Giuseppe Natalini

Nov 262017
 

La ventilazione meccanica invasiva è un’arma indispensabile per il trattamento dell’insufficienza respiratoria acuta.

Quando inizia a migliorare la malattia che ha determinato la necessità di intubazione e ventilazione meccanica, il problema diventa capire il momento giusto per procedere all’estubazione ed alla sospensione della ventilazione meccanica. Questo processo è lo svezzamento (weaning) dalla ventilazione meccanica.

Il weaning dalla ventilzione meccanica espone inevitabilmente a due possibili rischi: l’estubazione prematura, con il paziente che nelle ore successive dimostra di non essere in realtà ancora in grado di respirare in maniera autonoma, rendendo necessaria una nuova intubazione e la ripresa della ventilazione meccanica; l’estubazione ritardata, che porta ad un apparentemente prudenziale ma non necessario prolungamento della durata della ventilazione meccanica, con le annesse possibili complicanze.

La soluzione è semplice: cercare di sbagliare il meno frequentementente possibile la scelta del momento giusto dell’estubazione e della sospensione della ventilazione meccanica…

Per questo obiettivo, possiamo organizzare il ragionamento clinico in due fasi:

1) verificare se sussitono le condizioni per estubare il paziente (prevedere cioè se il paziente potrà rimanere senza tubo tracheale);

2) verificare se vi sono le condizioni per sospendere la ventilazione meccanica (cioè prevedere se il paziente, dopo l’eventuale estubazione, sarà capace di respirare da solo).

Estubare il paziente

Il tubo tracheale mantiene pervie le vie aeree, consendo di aspirare e rimuovere le secrezioni bronchiali. E’ un presidio fondamentale per quei pazienti con espettorazione poco efficace. Parlare di espettorazione, piuttosto che di tosse, sottolinea che il dato a cui prestare attenzione è la capacità di portare realmente all’esterno le secrezioni dell’apparato respiratorio. In molti pazienti intubati l’atto della tosse non raggiunge questa efficacia; in questi casi l’espettorazione andrebbe considerata assente.

La rimozione del tubo tracheale può essere quindi inopportuna nei soggetti, in particolare se ipersecretivi, con espettorazione inefficace. Se siamo in questa condizione, la valutazione del possibile svezzamento dalla ventilazione meccanica si può fermare qui, in attesa di tempi migliori.

Sospendere la ventilazione meccanica

Se il paziente non ha ragionevolmente più bisogno del tubo tracheale, bisogna chiedersi a questo punto se ha ancora bisogno della ventilazione meccanica.

Scartiamo a priori da questa valutazione, e da ogni velleità di estubazione, tutti i pazienti che versano in condizioni molto critiche (ad esempio con instabilità cardiocircolatoria o in coma) e quelli che hanno ancora una insufficienza respiratoria grave, caratterizzata da marcata ipossia o necessità di elevati valori di PEEP e FIO2, e/o acidosi respiratoria o necessità di elevato supporto inspiratorio. Spesso si definiscono queste situazioni con numeri precisi, come ad esempio PaO2/FIO2 ≤ 150 mmHg e PEEP ≥ 8 cmH2O. E’ certamente rassicurante avere numeri a cui fare riferimento, il problema è che questi numeri sono “inventati”. Questo non vuol dire che siano campati per  aria, ma solamente che devono essere sempre visti con flessibilità e con la capacità/responsabilità del medico di declinarli nelle diverse situazioni cliniche.

Per valutare se un paziente possa essere estubato in sicurezza, si esegue il test di respiro spontaneo (spontaneous breathing trial, cioè si sospende la ventilazione meccanica per un breve periodo mentre è ancora intubato.  Il test di respiro spontaneo consente di simulare il carico di lavoro respiratorio che ci sarà dopo l’estubazione e verificare se il soggetto sarà in grado di affrontarlo da solo, senza più supporto meccanico.

Se il paziente “resiste” a questa temporanea sospensione della ventilazione meccanica, dovremmo estubarlo perchè con buona probabilità riuscirà a fare definitivamente a meno di tubo tracheale e ventilatore meccanico. Mi rendo conto che il termine “resiste” non dice nulla di preciso, ma sono convinto che tutti capiscano bene cosa vuol dire: non insorge dispnea e non si attivano i muscoli accessori della respirazione, non si manifesta respiro rapido e superficiale o paradosso, non si genera ipossiemia grave o acidosi respiratoria, non si osservano aritmie gravi, ecc. ecc.

A questo punto è fondamentale intendersi su due aspetti tecnici fondamentali. Primo: cosa intendiamo con “sospendere la ventilazione meccanica”, Secondo: cosa intendiamo per “breve periodo”.

Nello spontaneous breathing trial la sospensione della ventilazione meccanica non coincide necessariamente con la rimozione fisica del ventilatore. Molti studi clinici hanno utilizzato come test di respiro spontaneo anche modalità di supporto inspiratorio considerate irrilevanti nell’aiuto alla ventilazione, riducendo cioè PEEP e pressione di supporto a valori (teoricamente) subclinici o limitati al compenso del carico imposto dal tubo tracheale.

Figura 1

Tutte queste modalità sono state considerate valide per il test di respiro spontaneo : 1) tubo a T (figura 1): si rimuove materialmente il ventilatore meccanico e si connette il tubo tracheale, con un raccordo a T, ad un flusso continuo di gas umidificato ed arricchito di ossigeno; 2) PS 0-PEEP 0: mantenendo il paziente collegato al ventilatore, si azzerano pressione di supporto (PS) e PEEP (con trigger a flusso molto sensibile); 3) CPAP ≤ 5 cmH2O; 4) pressione di supporto 5-8 cmH2O; 5) ATC (automatic tube compensation) senza supporto inspiratorio: il ventilatore applica solo la pressione che calcola necessaria per annullare il carico resistivo del tubo tracheale.

Queste scelte non sono equivalenti. Quale scegliere? Le più recenti linee guida sullo svezzamento dalla ventilazione meccanica mettono a confronto tubo a T e pressione di supporto 5-8 cmH2O, raccomandando l’uso di quest’ultima strategia per aumentare il numero di pazienti estubati con successo (1). Questa conclusione è confermata anche da una successiva meta-analisi (2).

Penso però che questa raccomandazione meriti un approfondimento.

