che tutte le forme di ARDS sono caratterizzate da una più o meno grave una riduzione della capacità funzionale residua e che la compliance è ad essa approssimativamente proporzionale.

La ventilazione della capacità funzionale residua è ciò che può accomunare la ventilazione meccanica di tutti i pazienti con ARDS, inclusi quella associata a COVID-19. Va bene per tutti perché consente di individualizzare volume corrente e PEEP in ciascun paziente, relativizzandoli al volume polmonare ventilato. E ci evita il fastidio di entrare in discussioni sterili come ad esempio “PEEP alta o bassa”, o nelle certezze, dogmatiche e indimostrate, come ad esempio quella dei 6 ml/kg di volume corrente a tutti, sentendosi tranquilli se la pressione di plateau non è superiore a 30 cmH2O.

Questo approccio segna una frattura totale con quello fondato sull’emogasanalisi arteriosa. Vediamo quindi cosa non fare e cosa invece è ragionevole fare. 

Per i lettori attenti di ventilab non vi sarà nulla di sostanzialmente nuovo, però potrà essere lo spunto per vedere concetti noti anche sotto altre prospettive.

Cosa NON fare.

Il PaO2/FIO2 NON PUO’ essere la base per l’impostazione e la verifica della ventilazione protettiva nell’ARDS (vedi post del 31/01/2020, l’ultimo dell’era pre-COVID-19…).

Ipotizziamo che Mario e Pippo siano due pazienti con ARDS, il peso ideale di entrambi è 70 kg, entrambi hanno PaO2 80 mmHg e FIO2 0.8 (PaO2 /FIO2 100 mmHg). Ipotizziamo che Mario abbia compliance 21 ml/cmH2O e Pippo 42 ml/cmH2O

Figura 1

Ci sembra ragionevole ventilare Mario e Pippo allo stesso modo, ad esempio con 420 ml di volume corrente (6 ml/kg) e 14 cmH2O di PEEP (come indicato nella tabella PEEP-FIO2 in figura 1)?

La prima conseguenza di questa impostazione sarebbe che Mario ha avrebbe una driving pressure (volume corrente/compliance) di 20 cmH2O e Pippo di 10 cmH2O. Ad entrambi dovremmo mettere una PEEP di 14 cmH2O, senza tenere conto del fatto che questa possa migliorare o peggiorare compliance e driving pressure…

Anestesisti rianimatori di tutto il mondo, unitevi: smettiamo di guardare l’emogasanalisi per decidere come ventilare i pazienti con ARDS. Non è l’emogasanalisi arteriosa a guidare la ventilazione meccanica!!! E’ dura, lo so… è forte la tentazione di vedere quel dannato foglietto con PaO2 e PaCO2… ma possiamo farcela. 

Come fare e perchè.

Il volume corrente.

Dal momento che ogni paziente con ARDS ha una più o meno marcata riduzione del volume polmonare (che riconduciamo alla riduzione della capacità funzionale residua), è ragionevole che in tutti i pazienti con ARDS (sia i Mario che i Pippo) il volume di gas che si introduce nei polmoni ad ogni inspirazione (il volume corrente) debba essere proporzionato al volume polmonare, cioè alla capacità funzionale residua.

La capacità funzionale residua è il contenitore, il volume corrente  un oggetto da introdurvi: se il contenitore è grande, vi si può mettere, senza danneggiarlo, un oggetto grande. In un contenitore molto piccolo, si può infilare solo un oggetto piccolo se non lo si vuole rompere.

Il rapporto tra volume corrente e capacità funzionale residua è conosciuto con il termine di strain, il quale è direttamente proporzionale alla driving pressure (1, 2). Se vuoi un approfondimento su strain e driving pressure, puoi rileggere anche il post del 26/02/2016.

La prima regola che vale in tutte le ARDS è quindi che il volume corrente debba essere ridotto se la driving pressure (cioè la differenza tra pressione di plateau e PEEP) è elevata (indicativamente superiore a 14-15 cmH2O).

Per semplicità parliamo della driving pressure delle vie aeree, quella che si può calcolare molto facilmente dal display di qualsiasi ventilatore meccanico. 

In realtà lo stress del polmone andrebbe misurato con la driving pressure transpolmonare, che richiede la misurazione della pressione esofagea. Se la pressione esofagea è misurata correttamente, la driving pressure transpolmonare è data dalla driving pressure delle vie aeree (pressione di plateau – PEEP) meno la driving pressure della gabbia toracica (pressione esofagea a fine inspirazione – pressione esofagea a fine espirazione).

Può essere opportuno complicarsi la vita con la driving pressure transpolmonare nei casi in cui non si riesce a contenere la driving pressure entro i limiti normalmente accettati, in particolare nei pazienti obesi. Non è un caso che una elevata driving pressure sia associata alla mortalità nei pazienti con ARDS, ad eccezione degli obesi (3). In essi, come in tutti i pazienti con bassa compliance della gabbia toracica, l’entità delle variazioni tidal di pressione esofagea rompe una consueta proporzionalità tra la driving pressure delle vie aeree e driving pressure transpolmonare. Non approfondisco ulteriormente l’argomento per necessità di brevità. 

La PEEP.

Abbiamo visto nel post precedente che la compliance dell’apparato respiratorio (Ctot) è uguale alla somma delle compliance delle singole parti di cui è composto (le compliance regionali C1, C2, C3, …, Cn

Ctot = C1 + C2 + C3 + … + Cn.

Se le compliance regionali sono sostanzialmente costanti (dal momento che la compliance specifica è simile in tutti i polmoni), la variazione della Ctot dovrà essere secondaria all’aumento o alla riduzione del numero di porzioni ventilate dei polmoni.

Ne consegue che se l’applicazione della PEEP aumenta la compliance, essa dovrebbe aver aumentato il numero di unità polmonari disponibili alla ventilazione. Questo è schematizzato nella figura 2A, in cui l’unità polmonare 4 non è ventilata a ZEEP mentre lo diventa con l’applicazione della PEEP, determinando un aumento della compliance totale.

Se la variazione di PEEP mantiene costante la compliance, ragionevolmente possiamo pensare che sia rimasto invariato il numero di unità polmonari ventilate, semplicemente se ne è modificato il volume (figura 2B). 

Figura 2

Se la PEEP riduce la compliance, la spiegazione più coerente con le nostre attuali conoscenze è che si sia ridotta la compliance regionale di alcune zone perchè queste diventano sovradistese e pertanto, questa volta sì, più “rigide” (figura 2C).

L’effetto della PEEP sulla compliance è sempre la somma algebrica di questi tre fenomeni che si possono presentare contemporaneamente nelle diversi porzioni di un parenchima polmonare disomogeneo. Come effetto finale vediamo quello prevalente.

Una spiegazione così semplice non può che essere una semplificazione della realtà, come del resto lo è qualsiasi modello. Ma dal punto di vista operativo, clinico, mi sembra a tutt’oggi quella più coerente con quanto la ricerca ci ha insegnato.

Per vedere se la PEEP migliora la compliance, dobbiamo fare un PEEP trial. Dobbiamo cioè provare PEEP diverse e scegliere, tra queste, quella che riduce la driving pressure (se usiamo una ventilazione volumetrica controllata senza modificare il volume corrente alle diverse PEEP) o quella che aumenta il volume corrente (se usiamo una pressione controllata con pressione inspiratoria sopra PEEP costante). 