Facciamo il test di respiro spontaneo per indagare se il paziente è in grado di sopportare il lavoro respiratorio una volta sospesa la ventilazione artificale. Pertanto dovrebbe essere preferibile la modalità di spontaneous breathing trial che offre un carico di lavoro respiratorio simile a quello ci sarà realmente dopo l’estubazione. Sappiamo che tubo a TPS 0-PEEP 0 effettivamente offrono lo stesso lavoro respiratorio che dovrà essere affrontato dopo l’estubazione, mentre CPAP e PS 5-7 cmH2O lo riducono rispettivamente di circa il 30% e 50%  (3). Da questo punto di vista, si dovrebbe preferire come test di respiro spontaneo il tubo a T o PS 0-PEEP 0.

Come conciliare l’osservazione che il tubo a T, rispetto alla pressione di supporto, pur sottoponendo il paziente ad uno sforzo più simile a quello che realmente sosterrà una volta estubato, in pratica è un po’ meno accurato nel prevedere l’esito dell’estubazione?

In medicina solitamente la spiegazione si trova nei dettagli importanti (e spesso ignorati dalla sedicente Evidence-based Medicine).

La durata dei trial di respiro spontaneo, negli studi che hanno confrontato il numero dei pazienti estubati con successo, è quasi sempre di 120 minuti (trascorsi in PSV o in tubo a T) (1-2). Gli studi che invece hanno confrontato il lavoro respiratorio durante lo spontanoues breathing trial e dopo l’estubazione, hanno mantenuto il test di respiro spontaneo per periodi molto più brevi di PSV o tubo a T: nella metà degli studi la loro durata era inferiore o uguale a 15 minuti (3).

Ma quanto deve essere lungo un trial di respiro spontaneo? A mio parere non certo 120 minuti. Sappiamo infatti che le variazioni di pattern e lavoro respiratorio durante il test di respiro spontaneo si verificano entro i primi 15 minuti (4-5) e che prolungare lo spontaneous breathing trial (con tubo a T) oltre i 30 minuti non ne aumenta la capacità di previsione dell’esito dell’estubazione (6).

Possiamo ipotizzare che chi è sottoposto ad un trial di respiro spontaneo eccessivamente lungo (120 minuti) senza alcun aiuto (tubo a T) si stanca inutilmente di più rispetto a chi viene aiutato (pressione di supporto). Questa ipotesi è in sintonia con i risultati di un recente studio, in cui quasi tutti i pazienti facevano uno spontaneous breathing trial con tubo a T, la maggior parte dei quali per una durata di 60-120 minuti. Al termine dei test di respiro spontaneo superati, una parte dei pazienti veniva estubata, in altri invece si rimandava l’estubazione di un’ora, durante la quale i muscoli respiratori venivano messi a riposo con la ripresa termporanea della ventilazione meccanica. Il gruppo di pazienti estubati dopo il riposo subiva meno reintubazioni nelle 48 ore successive rispetto a quelli estubati subito (7).

L’argomento è complesso ed articolato ed abbiamo solo accennato ad argomenti che meriterebbero più spazio. Siamo comunque nelle condizioni di concludere proponendo un ragionevole (e sempre flessibile) approccio allo svezzamento dalla ventilazione meccanica:

  • valutare preliminarmente la presenza di espettorazione efficace. Se assente, mantenere l’intubazione tracheale e la ventilazione meccanica; se l’espettorazione è efficace, eseguire il test di respiro spontaneo con approcci diversi in funzione della tecnica utilizzata:
    • PS 5-7 cmH2O: se dopo 30-60 minuti il test non è fallito e si percepisce un basso rischio di fallimento, si può procedere all’estubazione. Nei casi dubbi si può ragionevolmente prolungare l’osservazione fino ai 120 minuti;
    • tubo a T (o PS 0-PEEP o): mi sembra ragionevole non superare i 30 minuti di test;
  • nei pazienti che superano il test di respiro spontaneo con qualche segno di fatica (specialmente se il trial è stato condotto con tuto a T), può essere utile riprendere la ventilazione per un’ora e quindi procedere all’estubazione.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia
1) Ouellette DR et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline. Chest 2017; 151:166-80
2) Burns KEA et al. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care  2017; 21:127
3) Sklar MC et al. Effort to breathe with various spontaneous breathing trial techniques. A physiologic meta-analysis. Am J Respir Crit Care Med  2017; 195:1477-85
4) Jubran A et al. Weaning prediction. Esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med 2005; 171: 1252-9
5) Figueroa-Casas JB et al. Changes in breathing variables during a 30-minute spontaneous breathing trial. Respir Care 2015;60:155-61
6) Estenban A et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1999; 159:512-8
7) Fernandez MM et al. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial. Intensive Care Med 2017; 43:1660-7

 

Oct 012017
 

Quattro giorni fa è stato pubblicato online su JAMA il trial clinico “Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. A Randomized Clinical Trial” (1). I risultati dello studio sono “forti” ed è diventato subito molto popolare (in questi pochi giorni ha già ricevuto quasi 45.000 visualizzazioni). Per questo merita di essere commentato per evitare di limitarsi a ripetere le conclusioni dell’abstract senza avere capito bene di cosa si parla (ahimè vizio frequente, se non la normalità, nella sedicente Evidence Based Medicine).

Partiamo proprio dalle conclusioni dell’abstract: “In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality.” Questi i numeri: sono morti il 55% dei pazienti con reclutamento+PEEP individualizzata dopo PEEP trial rispetto al 49% dei pazienti con bassa PEEP. Sembra proprio che  reclutamento e scelta della PEEP sulla miglior compliance facciano molto male rispetto alla PEEP scelta con le tabelle PEEP/FIO2. Rimando per eventuali approfondimenti sulle strategie di scelta della PEEP al post del 28/02/2015.

Di fronte a nuove conoscenze, è assolutamento onesto saper cambiare le proprie convinzioni. Su ventilab abbiamo sempre supportato, nella ARDS, la scelta della PEEP che si associa alla minor driving pressure (cioè alla massima compliance): dobbiamo ora suggerire un cambio di strategia? Penso proprio di no, cerchiamo di capire insieme il perchè.

Una premessa prima di entrare nel merito: lo studio ha arruolato 1013 pazienti nel corso di quasi 6 anni in 120 Terapie Intensive. Facendo due semplici conti, mediamente ciascuna  Terapia Intensiva ha arruolato poco meno di 1.5 pazienti/anno, quindi un paziente ogni 8 mesi. Questo vuol dire che la strategia “reclutamento+PEEP trial, applicata nel 50 % dei pazienti, è stata messa in pratica mediamente una volta ogni 16 mesi in ciascuna Terapia Intensiva. Stiamo parlando quindi di un intervento molto raro, sul quale probabilmente le maggior parte delle Terapie Intensive partecipanti non ha molta esperienza. E forse molti pazienti potrebbero essere “sfuggiti” allo screening; se così fosse la rappresentatività del campione potrebbe essere fortemente in discussione.

Vediamo ora quali trattamenti sono stati messi a confronto. Il gruppo di controllo (definito arbitrariamente nello studio come “bassa PEEP“) era ventilato con basso volume corrente (circa 6 ml/kg) e PEEP ricavata dalla tabella PEEP/FIO2 (figura 1): si sceglieva cioè la combinazione tra PEEP e FIO2 presente nella tabella per arrivare ad una SpO2 tra 90 e 95%.

Figura 1

Il gruppo di studio (“reclutamento+PEEP trial“) era ventilato con lo stesso basso volume corrente del gruppo di controllo, ma da esso si differenziava per 2 motivi: 1) riceveva una iniziale manovra di reclutamento alveolare e 2) sceglieva la PEEP dopo un PEEP trial. Dobbiamo perciò tenere presente che l’intervento nel gruppo “reclutamento+PEEP trial era la combinazione di 2 interventi concettualmente indipendenti l’uno dall’altro (in molti studi sono infatti analizzati separatamente). Ne consegue che non possiamo sapere se i risultati ottenuti siano da attribuire a uno dei due o ad entrambi gli interventi.

Esaminiamo ora nel dettaglio come sono stati eseguiti i due interventi nel gruppo di studio, cioè reclutamento e PEEP trial.

Reclutamento.

Ritengo che, già prima dello studio che stiamo commentando, non vi fossero buone ragioni per eseguire il reclutamento al di fuori di casi selezionati (vedi ad esempio il post del 12/4/2014). Lo studio di JAMA sembra confermare piuttosto chiaramente questo punto di vista: il reclutamento non dovrebbe essere fatto di routine nei pazienti con ARDS moderata-grave.

Merita un approfondimento la tecnica di reclutamento utilizzata nello studio. Nei primi 555 pazienti arruolati, il reclutamento è stato eseguito con una pressione controllata di 15 cmH2O più PEEP di 25 cmH2O per 1 minuto, PEEP di 35 cmH2O per un’altro minuto ed infine PEEP 45 cmH2O per 2 minuti. Quindi nei due minuti finali la pressione di plateau era circa 60 cmH2O. Mica poco, vero? Infatti, dopo aver avuto 3 arresti cardiaci durante le manovre di reclutamento alveolare, si è deciso di modificare questo schema di reclutamento. Dopo poco più di metà dei pazienti arruolati, è stato cambiato il protocollo del reclutamento alveolare (fortunatamente per i pazienti, sfortunatamente per la qualità dello studio): le PEEP del reclutamento sono diventate di 25, 30 e 35 cmH2O, ciascuna mantenuta per 1 minuto.

I risultati dello studio sembrano fortemente condizionati proprio dall’esecuzione di queste manovre di reclutamento. I pazienti che hanno fatto il reclutamento hanno avuto un maggior numero di drenaggi pleurici per pneumotorace ed una maggior frequenza di barotrauma rispetto al gruppo di controllo (il cosiddetto “bassa PEEP“). Inoltre, l’unica causa di morte risultata differente tra i due trattamenti è quella con barotrauma, come si può osservare nella tabella semplificata dei risultati della figura 2.

Figura 2

Poichè è ben noto che la manovra di reclutamento alveolare può indurre grave ipotensione (fino all’arresto cardiaco), i pazienti che sono stati sottoposti a questo trattamento hanno ricevuto un carico di fluidi aggiuntivi fino ad arrivare ad una pressione venosa centrale superiore a 10 mmHg (!?) (o a pulse pressure variation < 13%). Ben sappiamo che ricevere liquidi in eccesso si associa ad un aumento della mortalità, in particolare nei pazienti con ARDS (2-3).

Mi sembra si possa dire che il reclutamento, già da solo, sembra aver inciso molto sul risultato negativo del trial clinico.

PEEP trial.

La scelta della PEEP è stata eseguita con un PEEP trial, cioè ricercando la PEEP che si associa alla maggior compliance (quindi alla minor driving pressure se il volume corrente è costante). Questo un approccio è stato più volte proposto e commentato su ventilab (ad esempio vedi il post del 06/10/2013 e quello del 28/02/2015). Nello studio di JAMA questo PEEP trial è però stato condotto in modo molto discutibile, comunque molto diverso da quello sempre descritto su ventilab. Innanzitutto si sono testate solo PEEP di 23, 20 17, 14 ed 11 cmH2O. La PEEP alla fine utilizzata per la ventilazione meccanica corrispondeva a quella che nel PEEP trial aveva ottenuto la maggior compliace, aumentata però di 2 cmH2O (perchè questo aumento? se a qualcuno interessa, ne possiamo discutere nei commenti). I pazienti potevano quindi ricevere una PEEP mai inferiore a 13 cmH2O. Questa scelta può essere in accordo con la strategia del Open Lung Approach, ma non con quello della scelta della PEEP che minimizza la driving pressure, poichè quest’ultima spesso porta a scegliere PEEP inferiori a 10 cmH2O. Lo vedo nella mia pratica clinica ed è confermato in uno studio che ha scelto la PEEP dopo PEEP trial iniziato da 5 cmH2O (la metà dei pazienti riceveva infatti una PEEP minore o uguale a 11 cmH2O) (4). Se vuoi riflettere su questo aspetto, prova a pensare se metteresti una PEEP di almeno 13 cmH2O nella paziente presentata nel già citato post del 28/02/2015

Figura 3

L’utilizzo di PEEP elevate sembra particolarmente temibile nei pazienti con ARDS focale, più di un terzo dei pazienti con ARDS (5): esso infatti produce una iperinflazione delle zone sane del polmone con solo un minimo reclutamento in quelle basali con gli infiltrati alveolari (6). In un bellissimo studio italiano già 10 anni fa si faceva notare che in questo tipo di ARDS era opportuno ridurre la PEEP ben al di sotto dei valori proposti nella tabella utilizzata anche nello studio di JAMA per il gruppo di controllo (il cosiddetto bassa PEEP), una riduzione in media da 13 a 7 cmH2O (7). Questa riduzione di PEEP, rispetto a quella proposta nella tabella PEEP/FIO2, era necessaria per mantenere lo stress index tra 0.9 e 1.1. Con questa strategia di riduzione della PEEP si deteterminava anche la diminuzione della concentrazione plasmatica di mediatori infammatori (IL-6,IL-6 e sTNFα). In figura 3 vediamo l’esempio di come si modificava, in un paziente rappresentativo, lo stress index (da 1.2 a 1) riducendo la PEEP dai 12 cmH2O suggeriti dalla tabella PEEP/FIO2 (a sinistra) ai 5 cmH2O richiesti per avere lo stress index di 1 (a destra). Per qualche informazione in più sullo stress index, puoi leggere anche i post del 15/08/2011 e del 28/08/2011.