Nel periodo COVID-19 mi è tornato comodo quest’ultimo approccio, avendo dovuto utilizzare per ventilare qualsiasi tipo di cosa avesse ricordasse un ventilatore meccanico. In alcuni ventilatori portatili domiciliari, in ventilatori da trasporto, in vecchi ventilatori da anestesia, il monitoraggio lascia molto a desiderare e la pressione di plateau è invisibile o inaffidabile. In questi casi è più semplice mantenere una PCV di 15 cmH2O e testare PEEP diverse andando semplicemente a leggere il numero del volume corrente sul display.

La frequenza respiratoria e tempo inspiratorio.

Con l’emergere del concetto di mechanical power (4), forse per ora ancora acerbo per una diretta declinazione clinica, si fa sempre più strada l’idea che, tra le altre cose, anche la frequenza respiratoria possa contribuire al possibile danno da ventilazione meccanica. Pertanto la frequenza respiratoria dovrebbe essere tenuta bassa per quanto possibile, il che per una ARDS significa tra 20 e 25/min. Anche tollerando l’ipercapnia che ne deriva, che come abbiamo visto in passato è tutto fuorché un veleno (altro mito da sfatare per gli anestesisti rianimatori) (vedi anche post del 25/03/2018). 

Nella fase di ventilazione controllata della ARDS, il tempo inspiratorio a mio avviso merita la stessa dignità del tempo espiratorio. Durante il prolungamento dell’inspirazione si favorisce infatti il raggiungimento della ventilazione anche nelle zone a costante di tempo lunga, con omogeneizzazione della ventilazione e miglioramento dello scambio gassoso.  Di default tendo a mettere, nei pazienti passivi, un rapporto I:E 1:1, con un tempo inspiratorio che quindi oscilla tra 1 e 1.5 secondi per frequenze respiratorie tra 20 e 30/min.

Ovviamente, tutto cambia quando si passa alla ventilazione assistita-controllata, qui il I:E diventa libero e ci si preoccupa solo del tempo inspiratorio (vedi anche post del 15/03/2014).

Verifica finale.

Alla fine, dopo aver impostato volume corrente, PEEP, frequenza respiratoria, se il paziente è passivo (senza alcun segno di attivazione dei muscoli inspiratori), una osservazione allo stress index in volume controllato a flusso inspiratorio costante, misurato per chi ce l’ha, occhiometrica per gli altri (me compreso). Se va tutto bene, l’impostazione del ventilatore si conferma ragionevole. Per ulteriori informazioni sullo stress index puoi vedere i post del 15/08/2011 e del 28/08/2011.

 

In conclusione, abbiamo visto che è possibile in qualsiasi forma di ARDS avere un approccio semplice ma ragionato alla ventilazione meccanica. Chi propone numeri magici e tabelle lo fa pensando che questa sia la strada migliore per limitare i danni se la ventilazione capita nelle mani sbagliate… Ci possono essere della ragioni anche in questo. 

Per quanto mi riguarda, preferisco scrivere e parlare per chi ha il piacere di migliorarsi ogni giorno e sfrutta ogni occasione per imparare. Nella mia personale esperienza con le migliaia di persone che ho avuto il piacere di vedere e conoscere in questi anni, sono sempre più convinto che sia meglio parlare a chi vuol sentire piuttosto che urlare ai sordi.

Nei prossimi post (se riesco già la prossima settimana) concluderò le riflessioni sugli argomenti che mi sono stati richiesti nel periodo COVID-19 con cenni su pronazione, reclutamento, APRV, ventilazione non-invasiva, terapia farmacologica, weaning, sedazione e tracheotomia.

Come sempre, un sorriso agli amici di ventilab.

 

Bibliografia

  1. Chiumello D, Carlesso E, Cadringher P, et al.: Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2008; 178:346–355
  2. Gattinoni L, Carlesso E, Caironi P: Stress and strain within the lung: Curr Opin Crit Care 2012; 18:42–47
  3. De Jong A, Cossic J, Verzilli D, et al.: Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med 2018; 44:1106–1114
  4. Marini JJ: Evolving concepts for safer ventilation. Crit Care 2019; 23:114
Apr 282020
 

Come abbiamo visto l’ARDS è una sindrome che può presentarsi in maniera molto differente, influenzata sia dalla malattia che l’ha indotta che dalle caratteristiche del paziente.

Tutte le ARDS hanno però una fondamentale caratteristica comune: la riduzione del volume polmonare. In particolare si riduce il volume di aria contenuto nei polmoni alla fine della espirazione, cioè la capacità funzionale residua  (functional residual capacity, FRC).

Figura 1

Tutte le ARDS hanno una riduzione della FRC, ma non tutte della stessa entità: in alcuni casi è più grave, in altri meno. Questo avrà implicazioni cliniche rilevanti, che vedremo nel prossimo post.

Al letto del paziente tutti possiamo avere un’idea dell’entità della riduzione di FRC: in prima approssimazione, tanto maggiore è la riduzione della FRC, tanto maggiore è la riduzione della compliance.

La compliance (C) si misura al letto del paziente dividendo il volume corrente per la differenza tra pressione di plateau e PEEP (PEEP totale), cioè per la driving pressure (dP): C = VT/dP.

(E’ necessaria una precisazione: tutto quanto diciamo dovrebbe teoricamente essere riferito al solo polmone e non all’intero apparato respiratorio. In altre parole, la pressione di riferimento non dovrebbe essere la pressione delle vie aeree che misuriamo sul ventilatore meccanico, ma la pressione transpolmonare, cioè la differenza tra pressione delle vie aeree e pressione pleurica. Ma a fini clinici anche ragionare sulle pressioni delle vie aeree può offrire informazioni utili nella pratica clinica, con alcune eccezioni che vedremo nel prossimo post.)

Siamo abituati a pensare alla compliance come ad una misura di “durezza” dei polmoni: di solito si pensa che più si riduce la compliance, più diventano “duri”, “rigidi” i polmoni. In realtà è più corretto pensare la compliance come un indice di riduzione della FRC.

Facciamo un esempio. Un soggetto sano ha una compliance di circa 120 ml/cmH2O (1), il che significa che applicando una pressione di 1 cmH2O si aumenta il volume di polmoni di 120 ml.  La sua una capacità funzionale residua di circa 2000 ml. Immaginiamo di avere due polmoni, destro e sinistro, di identiche dimensioni, come nella figura 2, ciascuno dei quali contiene quindi 1000 ml a fine espirazione.

Figura 2

Se ventiliamo questo soggetto con 600 ml di volume corrente, avremo una pressione alveolare di 5 cmH2O (C=VT/P, cioè P=VT/C), sia nel polmone destro che nel polmone sinistro.

Il polmone destro, come il sinistro, hanno ricevuto ciascuno la metà del volume corrente (300 ml) ed ha aumentato la pressione di 5 cmH2O. La compliance di ciascun polmone è quindi 60 ml cmH2O (300 ml / 5 cmH2O).

La compliance di tutto l’apparato respiratorio è la somma delle compliance delle singole unità polmonari. Questo significa che quando si riduce il numero delle unità alveolari si riduce necessariamente la compliance dei polmoni.

Figura 3

Troviamo facilmente conferma di questo se analizziamo cosa succede se si esclude dalla ventilazione uno dei due polmoni, cioè se si dimezza la FRC (figura 4).

Figura 4

Tutti i 600 ml vanno a finire nell’unico polmone ventilato, che ha la stessa compliance che aveva in precedenza, cioè 60 ml/cmH2O. La pressione alveolare che si sviluppa in questo caso è di 10 cmH2O (cioè VT/C): questa è diventata anche la pressione di tutto l’apparato respiratorio, la cui compliance totale si è dimezzata a 60 ml/cmH2O.