A questo punto possiamo comprendere perchè che il PEEP trial proposto nello studio di JAMA non è un vero PEEP trial, ma un modo per scegliere la PEEP meno peggiore tra 13 e 25 cmH2O. Questo senza valutare la presenza di eventuali segni di sovradistensione, molto probabili visto che il 17.4% dei pazienti del “gruppo reclutamento hanno avuto pressioni di plateau > 30 cmH2O (rispetto al 10.7% del gruppo di controllo). Questo anche se nel protocollo era specificato che la pressione di plateau doveva rimanere sotto i 30 cmH2O.

L’iperinflazione nel gruppo “reclutamento+PEEP trial può essere stata ulteriormente aggravata dall’aver trascurato la PEEP intriseca che si aggiunge alla PEEP impostata. Il PEEP trial era eseguito mentre il paziente aveva una frequenza respiratoria di 20/min. Una volta scelta la PEEP da applicare, la frequenza respiratoria veniva aumentata mediamente a 30/min. In questo modo nei pazienti con ARDS si può sviluppare una autoPEEP che si somma sia alla PEEP che alla pressione di plateau. La dimensione dell’autoPEEP durante ventilazione a basso corrente nei pazienti con ARDS è tutt’altro che trascurabile, essendo mediamente 6 cmH2O (8) . Come ben sanno i lettori di ventilab, la best PEEP dovrebbe invece tenere conto anche dell’autoPEEP per limitare la sovradistensione.

Da ricordare infine che elevati valori di PEEP possono aggravare lo scompenso cardiaco destro che insorge acutamente in una quota non trascurabile di pazienti con ARDS (9) e potrebbero quindi aver influito sull’outcome.

Conclusioni.

L’analisi del trial clinico appena apparso su JAMA rende evidente come non vi sia nessun nesso tra i suoi risultati e la scelta della PEEP per minimizzare la driving pressure: si sta parlando di cose completamente diverse. La lettura meditata dello studio ci può comunque insegnare molto:

  1. nella ARDS la sovradistensione sembra essere più temibile dell’atelectrauma: reclutamento e PEEP “alta” non sono quindi un valore da ricercare, ma una carta da giocare solo a ragion veduta in casi selezionati e sotto monitoraggio emodinamico;
    • riservare il reclutamento alveolare alle condizioni di marcata ipossiemia associata a compliance particolarmente bassa, ricordando che probabilmente è più efficace nelle ARDS diffuse (10);
    • PEEP “alta” solo se riduce la driving pressure più di qualsiasi altra PEEP (valutando anche quelle tra i 5 ed i 10 cmH2O); ricordiamo che la PEEP “giusta” nella ARDS spesso può essere una PEEP “bassa”. In definitiva non ha proprio senso porre la scelta tra PEEP “alta” o “bassa”, quando pazienti diversi si giovano di PEEP diverse, talora “alte”, talaltra “basse”;
  2. per limitare la sovradistensione con un approccio individualizzato possiamo:
    • contenere la driving pressure (volume corrente + PEEP ragionati) (meglio ancora la driving pressure transpolmonare);
    • considerare come best PEEP la PEEP totale (quella letta con l’occlusione di fine espirazione) e non quella PEEP impostata sul ventilatore;
    • valutare sempre lo stress index (abituiamoci a vederlo anche “ad occhio”, come in figura 3);
    • in caso di pressione di plateau elevata misurare la pressione transpolmonare di fine inspirazione (possiamo essere abbastanza tranquilli se è al di sotto dei 15-20 cmH2O).

Ed arrivati alla fine, come sempre un sorriso a tutti gli amici di ventilab.

Bibliografia

  1. Writing Group for ART Investigators. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with Acute Respiratory Distress Syndrome. A Randomized Clinical Trial. JAMA. Published online September 27, 2017. doi:10.1001/jama.2017.14171
  2. Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128 :3098-108
  3. Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75
  4. Pintado MD et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013; 58:1416-23
  5. Puybasset Let al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69
  6. Nieszkowska A et al. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 2004;
    32:1496-503
  7. Grasso S et al. ARDSnet ventilatory protocol and alveolar hyperinflation. Role of Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2007; 176:761-7
  8. de Durante G et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic Positive End-Expiratory Pressure in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2002; 165:1271-4
  9. Vieillard-Baron A et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 2001; 29:1551-5
  10.  Constantin JMet al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38:1108-17

PS: ci sarebbero altri aspetti di cui discutere, come ad esempio la scelta di una ventilazione a flusso inspiratorio costante in assistita-controllata, la mancata definizone della durata dell’occlusione di fine inspirazione per calcolare la compliance durante il PEEP trial, l’assenza di qualsiasi dato emodinamico, l’incompatibilità dei risultati con un reale utilizzo della tabella PEEP/FIO2 nel gruppo di controllo. Ma penso che sia sufficiente quanto abbiamo detto finora. Per approfondimenti, si possono fare richieste nei commenti.

Sforzo inefficace

 Posted by on 24/09/2017  4 Responses »
Sep 242017
 

Figura 10

Ricapitoliamo brevemente l’approccio sistematico all’analisi del monitoraggio grafico proposto più dettagliatamente nel post del 20/08/2017, che abbiamo definito come metodo RESPIRE: R: riconosci le curve importanti (pressione e flusso); E: espirazione del ventilatore (identifica le fasi tra l’inizio del flusso negativo e l’inizio del successivo flusso positivo); S: supponi che il paziente sia passivo (immagina le curve come potrebbero essere molto approssimativamente durante una ventilazione controllata); P: punto di vista del paziente, tra la curva di pressione e quella di flusso; I: inspirazione del paziente (le curve gli si avvicinano rispetto a come hai supposto fossero in condizioni di passività); R: rilasciamento ed equilibrio (fasi di pressione costante a flusso zero in cui si va verso un equilibrio tra pressione delle vie aeree ed alveolare); E: espirazione del paziente (le curve gli si allontanano rispetto a come hai supposto fossero in condizioni di passività).

Ora utilizziamo questo metodo per capire cosa sono quelle oscillazioni di flusso e pressione all’inizio dell’espirazione che avevamo visto nel post precedente e di cui abbiamo rimandato la spiegazione ad oggi (figura 1).

Figura 1

Siamo abituati a considerare la variazioni di flusso durante l’espirazione come un tentativo, non riuscito, di inspirazione del paziente durante la fase espiratoria. Lo definiamo sforzo inefficace. Ciò che vediamo nei cerchi bianchi della figura 1 potrebbe essere quindi una asicronia paziente-ventilatore riconducibile a qualcosa di simile allo sforzo inefficace.

Iniziamo il ragionamento analizzando con il RESPIRE un caso di sforzo inefficaceclassico“.

Figura 2

Dopo aver riconosciuto le tracce di pressione e flusso (R), individuiamo le fasi espiratorie (E), che nella figura 2 abbiamo identificato con le sigle E(1), E(2), E(3) ed E(4). Occupiamoci esclusivamente della terza espirazione della figura, cioè di E(3), che vediamo riprodotta in dettaglio nella figura 3.

Figura 3

Supponiamo (S) come potrebbe essere il flusso espiratorio passivo, che immaginiamo esponenzialmente decrescente (linea tratteggiata rossa).

Pensiamo al punto di vista del paziente (P), che, semplificando rispetto al post del 20/08/2017, abbiamo rappresentato come un individuo che respira posizionato tra le due curve (pressione sopra e flusso sotto). Le alterazioni delle curve rispetto a quanto abbiamo supposto, sono spiegabili dall’attività respiratoria del paziente sovrapposta a quella del ventilatore meccanico? Ricordiamo che l’attività inspiratoria spontanea del paziente aumenta il flusso e tende a ridurre la pressione (se il ventilatore non compensa perfettamente) o la lascia costante (se il ventilatore è efficientissimo).

E’ presente inspirazione del paziente (I)? Abbiamo cioè aumenti del flusso (movimenti verso il punto di vista del paziente P) rispetto a quanto abbiamo supposto (S)? Nel punto 1 della figura 3 vediamo in effetti che la curva di flusso si avvicina al paziente rispetto a quella ipotetica, come se il paziente “la inspirasse”. Questo è compatibile con un’attività inspiratoria del paziente (pur essendo il ventilatore in fase espiratoria). Vediamo ora che succede alla traccia di pressione: ha un andamento compatibile con l’inspirazione del paziente? La pressione resta sostanzialmente costante (forse si riduce lievemente) nel punto della presunta inspirazione del paziente rilevata sulla traccia di flusso.  Anche questo è compatibile con l’eventuale attività inspiratoria del paziente: il compito del ventilatore durante l’espirazione è infatti quello di mantenere costante la PEEP impostata. Se il ventilatore non riuscisse ad adempiere perfettamente il proprio compito, potrebbe esserci in questa fase un piccolo calo di pressione dovuto al fatto che il paziente sottrae dal circuito respiratorio più aria di quanta il ventilatore riesca a metterne. Un aumento di pressione in questo momento sarebbe l’unico reperto inconciliabile con un tentativo di inspirazione del paziente nella fase di espirazione del ventilatore: se il paziente tenta di inspirare (sottraende aria al circuito), la pressione nel circuito del ventilatore non può certo salire. Concludiamo quindi che quanto stiamo osservando è attribuibile all’attività inspiratoria del paziente.

Esistono punti di rilassamento dei muscoli respiratori e conseguente equilibrio delle pressioni tra paziente e ventilatore (R)? Nel punto 3 possiamo certamente affermare di sì: il flusso è 0 e la pressione è quella impostata come PEEP. In assenza di flusso a pressione costante, la pressione nel ventilatore è uguale a quella polmonare. Se siamo a fine espirazione concludiamo che non esiste autoPEEP.

Figura 4

Esiste espirazione attiva del paziente (E)? Sembra di no: concluso l’effetto del tentativo inefficace di inspirazione visto al punto 1, dal punto 2 riprende un flusso espiratorio esponenzialmente decrescente, come evidenziato dalla nuova riga di flusso rossa tratteggiata in figura 4.

 

Potrebbe rimanere da interpretare quel piccolo aumento di pressione che vediamo immediatamente prima del punto 2, ma volutamente lo tralascio perchè sarebbe una spiegazione forse lunga e complessa per un evento clinicamente insignificante.

Applicando il metodo RESPIRE abbiamo così accertato che quello che abbiamo visto è un tentativo di inspirazione durante l’espirazione, cioè uno sforzo inefficace. Certamente per asincronie così evidenti come questo sforzo inefficace, i lettori di ventilab non avevano certo bisogno di un approccio così metodico. Vediamo però se questo può essere utile quando le cose sono meno chiare ed analizziamo ciò che è stato evidenziato nella figura 1, di cui riproduciamo un dettaglio in figura 5.

Figura 5

Come sempre riconosciamo (R) pressione e flusso ed identifichiamo le espirazioni (E), in questo caso indicate con E(1) ed E(2). Analizziamo E(2) e supponiamo (S) come potrebbe essere l’espirazione passiva, identificata con la linea rossa tratteggiata. Quindi poniamo il punto di vista del paziente (P) tra le due curve. Un’analisi di questa espirazione è stata fatta nel post del 20/08/2017, oggi ci occupiamo esclusivamente della sua parte iniziale. Quello che vediamo possono essere sforzi inefficaci?

Concentriamo la nostra attenzione sul momento identificato dalla linea azzurra tratteggiata. Ci sono segni compatibili con l’inspirazione del paziente (I)? Il flusso di avvicina verso il paziente, evento compatibile con una sua attività inspiratoria. Ma nello stesso istante la pressione nelle vie aeree si allontana dal paziente, cioè aumenta. L’incoerenza tra la variazione di flusso e di pressione esclude che ciò che vediamo sia dovuto ad attività inspiratoria del paziente.

Nella figura non vediamo momenti di riposo e rilasciamento (R). Cerchiamo quindi eventuale attività espiratoria del paziente (E), quindi flusso che si allontana dal suo punto di vista o che tende ad aumentare rispetto a quello immediamente precedente. Una simile variazione di flusso si verifica subito dopo il punto appena analizzato in figura 5, e lo vediamo rappresentato in figura 6.

Figura 6

Se riflettiamo sul momento identificato dalla linea tratteggiata azzurra, vediamo che il flusso si allontana dal paziente rispetto al flusso precedente (il precedente flusso diventa sempre il nuovo punto di partenza di una espirazione passiva con andamente decrescentemente esponenziale). Questo potrebbe essere quindi segno di una espirazione attiva. Ma se vediamo cosa succede alla pressione delle vie aeree, questa spiegazione diventa inaccetabile: in quello stesso momento la pressione delle vie aeree infatti si riduce, evento incompatibile con l’espirazione attiva del paziente.