Il polmone non è diventato “più rigido”, è diventato solo più piccolo. E’ il concetto del baby lung.

Vediamo la stessa cosa con un altro esempio. La compliance dei neonati è espressa in cmH2O/ml per kg di peso ed ha un valore mediamente di 1.6 cmH2O/ml/kg (2). In un neonato di 3.5 kg la compliance è quindi circa 6 ml/cmH2O, un valore bassissimo rispetto ai 120 ml/cmH2O dell’adulto. Vuol dire che il neonato ha dei polmoni molto rigidi o solamente molto piccoli? 

Calcoliamo la compliance per kg di peso, come si fa nel neonato, nell’adulto con peso ideale di 75 kg e 120 ml/cmH2O di compliance. Otteniamo 1.6 cmH2O/ml per kg, lo stesso valore del neonato.

Se vogliamo essere più precisi, parliamo di compliance specifica (cioè la compliance in rapporto alla FRC), che nel neonato è  0.06 ml∙cmH2O-1∙ml-1 (1). Possiamo facilmente calcolarla anche nell’adulto, con i dati che abbiamo utilizzato in precedenza: 120 ml/cmH2O / 2000 ml = 0.06 ml∙cmH2O-1∙ml-1, anche in questo caso lo stesso valore del neonato. 

Adulto e neonato hanno compliance assolute diverse, ma una uguale compliance relativa alla dimensione del polmone. Questi dati supportano ulteriormente che la compliance specifica (quella relativa alla dimensione del polmone) rappresenta la “rigidità” del polmone, la compliance totale (quella che misuriamo noi) è invece un indicatore di volume aerato, cioè di FRC.

Da tutto ciò deriva che la riduzione di capacità funzionale residua dovrebbe essere l’indicatore della gravità della ARDS e dovrebbe fare parte della sua definizione. Non essendo facile da misurare, nella clinica può essere sostituita dalla compliance: le ARDS con bassa compliance sono quelle con la maggior riduzione di FRC, quelle con compliance meno ridotta hanno avuto una minor riduzione di FRC. 

Nella ARDS da COVID-19 alcuni pazienti hanno avuto riduzioni moderate della compliance, mantenendosi tra i 40 e 50 ml/cmH2O, un valore comunque inferiore alla normalità.

Figura 5

Ma questo non è un dato eccezionale, accade anche in molte ARDS non associate a COVID-19, come ad esempio nel caso (che presento ad alcuni corsi di ventilazione) di un collega ed amico che ha avuto una ARDS grave (PaO2/FIO2 < 100 mmHg) secondaria a polmonite dopo un trauma toracico: la compliance era 45 ml/cmH2O (TC in figura 5). Questo dato non è nuovo, già in un articolo di quasi 30 anni fa sulla meccanica respiratoria dei pazienti con ARDS  si vedeva c1/4 di essi aveva una compliance di 45-50 ml/cmH2O (3). Nulla di strano, quindi.

Ma è proprio vero che i pazienti con ARDS da COVID-19 hanno una “buona” compliance? Sto analizzando i dati dei pazienti con COVID-19 intubati e ventilati negli ultimi 2 mesi nel mio reparto. Mediamente la compliance è bassa il primo giorno di ricovero (circa 30 ml/cmH2O). Anche i pazienti con ARDS da COVID-19 hanno spesso una bassa compliance. Alcuni hanno compliance con riduzioni moderate, altri invece con riduzioni molto più gravi. I primi casi che ho trattato mi avevano dato l’impressione di un maggior numero di casi a compliance moderatamente ridotta (comunque sempre più bassa del normale), ma continuando a curare tanti pazienti l’impressione è cambiata ed i dati lo confermano.

La conclusione è che tutte le ARDS si associano ad una riduzione della capacità funzionale residua, la quale si esprime anche con la riduzione della compliance. La riduzione della capacità funziona residua, più o meno marcata, è il comune denominatore della Acute Respiratory Distress Syndrome, indipendentemente dalla malattia che l’ha determinata.

La capacità funzionale residua ed il suo effetto sulla compliance è la chiave d’accesso a tutte le forme di ARDS, che può consentire un approccio unitario e razionale alla ventilazione della ARDS da qualsiasi malattia, COVID-19 e non COVID-19. Di questo parleremo tra pochi giorni nel prossimo post.

Come sempre, un sorriso a tutti gli amici di ventilab. Fa bene a chi lo fa e fa bene a chi lo riceve…

Bibliografia.

  1. Naimark A. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol 1960; 15:377-82
  2. ATS/ERS. Respiratory Mechanics in Infants: Physiologic Evaluation in Health and Disease. Am Rev respir Dis 1993; 147:474-96
  3. Eissa NT, Ranieri VM, Corbeil C, et al.: Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. Journal of Applied Physiology 1991; 70:2719–2729

Apr 262020
 

L’emergenza COVID-19 nelle Terapie Intensive lombarde sta rientrando e riesco a leggere solo oggi le tante domande che mi sono arrivate nell’ultimo mese in merito alla ventilazione nei pazienti con COVID-19.

Ho voglia di girare pagina e vorrei smettere di parlare di COVID-19. Quindi questa settimana vorrei chiudere il capitolo (per non parlarne mai più, spero) con una serie di brevi post in cui rifletteremo e cercheremo di imparare qualcosa dai dubbi e dalle proposte che mi avete mandato ed alle quali non ho potuto rispondere singolarmente.

 

La COVID-19 è una ARDS?

Sì, la COVID-19 è senza dubbio una ARDS: è una sindrome con ipossiemia grave (PaO2/FIO2 < 300 mmHg con almeno 5 cmH2O di PEEP/CPAP) insorta acutamente, caratterizzata da infiltrati polmonari bilaterali, che non è secondaria ad una disfunzione ventricolare sinistra (1). Non c’è dubbio, la COVID-19 è proprio tutto questo. Non è nemmeno, come qualcuno propone, una “pseudoARDS”, che peraltro non capisco bene cosa sia. Se non accettiamo la definzione di ARDS per la COVID-19, non dovremmo accettarla nemmeno per tante altre malattie…

L’equivoco nasce se si pensa che l’ARDS sia una malattia. L’ARDS è una sindrome, come dice il nome stesso (Acute Respiratory Distress Syndrome) ed una sindrome è un complesso di segni e sintomi che può essere espressione di malattie di natura completamente diversa. L’ARDS è un caso tipico: può essere causata da malattie molto differenti tra loro. Questo era già chiaro a chi ha “scoperto” l’ARDS, che aveva ben in mente che questa fosse una manifestazione finale comune di differenti condizioni patologiche (nello studio originale trauma, polmonite e pancreatite) (2) (vedi post del 31/01/2016).

Anche le caratteristiche istologiche di ciò che chiamiamo ARDS sono variabili: il danno alveolare diffuso, che viene considerato un segno microscopico caratteristico, è presente solo nella metà dei pazienti con ARDS (3).

Da quest’anno anche la malattia da coronavirus SARS-CoV2, cioè la COVID-19, può essere causa di ARDS. Non lo è sempre, per fortuna, perchè molto spesso determina quadri clinici più benigni che con l’ARDS non hanno nulla a che fare.

Le malattie che possono portare a quella infiammazione diffusa dei polmoni che definiamo ARDS possono essere primitivamente polmonari, e coinvolgono estesamente i polmoni “dall’interno” (polmonite batterica, polmonite virale, trauma toracico, inalazione di gas tossici, annegamento,…), oppure non polmonari (peritonite, pancreatite, emotrasfusione massima, fascite necrotizzante,… ), ed arrivano diffusamente a coinvolgere i polmoni attraverso la circolazione capillare polmonare.