Escludiamo quindi che queste variazioni di flusso e pressioni siano associate ad attività del paziente. Ne consegue che devono essere associate a variazioni dell’attività del ventilatore. Infatti tutto trova una semplice spiegazione se si adotta questo punto di vista: la riduzione del flusso espiratorio in figura 5 è dovuta all’aumento della pressione delle vie aeree. Quindi il ventilatore aumenta la pressione delle vie aeree, questo riduce la differenza di pressione tra polmoni e ventilatore e quindi il flusso espiratorio. Chiaramente il contrario di quanto avviene in figura 6: il ventilatore riduce la pressione e questo porta ad un aumento del flusso espiratorio. Se ci fossero dubbi o curiosità su questo aspetto, li affronterò in risposta a qualche commento (ad esempio, perchè il ventilatore si mette a fare tutta questa “confusione”?).

Il metodo RESPIRE è un neonato in fase di sviluppo. Mi farà certamente piacere ricevere critiche e suggerimenti per migliorarlo (come si può notare, si può trovare già qualche piccola evoluzione in  questo post rispetto al precedente). Tra qualche mese magari potremo raggiungere una proposta più matura (comunque mai definitiva, dal momento che la conoscenza, anche scientifica, non può mai essere definitiva). Che sarà condivisa come sempre liberamente e gratuitamente con tutti coloro che riterranno possa essere utile.

Al momento comunque il RESPIRE si sta dimostrando efficace per affrontare anche asincronie ed artefatti complessi.

Il messaggio principale di oggi mi sembra posso essere riassunto in questi punti:

  • quando si vede una curva ventilatoria “strana“, bisogna resistere alla tentazione di dare al volo diagnosi e soluzione;
  • per capire cosa accade è necessario analizzare sistematicamente la curva di flusso ed in maniera sincrona quella di pressione;
  • se le variazioni, rispetto alla ipotetica passività, delle tracce di flusso e pressione sono coerenti con la presenza di attività respiratoria del paziente, possiamo attribuirle ad esso;
  • qualora non sia soddisfatta la condizione del punto precedente, nascono da anomalie o caratteristiche del sistema ventilatore-circuito ventilatorio (più frequenti di quanto si possa pensare).

Come sempre, un sorriso a tutti gli amici di ventilab.

Aug 202017
 

Quando si prova ad interpretare le curve di pressione e flusso delle vie aeree, spesso vedo commettere un errore fondamentale: voler dare subito la diagnosi, cioè trovare la risposta giusta a colpo d’occhio, arrivandoci e non dopo una analisi ragionata. Si prova ad indovinare piuttosto che a ragionare. Certo, le asincronie più clamorose si vedono al volo, ma, se si vuole diventare davvero bravi, il metodo di gran lunga migliore è quello di applicare un approccio sistematico di lettura e giungere alle conclusioni solo al termine dell’analisi, dopo aver capito esattamente ogni singola dinamica. Un possibile approccio sistematico alla interpretazione delle tracce di pressione e flusso delle vie aeree (ABC-DEF) è stato proposto già 7 anni fa nei post del 13/08/2010, del 20/08/2010 e del 29/08/2010. Nonostante il vecchio ABC-DEF di ventilab sia semplice e sempre valido, oggi vorrei proporre un metodo completamente nuovo, fondato sulla comprensione profonda dell’interazione paziente-ventilatore. Il metodo prevede 7 fasi e lo chiameremo RESPIRE, dall’iniziale di ciascuna fase.

Oggi vedremo in sintesi il metodo RESPIRE nella sua applicazione pratica valida per tutte le ventilazioni pressometriche, cioè tutte le modalità di ventilazione meccanica ad eccezione di volume controllato, NAVA e PAV. Durante il corso “Le modalità di Ventilazione Meccanica” avremo certamente modo di dettagliare meglio il razionale del RESPIRE ed estenderne l’applicazione a tutte le modalità di ventilazione meccanica.

Applichiamo il RESPIRE ad una paziente (con peso corporeo ideale di 52 kg) ventilata con pressione di supporto 8 cmH2O e PEEP 5 cmH2O. Nella figura 1 è riprodotta la schermata completa dello schermo del ventilatore meccanico.

Figura 1

Guardando i numeri, notiamo che la frequenza respiratoria è inferiore a 30/min, il volume corrente è 8 ml/kg, il rapporto frequenza respiratoria/volume corrente è 68. Non male. Vediamo ora cosa ci aggiunge il monitoraggio ventilatorio.

Il RESPIRE può essere applicato al letto del paziente congelando/salvando lo schermo del monitor ed utilizzando i cursori che i ventilatori meccanici offrono per l’analisi delle curve salvate/congelate.

R: Riconosci e disponi le curve importanti

Il primo passo è utilizzare solo le curve di pressione e flusso, con la curva di pressione nel campo superiore e quella di flusso in quello inferiore. E’ un ordine gerarchico, perchè nelle ventilazioni pressometriche è la curva di pressione che “comanda” quella di flusso. Inoltre questo ordine sarà comodo nel prosieguo del metodo. Se il ventilatore non ci offre di default questa visione, possiamo facilmente impostarla scegliendo l’ordine delle curve da visualizzare.

Figura 2

In questo modo abbiamo eliminato molti dati inutili per l’analisi e possiamo concentrarci solo su ciò che è veramente indispensabile.

E: Espirazione del ventilatore

Ora individuiamo i punti in cui inizia e finisce la fase espiratoria sulla traccia di flusso. Sono i punti in cui la traccia di flusso incrocia la linea orizzontale per scendere sotto lo zero o per risalire sopra lo zero. Questi punti consentono di frazionare il ciclo respiratorio, definendo fase espiratoria (“exp” nelle figure) la parte che comprende il flusso negativo e fase inspiratoria (“insp” nelle figure) tutto il resto.

Figura 3

S: Supponi che il paziente sia passivo

Nelle ventilazioni pressometriche supponiamo che, in assenza di attività del paziente, sia presente una curva di pressione “quadra” in inspirazione sopra il livello di PEEP ed una curva di flusso decrescente, sia in inspirazione che in espirazione. Vediamo cosa significa.

Figura 4

Nella figura 4 vediamo come dovrebbe essere una curva di pressione passiva. Durante la fase espiratoria ci aspettiamo il livello di PEEP (in BIPAP la Pbassa durante il tempo di Pbassa), durante la fase inspiratoria un aumento di pressione pari al livello di pressione inspiratoria sopra PEEP (in BIPAP la Palta nel tempo di Palta). La velocità del passaggio dalla PEEP alla pressione inspiratoria (l’angolo α in figura) è regolato con il tempo di salita (rise time). In caso di rise time 0, l’angolo α è di 90°.