E’ molto importante essere consapevoli dell’eterogeneità delle condizioni cliniche che portano alla ARDS, perché i pazienti con ARDS hanno qualche tratto patologico comune insieme a profonde diversità che condizionano differenti risposte al trattamento. Queste che dipendono sia dal tipo di malattia che ha causato l’ARDS che dalle caratteristiche del paziente (comorbidità polmonari, obesità,…). Non possiamo illuderci che la risposta ai trattamenti ventilatori (PEEP, riduzione del volume corrente, limitazione della pressione di plateau, reclutamento) e farmacologici (ad esempio la somministrazione di steroidi) sia sempre la stessa per malattie così diverse.

Persino i pazienti con ARDS secondaria alla stessa malattia, come ad esempio i pazienti con ARDS da COVID-19, possono differire molto l’uno dall’altro, sia per gli aspetti extra-polmonari che per le caratteristiche dell’apparato respiratorio. Ora, ad esempio, siamo tutti consapevoli che anche tra i pazienti con COVID-19 possono esserci quelli con alta compliance e quelli con bassa compliance.

Con questa molteplicità di variabili nella ARDS, che senso ha dare una regola comune di PEEP bassa o PEEP alta (sempre mettendosi d’accordo su cosa si intenda per alta o bassa…)?

Che senso ha fare la stessa scelta di volume corrente per kg di peso del paziente? Protettivo (6 ml/kg), Ultraprottettivo (4 ml/kg)? Più fisiologico (8ml/kg)?

Che senso ha postulare a priori la necessità o viceversa la pericolosità del reclutamento?

Che senso ha proporre un limite fisso di pressione di plateau a 30 cmH2O, valore peraltro arbitrario ed in antitesi con quanto ci ha insegnato la ricerca?

Il senso c’è se si trova un comune denominatore di tutte le forme di ARDS, che le accomuni su un livello superiore rispetto alle loro differenze. Nel prossimo post di questa serie (forse già domani) identificheremo questo aspetto unificante della ARDS e ragioneremo come grazie ad esso si possa gestire in modo coerente la ventilazione meccanica superando le singole peculiarità.

Forse in futuro la definizione di ARDS dovrebbe includere esplicitamente questo tratto comune, essendo esso ciò che veramente rende questa sindrome un’entità con una propria coerenza. Se sei interessato a sapere a cosa mi riferisco e quali sono i risvolti pratici, ti aspetto per il prossimo post!

Un sorriso a tutti gli amici di ventilab. A prestissimo.

 

Bibliografia

  1. ARDS Definition Task Force: Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012; 307:2526–2533
  2. Ashbaugh D, Bigelow D, Petty T, et al.: Acute respiratory distress in adults. Lancet 1967; 2:319–323
  3. Sweeney RM, McAuley DF: Acute respiratory distress syndrome. Lancet 2016; 388:2416–2430
Mar 232020
 

Sono consapevole di essere un soggetto a rischio di COVID-19 (CoronaVIrus Disease 2019): l’età è a rischio (i cinquantenni sono un “piatto” appetibile per il SARS-CoV2) ed i contatti non sono mancati: lavoro in mezzo alla COVID e diverse persone che sono state al mio fianco in queste settimane si sono ammalate.
Ho pensato quindi di lasciare ai miei bravissimi colleghi una sorta di testamento ventilatorio: qualche piccolo suggerimento se dovessi diventare un loro paziente.

Non ho verità (oggi nessuno le ha per questa malattia), ma nell’ultimo mese ho curato oltre 100 pazienti con COVID-19 (ne abbiamo 66 questa sera in Terapia Intensiva). L’attività clinica mi occupa tutti i giorni dalla mattina alla sera, non ho tempo di analizzare i dati (lo farò quando le acque si saranno calmate). Nel frattempo propongo la mia di opinione, frutto dell’esperienza empirica al letto del malato.

Trattamento farmacologico. Cari colleghi-amici, se capitassi tra i vostri pazienti, decidete a vostra discrezione se darmi o meno farmaci specifici per il trattamento della COVID-19 (antivirali ed altro). Nei pazienti in Terapia Intensiva non ho mai notato miglioramenti significativi attribuibili ai farmaci, mentre ne ho “apprezzato” gli effetti collaterali. Se proprio li volete usare, vi chiedo di sospenderli al primo effetto collaterale (aumento della creatinina o della bilirubina, ad esempio). Un ciclo di steroide è l’unico trattamento farmacologico che chiederei, con inizio precoce, anche prima dell’intubazione se l’insufficienza respiratoria mostrasse la tendenza ad una rapida progressione. Vi ricordo infine che è importante la somministrazione di enoxaparina, magari a dosaggi superiori a quelli normalmente utilizzati per la profilassi della trombosi venosa profonda: ho visto diversi episodi trombotici e tromboembolici gravi, che hanno portato a morte pazienti che probabilmente se la sarebbero cavata se la malattia fosse rimasta un problema esclusivamente polmonare.

Ed ora veniamo alla nostra amata ventilazione meccanica.
Se c’è dispnea ed ipossiemia con NIV o CPAP, l’intubazione deve essere tempestiva. Chi si ammala al punto tale da essere intubato, merita un paio di giorni di sedazione e paralisi. Fa eccezione chi mostra nelle prime 24 ore un miglioramento eclatante; in questi (rari) casi sedazione e paralisi possono essere sospese più precocemente.

Durante la fase a ventilazione controllata, non abbiate pregiudizi sulla scelta di PEEP e volume corrente: prima misurate e poi decidete.
La PEEP sceglietela pure con il solito PEEP trial, con il valore che rende minima la driving pressure. Probabilmente troverete più valori di PEEP che mantengono la minima driving pressure: scegliete il più basso che consenta di mantenere una sufficiente ossigenazione (SaO2 92-95%) con una FIO2 non superiore 0.5-0.6.
Lasciate perdere la discussione “PEEP alta o PEEP bassa”: sceglietela così come appena detto (cioè come al solito), paziente per paziente. Alcuni avranno le solite PEEP basse (che per me significa inferiori a 10 cmH2O) che mettiamo agli altri pazienti con ARDS, altri invece PEEP alte (che per me significa 10-15 cmH2O). Una PEEP superiore a 15 cmH2O è giustificata solo in pochissime occasioni.

Il volume corrente è ragionevole sceglierlo iniziando da circa 6-7 ml/kg di peso ideale, ricordando che nei pazienti ad alta compliance può essere un po’ più alto, ed in quelli a bassa compliance potremmo essere costretti a scegliere un volume inferiore. La driving pressure ci guiderà a ridurre o meno il volume corrente. Da considerare che nei pazienti obesi, una driving pressure leggermente superiore a 15 cmH2O potrebbe anche essere tollerabile.

La frequenza respiratoria, se possibile, limitatela a 20-25/min. Se sale la PaCO2, pazienza: calerà successivamente se le cose andranno bene.

Se dopo tutto questo persistesse una grave ipossiemia, provate UNA volta una manovra di reclutamento. Anche se qualche recentissima linea guida la sconsiglia, penso sia preferibile scegliere la manovra “a scala”: PCV 15 cmH2O, PEEP che si alza da 15 a 25 cmH2O per 2-3 minuti. In assenza di ripercussioni emodinamiche, si può andare a PEEP 30 cmH2O per altri 2-3 minuti. Quindi si può passare in volume controllato (con 4-8 ml/kg di volume corrente) e progressivamente ridurre la PEEP da 20 cmH2O in giù, calcolando la driving pressure ad ogni valore di PEEP. Quindi trovata la miglior PEEP (vedi sopra), rifare la manovra di reclutamento ed al termine di essa mettere la PEEP al valore di best-PEEP.