La variazione di pressione nel ventilatore determina il flusso. Quando aumenta la pressione nel ventilatore (dalla PEEP alla pressione inspiratoria), il flusso inspiratorio inizia con un picco che poi descresce verso lo zero. Quando si riduce la pressione nel ventilatore (dalla pressione inspiratoria alla PEEP), più o meno specularmente all’inspirazione, un flusso espiratorio inizia con un picco e quindi descresce verso lo zero. Il decadimento passivo del flusso è teoricamente esponenziale (con una convessità, come se fosse attratto, verso la linea dello zero) e la velocità del decadimento è determinata dalla costante di tempo dell’apparato respiratorio (vedi post del 17 luglio 2016) (figura 5).

Figura 5

Applichiamo ora questi concetti alle nostre curve. Ovviamente ci vuole un minimo di fantasia e, sullo schermo dei nostri ventilatori, non possiamo fare che altro che immaginarci le curve passive, senza poterle disegnare concretamente. Ma se ci si prova, si vedrà che in fondo è molto facile.

Figura 6

Nella figura 6 abbiamo disegnato in bianco le ipotetiche curve passive. Abbiamo posizionato la linea della PEEP un po’ più in basso della pressione espiratoria. Questo perchè la PEEP impostata è 5 cmH2O (figura 1, valore di PEEP in nero, in basso), mentre la pressione a fine espirazione misurata è 6 cmH2O (figura 1, valore di PEEP in giallo, in alto a sinistra). Sappiamo quindi che in espirazione la pressione è un po’ più alta di quella impostata.

Guardando la figura 1, sappiamo anche che la pressione di picco (14 cmH2O) è più alta della pressione che abbiamo programmato di raggiungere in inspirazione (13 cmH2O, somma di PEEP 5 + PS 8). Per questo motivo abbiamo considerato una pressione inspiratoria passiva a 13 cmH2O, un po’ più bassa del picco.

Non possiamo sapere l’entità dei picchi di flusso se il paziente fosse passivo, quale la sua costante di tempo. Ci accontentiamo quindi di immaginare flussi decrescenti (verso la linea dello zero) che partono dal picco e finiscono alla fine della inspirazione (volendo essere più fini al punto del trigger espiratorio, correzione tanto più opportuna quanto più il trigger espiratorio è alto) o alla fine della espirazione. E’ una approssimazione comunque assolutamente efficace nell’interpretare le curve.

P: Punto di vista del paziente

Per capire bene come l’attività respiratoria del paziente possa modificare le curve di pressione e flusso, può essere utile fare un altro piccolo sforzo di fantasia. Immaginiamo il paziente coricato supino sotto la curva di pressione e prono sopra la curva di flusso. Vediamo un esempio con le curve di una ventilazione in un paziente completamente passivo (pressione controllata con paralisi muscolare).

Figura 7

Notiamo preliminarmente una cosa. Nel paziente passivo, il flusso inspiratorio può avere un decadimento lineare e non esponenziale (quello espiratorio conserva comunque il decedimento esponenziale). Quindi in presenza di un flusso inspiratorio che va dal picco di flusso al suo termine seguendo una linea retta, potremo considerare il paziente passivo.

Perchè abbiamo messo il paziente in questa strana posizione? Perchè da questa posizione, quando inspira, le curve sono attirate verso la bocca del soggetto sdraiato, mentre quando espira ne sono allontanate. Cioè l’ipotetica attività respiratoria del paziente sdraiato muove le curve con la stessa direzione del flusso di aria che entra ed esce dal proprio apparato respiratorio.

Visualizziamo questo concetto nella figura 8. La figura è un po’ complicata, ma la spiegheremo punto per punto. In bianco sono state sovraimposte alcune possibili modificazioni delle curve dovute all’attività respiratoria del paziente rispetto alle curve passive.

Figura 8

L’inspirazione del paziente durante la fase di flusso espiratorio determina un avvicinamento sia della curva di pressione che di quella di flusso verso la rispettiva linea dello zero (punti 1 e 5 nella figura 8).

L’inspirazione del paziente durante la fase di flusso inspiratorio abbassa la pressione al di sotto dell’onda quadra ed aumenta il flusso rispetto alla fase di decadimento passivo (punti 2 e 6 nella figura 8). In particolare la curva di pressione si “svuota” e la curva di flusso diventa più alta della linea che idealmente congiunge il picco di flusso al flusso presente al momento della fine dell’inspirazione.

L’espirazione del paziente durante la fase di flusso espiratorio allontana pressione e flusso dalla linea dello zero rispetto all’ipotetico andamento passivo (punti 3 e 7 nella figura 8).

L’espirazione del paziente durante la fase di flusso inspiratorio aumenta la pressione delle vie aeree sopra il valore atteso e tende a far decadere rapidamente il flusso inspiratorio (punti 4 e 8 nella figura 8).

Tutto questo NON VA MEMORIZZATO: è sufficiente ricordare il paziente supino sotto la pressione e prono sopra il flusso e ragionare su come sposterebbe le curve l’aria che entra ed esce dalla sua bocca.

Da notare che qualitativamente il flusso inspiratorio è modificato allo stesso modo dall’inspirazione e dall’espirazione del paziente (punti 6 e 8 nella figura 8): in entrambi i casi si osserva una concavità verso il basso della curva di flusso. Come distinguere le due condizioni? Dobbiamo guardare la consensuale variazione di pressione.

Da considerare due presupposti fondamentali:

  • possono essere presenti alterazioni di flusso (rispetto alla passività) in assenza di alterazioni sulla curva di pressione; il flusso è molto sensibile all’attività del paziente, la pressione invece risente anche della performance del ventilatore meccanico: idealmente, se un ventilatore meccanico funzionasse prefettamente non vi sarebbe mai alcuna alterazione della curva di pressione rispetto alla curva passiva;
  • quando sono presenti alterazioni (rispetto alla passività) sia della curve di flusso che di pressione, queste devono essere coerenti tra loro (devono cioè presentarsi nelle accoppiate descritte sopra) per essere attribuibili all’attivitità respiratoria del paziente.

Infine è utile valutare se ci sono fasi di riposo ed equilibrio alla fine del flusso inspiratorio ed alla fine del flusso espiratorio. Queste fasi sono caratterizzate dalla presenza di una pressione stabile ed assenza di flusso, come ad esempio nelle zone ombreggiate della figura 9. Le piccole fluttuazioni della pressione in figura 9 sono ascrivibili al battito cardiaco. Queste zone documentano l’assenza di attività del paziente ed il raggiunto equilibrio pressorio a fine inspirazione (pressione applicata simile a pressione alveolare) ed a fine espirazione (assenza di iperinflazione dinamica).