Se anche dopo UN reclutamento persistesse una grave disfunzione polmonare (ad esempio un PaO2/FIO2 < 120 mmHg), considerate la pronazione, per 16 ore al giorno, da ripetere ogni giorno per i primi 3-4 giorni se alla supinazione si osserva nuovamente la grave disfunzione polmonare.

La sedazione durante la ventilazione controllata la farei solo con il propofol (se nei hai ancora) a dosi moderate (3-4 mg/kg/h) e lascerei il resto del lavoro al miorilassante (possibilmente cisatracurium) in infusione continua. Eviterei in questa fase di dare degli inutili oppioidi.

Finita la fase della ventilazione controllata, inizia una ventilazione assistita pressometrica, utilizzando quella che conosci meglio. Se sei molto bravo, prova anche la APRV, altrimenti lascia perdere. Se sono un paziente ad alta compliance (≥ 40 ml/cmH2O), accetta se dovessi fare un volume corrente elevato, sempre a patto che la driving pressure sia minore di 15 cmH2O: l’importante è che il respiro non sia affannoso, che non abbia un eccessivo carico sui muscoli inspiratori. Se prevedi ragionevolmente che l’estubazione possa essere raggiunta con successo entro la prima settimana, procedi con il weaning. Se però vedi che questo non è ragionevole (necessità di PEEP ≥ 8 cmH2O, eccessivo drive respiratorio), la tracheotomia in quarta-quinta giornata è un’ottima scelta: lo svezzamento dalla ventilazione meccanica sarà molto più semplice e rapido. Potrai dimettere più rapidamente e aumentare la possibilità di cura anche per altri pazienti.

Ho notato che i pazienti con COVID-19 peggiorano molto facilmente se si cerca di bruciare le tappe: evita in qualunque modo di stressare il paziente, che invece deve sempre avere un buon comfort ventilatorio.

Questi sono appunti e spunti, che completano l’iniziale approccio proposto 4 settimane fa. Spero possano essere utili sia operativamente (anche ai miei amici-colleghi qualora dovessi diventare un loro paziente…), sia come spunto per ulteriori riflessioni ed approfondimenti.

Non ho il tempo per completare le riflessioni, ma anche in questo periodo così drammatico voglio come sempre lasciare un sorriso agli amici di ventilab. Il sorriso, anche se un po’ stanco e pensieroso, è una fiamma che dobbiamo cercare di tenere sempre accesa. Anche tra le lacrime.

Mar 082020
 

Nei giorni scorsi ci sono stati problemi tecnici per l’eccesso di traffico al sito e ventilab non è stato disponibile. E’ stato tutto rimesso in funzione, faticosamente e spero definitivamente, anche e soprattutto grazie al lavoro di un infermiere, che ha sottratto parecchio tempo al poco riposo che riesce ad avere nelle pause del superlavoro di questi giorni. Grazie Cesare.

Da oggi quindi tutti i contenuti di ventilab tornano ad essere completamente e liberamente disponibili per tutti.

In questa drammatica esperienza negli ospedali lombardi siamo tutti assorbiti completamente dall’attività clinica. Appena avrò qualche minuto di pausa, condividerò la mia esperienza su come proseguire la ventilazione nei pazienti con COVID-19.

Mi scuso se non riesco a rispondere a molti (a quasi tutti, per la verità), ma in questi giorni sto dedicando il 100% del mio tempo ai miei pazienti.

Anche in questi momenti difficili voglio mantenere, come sempre, il  solito sorriso per tutti gli amici di ventilab. Se vivete o vivrete esperienze come questa, lottate sempre con un sorriso per chi combatte insieme a voi.

Feb 292020
 

Come forse avrete sentito dire, in Italia si stanno verificando casi di malattia da coronavirus (COVID-19, Coronavirus disease), causata dal virus denominato severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). E qui in Lombardia abbiamo diversi casi di COVID-19, per ora più che in altre regioni di Italia.

Questa settimana ho iniziato a ventilare i pazienti con COVID-19 e voglio condividere la mia esperienza (nulla di più) con i lettori di ventilab. Magari domani dovrai farlo anche tu…

La COVID-19 è una malattia caratterizzata da una polmonite infiltrati interstiziali,  che rientra a pieno nella definzione di ARDS: è una condizione acuta con ipossiemia grave e infiltrati polmonari bilaterali non attribuibile ad una disfunzione ventricolare sinistra. Ma dal punto di vista ventilatorio ha qualche peculiarità rispetto alle ARDS a cui siamo abitauti.

Nei casi che ho seguito la caratteristica principale è la grave ipossiemia associata ad una compliance dell’apparato respiratorio superiore a quella che normalmente vedo nei casi di grave ARDS.

Nella mia personale esperienza, il paziente “tipo” con COVID-19, che ha una gravissima disfunzione polmonare, con un PaO2/FIO2 di circa 100 mmHg (anche meno) (vedi post del 31/01/2020), ed una meccanica respiratoria solo lievemente peggiore di quella dei pazienti ventilati senza ARDS, con una compliance dell’apparato respiratorio di circa 40 ml/cmH2O. Si ha quindi spesso a che fare con un paziente gravemente ipossico ma “facile” da ventilare. La compliance quantifica quanti ml di gas entrano nei polmoni aumentando di 1 cmH2O la pressione nelle vie aeree: se la compliance è 40 ml/cmH2O, saranno necessari 10 cmH2O per erogare un volume corrente di 400 ml (cioè circa i 6 ml/kg di peso ideale). Questi 10 cmH2O sono la driving pressure, che ha un valore ritenuto di assoluta sicurezza (ben al di sotto dei 14-15 cmH2O) (vedi post del 26/02/2016).

Il paziente tipo con COVID-19 se fa un PEEP trial (vedi post del 06/10/2013), spesso ha driving pressure basse e costanti fino a valori di PEEP relativamente elevati (15-20 cmH2O). Quando mi trovo in queste condizioni con i pazienti con ARDS senza COVID-19, di solito scelgo il valore di PEEP più basso associato alla minor driving pressure (spesso inferiore a 10 cmH2O) e regolo la FIO2 per ottenere una saturazione di 90-95 %. Nel paziente con COVID-19 questo approccio funziona male. Bisogna infatti aumentare molto la FIO2 (fino a 0.9-1) per garantire una ossigenazione appena sufficiente. Se invece si aumenta la PEEP fino ai valori più elevati (sempre associati alla minima driving pressure), si ottiene un’ossigenazione sufficiente con FIO2 molto più basse (0.5-0.7). Quindi spesso si ritrova con PEEP dell’ordine dei 12-15 cmH2O anche chi, come me, è spesso abituato a utilizzare con PEEP inferiori.

Il paziente tipo con COVID-19 che ho imparato a conoscere questa settimana di solito risponde bene alla pronazione (vedi post del 26/05/2013), pratica che solitamente riservo ai casi veramente gravi di ARDS: cicli di pronazione di circa 16 ore ciascuno sono quindi utili per i primi due-tre giorni.

Il paziente tipo con COVID-19, non gradisce molto la ventilazione non-invasiva. Se ha un’ipossiemia grave, la ventilazione non-invasiva spesso rinvia l’inizio della terapia efficace, che è l’intubazione tracheale con la ventilazione meccanica invasiva. Se si insiste con la ventilazione non-invasiva si rischia concretamente di ritrovarsi il giorno dopo un paziente molto più grave da curare, come capita spesso con i pazienti con insufficienza respiratoria ipossiemica. Da considerare che il paziente con COVID-19, grazie alla sua buona compliance, spesso è in grado di mantenere il respiro spontaneo con poco sforzo (anche con un deleterio volume corrente elevato). Come abbiamo a visto in precedenza, più è alta la compliance, minore è la pressione necessaria per generare il volume corrente. Pertanto il paziente con COVID-19 arriva alla fatica dei muscoli respiratoria più tardi del tipico paziente con ARDS e bassa compliance: è falsamente tranquillizzante, ma può progredire subdolamente verso un peggioramente drammatico non anticipato da una grave dispnea a riposo.

In sintesi le prime impressioni sulla ventilazione meccanica nei pazienti con COVID-19:

  • non insistere con la ventilazione non-invasiva nei casi gravi;
  • utilizzare la PEEP che contemporaneamente minimizza la driving pressure e migliora l’ossigenazione (diversamente da altre forme di ARDS, l’ossigenazione conta…), quindi una PEEP più elevata che in altri pazienti;
  • pronare precocemente i pazienti più gravi (cioè quasi tutti);
  • avere pazienza, molta pazienza: nella prima settimana i pazienti possono migliorare, ma non sono certi pronti per iniziare il weaning. prima o poi arriverà anche questo momento…

Come sempre, un sorriso agli amici di ventilab. Con l’augurio di mantenere l’entusiasmo e la tenacia anche nei momenti più impegnativi: è qui che si fa la differenza…

 

 Tagged with:
Jan 312020
 

E’ prassi fare una emogasanalisi arteriosa per valutare se l’impostazione della ventilazione meccanica è corretta. Ma è davvero utile? O può essere addirittura dannoso? Cerchiamo di ragionare insieme per trovare una risposta a queste domande (tutt’altro che scontate).

Premetto che non parleremo di tutto quello che ci può dire una emogasanalisi arteriosa, ma solamente di quei numeri che tradizionalmente si vanno a vedere dopo la regolazione del ventilatore meccanico: PaO2/FIO2, PaO2 e SaO2, PaCO2 e pH.

La funzione polmonare: PaO2/FIO2.

Il PaO2/FIO2 è un indicatore di disfunzione polmonare, molto grossolano anche se ampiamente utilizzato. Non ci dice se un paziente è ipossico o meno, ma ci dà un’idea della perdita di funzione del polmone (un po’ come la creatinina per il rene). La funzione polmonare si identifica principalmente con lo scambio gassoso, che ha luogo nell’unità alveolo-capillare attraverso l’accoppiamento di ventilazione e perfusione. In assenza di ventilazione o perfusione non esiste scambio gassoso. Tanto minore è la ventilazione rispetto alla perfusione (mismatch ventilazione-perfusione), tanto peggiore è la funzione polmonare e quindi il PaO2/FIO2.

E’ importante capire che la ventilazione meccanica NON ha come obiettivo il miglioramento della funzione polmonare. La funzione polmonare inevitabilmente migliorerà quando si avvieranno alla guarigione i processi patologici che ne hanno determinato l’alterazione. Se questa affermazione non ti appare ovvia, ti invito a sospendere il giudizio e proseguire nella lettura.

Non mi viene in mente nessuna evidenza che documenti che il miglioramento della funzione polmonare (e quindi del PaO2/FIO2) ottenuto con la ventilazione meccanica riduca la mortalità. Sappiamo invece, da due importanti studi clinici, che il miglioramento della funzione polmonare (cioè l’incremento PaO2/FIO2) ottenuto con l’impostazione di volume corrente e PEEP determina un aumento della mortalità.

Nei pazienti con ARDS la scelta di un volume corrente di 12 ml/kg di peso ideale migliora la funzione polmonare (cioè il PaO2/FIO2) più di un volume corrente di 6 ml/kg. Nel trial randomizzato, controllato, multicentrico del 2000 che ci ha portati a ventilare i pazienti con ARDS con 6 ml/kg di volume corrente, i pazienti che ricevevano 12 ml/kg avevano infatti un PaO2/FIO2 migliore per i primi 3 giorni dello studio (1).Sappiamo bene tutti come è andata a finire la storia: i pazienti con 12 ml/kg di volume corrente, pur avendo ricevuto una ventilazione che migliorava il PaO2/FIO2, hanno avuto una mortalità più alta dei pazienti con  volume corrente di 6 ml/kg.

Altro ben noto trial è quello che confronta un gruppo di controllo (ventilato con PEEP “bassa”) rispetto al gruppo “reclutamento+alta PEEP” (vedi post del 01/10/2017) (2). I pazienti trattati con “reclutamento+alta PEEP” hanno avuto un PaO2/FIO2 migliore per tutta la prima settimana di trattamento rispetto al gruppo di controllo. Ma anche in questo caso chi ha avuto il maggior PaO2/FIO2(“reclutamento+alta PEEP”) ha registrato una mortalità più elevata rispetto al gruppo di controllo, che ha mantenuto una peggior funzione polmonare.

Questi dati ci fanno capire che immettere forzatamente aria dentro un polmone malato ne migliora la funzione (cioè l’aerazione delle zone ipoventilate e quindi il PaO2/FIO2) ma alla fine porta a danni maggiori dei benefici.

Dobbiamo resistere alla tradizione/tentazione di utilizzare il PaO2/FIO2 per valutare l’appropriatezza dell’impostazione della ventilazione meccanica: può essere una scelta con conseguenze drammatiche! Prendiamo questo numero, analogamente alla febbre durante un’infezione, come il termometro del danno polmonare:  se ventiliamo “bene” un polmone, il PaO2/FIO2 migliorerà dopo giorni, così come la febbre scomparirà in un congruo lasso di tempo se abbiamo scelto l’antibiotico giusto.

L’ossigenazione: PaO2 e SaO2.

Uno dei motivi per cui ventiliamo i pazienti è ossigenare il sangue. L’ossigeno disciolto nel sangue arterioso esercita la pressione parziale che conosciamo come PaO2. La quantità di ossigeno disciolta nel sangue arterioso è direttamente proporzionale alla PaO2, ed è stimata dal prodotto della PaO2per il coefficiente di solubilità dell’ossigeno nel sangue, che a 37°C, è 0.00314 ml·dL-1·mm Hg-1. Questo significa che per ogni mmHg di PaOsi hanno circa 0.003 ml di O2 in 100 ml di sangue: quando la PaOè 100 mmHg, l’O2 disciolto è quindi 0.3 ml ogni 100 ml di sangue (cioè 0.3 mlO2/dL), una quantità davvero irrisoria e quindi solitamente trascurabile e trascurata. Dobbiamo pertanto convenire che la PaO2 è un pessimo indicatore dell’ossigenazione del sangue arterioso.

La quasi totalità dell’ossigeno contenuto nel sangue arterioso è legato all’emoglobina. Se la saturazione arteriosa (SaO2) è il 100%, 1 grammo di emoglobina riesce a contenere circa 1.36 ml di O2. In un paziente con 10 g/dL di emoglobina (valore frequentemente osservato nei pazienti critici) questo significa che il contenuto di ossigeno del sangue arterioso (CaO2) è 13.6 mlO2/dL. Se la SaO2 cala del 10% (dal 100 al 90%), anche il CaO2 calerà del 10%, passando da 13.6 a 12.2 mlO2/100 ml di sangue. La stessa riduzione di CaO2 può essere osservata se l’emoglobina diminuisce del 10%, passando 10 a 9 g/dL*.

Dal momento che la riduzione della SaO2 da 100 a 90% produce esattamente la stessa diminuzione di ossigenazione del calo di emoglobina da 10 a 9 g/dL, possiamo ben capire come una SaO2 del 90% sia assolutamente adeguata ai fini ossigenativi. E possiamo convicerci della ragionevolezza delle raccomandazioni che ci invitano ad cercare una SaO2 tra 88-95%. Per stimare la SaO2, in assenza di emoglobine patologiche, non abbiamo bisogno di eseguire una emogasanalisi ma può essere sufficiente il dato che in maniera continua e non-invasiva fornisce la pulsossimetria (cioè la SpO2).

L’eliminazione della CO2: PaCO2 e pH.

Distinguiamo tra due differenti condizioni: 1) il paziente con insufficienza respiratoria ipercapnica e 2) il paziente con insufficienza respiratoria ipossiemica.
1) Il paziente con insufficienza respiratoria ipercapnica (spesso un paziente con BPCO riacutizzata) inizia la ventilazione meccanica proprio perchè è ipercapnico. L’ipercapnia è la conseguenza dell’ipoventilazione alveolare secondaria all’affaticamento dei muscoli respiratori. In questo contesto la ventilazione meccanica deve necessariamente ridurre la PaCO2, e farla tornare gradualmente a valori non dissimili a quelli precedenti la riacutizzazione. Se questo non accade (ad esempio durante NIV) è segno che la ventilazione meccanica non è efficace e quindi si devono rivalutare strategie ed impostazioni. In questo caso l’emogasanalisi arteriosa è un esame irrinunciabile (da unire alla valutazione clinica, ovviamente) per documentare la riduzione della PaCO2 e capire se stiamo utilizzando correttamente la ventilazione meccanica per sostituire i muscoli respiratori.
2) Il paziente con insufficienza respiratoria ipossiemica (pensiamo ad un paziente con ARDS) invece vede l‘incremento della PaCO2 come conseguenza dell’aumento dello spazio morto (il volume corrente si concentra in poche aeree polmonari determinando in esse un incremento del rapporto/ventilazione perfusione). La ventilazione con basso volume corrente, associata all’incremento dello spazio morto, favorisce l’instaurarsi di ipercapnia. In questo contesto è ormai ampiamente accettato che gli aumenti di PaCO2 possano essere tranquillamente tollerati finchè il pH non scende sotto 7.20-7.25 (personalmente accetto anche valori più bassi): l’emogasanalisi per valutare la PaCO2 può essere una pericolosa tentazione: può infatti indurre ad allentare la ventilazione protettiva (aumentando volume corrente e/o frequenza respiratoria). Mi piace ricordare che che l’ipercapnia ha anche molti effetti positivi, che non è vero che l’acidosi riduca la risposta cardiovascolare alle catecolamine, che è infinitamente peggio l’ipocapnia dell’ipercapnia… In questo contesto l’emogasanalisi ci può servire come esame quotidiano (salvo casi particolari), come l’emocromo o gli elettroliti sierici, ma non a modulare la ventilazione meccanica.

E’ prassi fare una emogasanalisi arteriosa dopo le modifiche dell’impostazione della ventilazione meccanica. Ma è davvero utile? O può essere addirittura dannoso?“: ho iniziato il post con questa domanda, ora penso si possa rispondere ragionevolmente. L’emogasanalisi è fondamentale per determinare l’efficacia della ventilazione meccanica nei pazienti con insufficienza respiratoria ipercapnica (tipicamente la BPCO riacutizzata). In questi pazienti la PaCO2 deve scendere (ed il pH aumentare), altrimenti dobbiamo modificare o l’impostazione della ventilazione oppure l’approccio (ad esempio passare dalla ventilazione non-invasiva all’intubazione tracheale).

Al contrario nei pazienti con insufficienza respiratoria ipossiemica (tipicamente la ARDS), meno emogasanalisi si fanno, meglio è. In questi pazienti ci è sufficiente osservare la saturazione non-invasiva del saturimetro  (SpO2) e cercare di mantenerla tra 90 e 95%. PaO2, PaO2/FIO2, PaCO2 e pH sono solo indicatori della gravità della malattia polmonare che non devono essere utilizzati per valutare l’efficacia dell’impostazione della ventilazione meccanica, la quale nei pazienti con ARDS deve essere ostinatamente guidata dal mantenimento della ventilazione protettiva anche a dispetto dell’emogasanalisi.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia.

1. Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med 2000; 342:1301-1308
2. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, et al.: Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with Acute Respiratory Distress Syndrome: a randomized clinical trial. JAMA 2017; 318:1335-1345

*Ricordo che l’unità di misura della concentrazione ematica dell’emoglobina sono i grammi per decilitro (g/dL) e non i famosi “punti di emoglobina”, che tanto piacciono ai chirurghi (e, ahimè, non solo a loro…)

Dec 092019
 

Capita  spesso a tutti i medici “in prima linea” di trovarsi di fronte una persona con infezione ed ipotensione arteriosa. Se l’ipotensione non si risolve rapidamente con la somministrazione di fluidi (se indicati), si deve iniziare la somministrazione di un vasocostrittore, di solito la noradrenalina (o norepinefrina che dir si voglia), per aumentare di pressione arteriosa. Ricordiamo che oggi questa condizione di ipotensione che necessita di vasocostrittore è definita shock settico se ad essa si associa un elevato valore di lattato plasmatico (1).

Ora nasce spontanea la domanda: che livello di pressione arteriosa dobbiamo mantenere con la norepinefrina?

Sono certo che a molti verrà in mente il valore di 65 mmHg di pressione arteriosa media. Questa soglia è supportata da una raccomandazione forte della linea-guida della Surviving Sepsis Campaign (2): “We recommend an initial target mean arterial pressure (MAP) of 65 mmHg in patients with septic shock requiring vasopressors (strong recommendation, moderate quality of evidence)”.

Questo numero “magico” mi lascia molti dubbi, come qualsiasi altro numero che pretenda di dare presunte certezze alla pratica medica. Ed una attenta lettura della linea guida ben supporta questo mio dubbio.

La raccomandazione di cui sopra fornisce una indicazione solo per l’inizio del trattamento (“We recommend an initial target…)”, che seguendo l’aggiornamento 2018 della linea guida sembrerebbe coprire la prima ora dalla presentazione in ospedale (3). Dall’ora successiva (ora più, ora meno) si individualizzare il livello di pressione arteriosa caso per caso (dimenticando i 65 mmHg), dopo aver raggiunto una migliore comprensione del paziente . Questo è quanto afferma la linea guida, in una riga delle sue 74 pagine:   “When a better understanding of any patient’s condition is obtained, this target should be individualized to the pertaining circumstances.“.

Mi sembra di poter tranquillamente affermare che la vera raccomandazione della linea guida sia l’invito ad approfondire sempre il ragionamento clinico per trovare ogni volta l’approccio terapeutico più appropriato.

Per poter tradurre in pratica tutto questo, cerchiamo prima di capire il significato della pressione arteriosa e quali sono le conoscenze che la ricerca ci mette a disposizione.

Pressione arteriosa o perfusione tissutale?

La prima considerazione è che la pressione arteriosa non può e non deve essere il fine del trattamento emodinamico. Il vero obiettivo è la perfusione tissutale, che assicura alle cellule l’apporto di ossigeno necessario per il metabolismo. In fisiologia la perfusione tissutale non dipende dalla pressione arteriosa (entro certi limiti) per effetto dell’autoregolazione, un fenomeno presente in quasi tutti i distretti vascolari che mantiene costante il flusso ematico nonostante i cambiamenti nella pressione arteriosa. Ma nello shock l’ipotensione potrebbe condizionare la perfusione tissutale perchè la pressione arteriosa può abbassarsi al di sotto della soglia di autoregolazione, che peraltro probabilmente è perduta o meno efficiente in corso di shock settico.

Pressione arteriosa media < 65 mmHg e perfusione tissutale nello shock settico.

Non vi sono studi sugli effetti di una pressione arteriosa media inferiore a 65 mmHg sulla perfusione tissutale di pazienti in shock settico. L’obiettivo minimo dei 65 mmHg appare pertanto arbitrario: potremmo accettare valori pressori inferiori qualora non si manifestassero segni o sintomi correlabili a ipoperfusione tissutale (vedi sotto).

Pressione arteriosa media > 65 mmHg e perfusione tissutale nello shock settico.

Gli studi fisiologici su pazienti con shock settico sono concordi del rilevare che l’aumento di pressione arteriosa media oltre 65 mmHg (ottenuto con l’incremento della dose di norepinefrina) produce un aumento di portata cardiaca e trasporto di ossigeno (4-6). Gli effetti sulla perfusione tissutale sono però contraddittori: in alcuni casi non si modifica (4,5), in altri invece migliora (6). In due trial randomizzati e controllati si è valutato l’impatto sull’outcome di pressione arteriosa media “bassa” (60-70 mmHg) e “alta” (75-85 mmHg) (7,8). Complessivamente non si sono osservate differenze di mortalità, con effetti sia positivi che negativi degli alti valori di pressione (più aritmie, meno insufficienza renale nei pazienti con ipertensione arteriosa, mortalità più elevata nel sottogruppo dei pazienti anziani). E’ da notare che però in questi studi i pazienti con “pressione bassa” in realtà raggiungevano valori di pressione arteriosa media più elevati di quanto pianificato, mediamente 70-75 mmHg.

Su queste base possiamo poggiare una proposta per il supporto cardiovascolare nei pazienti con shock settico. Proviamo a sintetizzarla in alcuni punti:

  1. Pur in assenza di qualsiasi supporto della letteratura, possiamo comunque ritenere ragionevole iniziare precocemente l’infusione di farmaci vasoattivi se la pressione arteriosa media è inferiore a 65 mmHg. Infatti la valutazione della perfusione tissutale (il vero obiettivo del trattamento) può richiedere alcune ore: nel frattempo è appropriato garantire empiricamente la pressione di perfusione che deriva da questa scelta;
  2. se questo approccio “funziona”  (senza raggiungere alte dosi di noradrenalina), direi che quanto abbiamo fatto possa essere sufficiente. A mio parere il successo del trattamento iniziale è supportato dalla normalizzazione entro le prime 2-3 ore sia del lattato arterioso, sia della diuresi, sia del tempo di riempimento capillare, sia della saturazione venosa centrale;
  3. se questo il trattamento iniziale non sortisce gli effetti sopra descritti, se le disfunzioni d’organo in atto non sono particolarmente gravi, si può provare nelle 2-3 ore successive ad incrementare la pressione arteriosa media a 75-80 mmHg e rivalutare i suddetti segni clinici di perfusione tissutale;
  4. se l’incremento di pressione arteriosa media non funziona o le disfunzioni d’organo sono gravi, si impone di fare ciò che anche la linea guida ci chiede: conoscere più approfonditamente il paziente per personalizzare l’approccio. Da notare che se facciamo quanto proposto nei punti precedenti, sono trascorse al massimo 5-6 ore dall’inizio dello shock settico. Non dobbiamo aspettare oltre, potrebbe essere solo tempo perso. Per personalizzare l’approccio, dobbiamo ragionare in termini di trasporto di ossigeno (oxygen delivery, DO2), che è il prodotto della portata cardiaca (cardiac output, CO) ed il contenuto arterioso di O2 (CaO2): DO2 = CO x CaO2. Diventa quindi necessario misurare la portata cardiaca. In un paziente settico con disfunzioni d’organo in atto e segni di ipoperfusione tissutale, ritengo che il CaO2 possa essere ottimizzato quando l’emoglobina ha una concentrazione di almeno 10 g/dL ed una saturazione arteriosa del 95%. Dopodichè, se la portata cardiaca è inferiore al normale e non abbiamo raggiunto gli obiettivi di perfusione tissutale sopra descritti, dovremmo incrementarla (se possibile e con gli interventi appropriati, senza insistere inutilmente con la somministrazione di fluidi) all’interno del range di normalità, che per l’indice cardiaco è 2.5-4 l·min-1·m-2.
  5. Se l’ipoperfusione tissutale permane nonostante l’escalation terapeutica descritta nei punti precedenti, dobbiamo ritenere che essa sia secondaria ad una maldistribuzione del flusso ematico e ad alterazioni del metabolismo cellulare. A questo punto l’emodinamica non può più nulla e ci dobbiamo limitare a mantenere saggiamente le posizioni, o addirittura tornare ad accettare un indice cardiaco ai limiti inferiori della norma qualora valori più elevati siano ottenuti con una elevata aggressività terapeutica.

Abbiamo constatato ancora una volta come la medicina non si faccia ricercando formule magiche, come invece faceva Harry Potter nelle sue avventure: la realtà è diversa dalla magia, dobbiamo pertanto evitare l’harrypotterizzazione della medicina (felice espressione “rubata” al dott. Giuseppe Umana di Catania).

Oggi non abbiamo parlato di ventilazione meccanica, lo faremo sicuramente nel prossimo post. Del resto chi segue ventilab sa bene che dedichiamo ben volentieri spazio anche all’emodinamica (clicca sulla tag “emodinamica” per vedere i post che hanno trattato questo argomento), un amore della prima ora. E’ stato proprio l’incontro con la fisiopatologia cardiovascolare a farmi decidere di fare il rianimatore: oggi sarei un neurologo se non avessi incontrato Starling e Guyton qualche mese prima della laurea. E proprio questa passione è stata decisiva nella decisione di aggiungere il “Corso di emodinamica” nella proposta formativa di ventilab (ci sono gli ultimi posti liberi nella edizione di marzo 2020, se sei interessato all’evento cercalo nel catalogo degli eventi formativi di Fondazione Poliambulanza).

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia.
1) Singer M, Deutschman CS, Seymour CW, et al.: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315:801-810
2) Rhodes A, Evans LE, Alhazzani W, et al.: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock. Crit Care Med 2017; 45:486–552
3) Levy MM, Evans LE, Rhodes A: The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med 2018; 44:925–928
4) LeDoux D, Astiz ME, Carpati CM, et al.: Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 2000; 28:2729–2732
5) Bourgoin A, Leone M, Delmas A, et al.: Increasing mean arterial pressure in patients with septic shock: Effects on oxygen variables and renal function: Crit Care Med 2005; 33:780–786
6) Thooft A, Favory R, Salgado D, et al.: Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 2011; 15:R222
7) Asfar P, Meziani F, Hamel J-F, et al.: High versus Low Blood-Pressure Target in Patients with Septic Shock. N Eng J Med 2014; 370:1583–1593
8) Lamontagne F, Meade MO, Hébert PC, et al.: Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med 2016; 42:542–550