Figura 9

I: Inspirazione del paziente

Figura 10

Ora applichiamo questi concetti alla nostra paziente, iniziando dalla verifica di eventuale attività inspiratoria.

Analisi durante la fase espiratoria. Nel punto 1 della figura 10 vediamo l’inizio della caduta di pressione durante la fase espiratoria, segno di attività inspiratoria del paziente. Interessante è la traccia di flusso: in questo caso l’avvicinamento al flusso zero non avviene dalla linea espiratoria teorica, ma con una brusco aumento di pendenza dal flusso precedente. In altre parole, prima del punto 1 il flusso espiratorio aveva una certa pendenza, seppur diversa da quella passiva. Di colpo, da questa linea di flusso con una propria pendenza (orizzonatale in questo caso), si verifica un’improvvisa risalita verso lo zero. Anche questo è segno di attività inspiratoria del paziente. Sono coerenti i segni visti su pressione e flusso, quindi sono spiegabili dall’attività inspiratoria del paziente.

Vediamo anche una zona che si ripete all’inizio di ogni fase espiratoria e che abbiamo indicato con un punto interrogativo. Qui ci sono segnali troppo ambigui per essere interpretati. La pressione fluttua sopra e sotto la linea di passività, con associate fluttuazioni del flusso. Tralasciamo in questo già lungo post l’interpretazione di questo punto, che sarà l’argomento del prossimo post.

Analisi durante la fase inspiratoria. Nel punto 2 sono evidenti sia la riduzione della pressione che l’aumento del flusso:  segni coerenti e quindi inequivocabilmente il paziente sta inspirando.

R: Riposo ed equilibrio

E’ evidente dall figura 6 che al confine tra flussi inspiratori ed espiratori non compare nessuna fase di zero flusso associata ad una pressione costante, come nell’esempio in figura 9. Non possiamo quindi in alcun modo fare previsioni sulla pressione alveolare nè a fine inspirazione nè a fine espirazione. Ne consegue che la pressione alveolare potrebbe essere più elevata della pressione di picco e che potrebbe esserci autoPEEP.

E: Espirazione del paziente

Figura 11

Analizziamo infine la presenza di attività espiratoria (figura 11).

Analisi durante la fase espiratoria. E’ evidente che la curva di flusso si allontana dallo zero nel punto 3. Il flusso espiratorio addirittura tende lievemente ad aumentare durante l’espirazione, segno tipico di espirio attivo. A questo si associa ad una pressione lievemente più alta della PEEP impostata. I segni sono coerenti, quindi abbiamo una espirazione attiva. Da considerare che l’analisi del flusso espiratorio può perdere di valore in presenza di flow limitation (vedi post del 04/06/2012).

Analisi durante la fase inspiratoria. Nel punto 4, verso la fine della fase inspiratoria vediamo l’aumento della pressione delle vie aeree oltre il valore teorico dato dalla somma di PEEP e pressione inspiratoria. Questo si associa ad una caduta verticale del flusso inspiratorio. Anhe in questo caso i segni sono coerenti con la presenza di attività espiratoria prima del termine della fase inspiratoria. Possiamo pensare a quest’ultima come al brusco rilasciamento dei muscoli inspiratori e/o all’attivazione dei muscoli espiratori.

Conclusioni.

Applicando il metodo RESPIRE ad un caso molto semplice (giusto per iniziare), possiamo concludere che:

  • la paziente triggera chiaramente gli atti respiratori (attività inspiratoria alla fine della fase espiratoria)
  • continua ad inspirare attivamente per tutta la durata della fase inspiratoria (attività inspiratoria durante la fase inspiratoria)
  • inizia ad espirare già alla fine della fase inspiratoria (attività espiratoria durante la fase inspiratoria)
  • mantiene una espirazione attiva per tutta l’espirazione (attività espiratoria in fase espiratoria)

Abbiamo insomma una paziente sempre (e tanto) attiva durante tutto il ciclo respiratorio, nonostante i numeri (volume corrente, frequenza respiratoria, volume corrente/frequenza respiratoria) ci dicano che va tutto bene. Forse possiamo ventilare meglio la nostra paziente… ma il “che fare” va oltre l’obiettivo di questo post.

Resta da capire, sempre applicando il RESPIRE, cosa siano quelle strane cose che si vedono in figura 10, contrassegnate dal punto interrogativo… Ne parliamo in settembre.

Come sempre, un sorriso a tutti gli amici di ventilab.

Jul 062017
 

La relazione pressione-volume statica dell’apparato respiratorio (detta anche più familiarmente “curva di compliance“) è un fondamento indispensabile per la comprensione della ventilazione meccanica e della interazione paziente-ventilatore.

Costruire la curva di compliance nella realtà e ragionare su di essa è un ottimo modo per raggiungere la conoscenza pratica, cioè un vero e persistente arricchimento culturale e professionale. Vediamo quindi insieme come farlo al letto del paziente, con qualsiasi ventilatore meccanico.

Partiamo dando un significato alle parole: relazione pressione-volume statica dell’apparato respiratorio. “Relazione pressione-volume” significa semplicemente misurare di quanto aumenta il volume al variare della pressione: quando applico 1 cmH2O di pressione, di quanto aumenta il volume? Questa è la compliance. Ad esempio avere 50 ml/cmH2O di compliance significa che ad ogni cmH2O di aumento di pressione corrisponde un aumento di 50 ml di volume. Nella pratica otterremo questa informazione in maniera più semplice misurando quanto aumenta la pressione dopo l’erogazione di un volume noto.

Il termine “statica” definisce che la variazione di pressione è rilevata in assenza di flusso: cioè misuriamo la pressione nell’apparato respiratorio dopo un periodo di pausa che segue l’erogazione del volume. La durata della pausa deve essere sufficiente ad ottenere una pressione stabile (un plateau). In questo modo eliminiamo l’effetto delle resistenze e studiamo solo le pressioni che si sviluppano all’interno dell’apparato respiratorio.

La specifica “dell’apparato respiratorio” ci fa intendere che riferiamo le nostre misurazioni a polmoni e gabbia toracica considerati globalmente. Per la meccanica respiratoria, l’apparato respiratorio è usualmente semplificato in un modello costituito da due elementi: i polmoni inseriti nella gabbia toracica. La sola misurazione della pressione delle vie aeree consente di studiare l’apparato respiratorio nel suo complesso, senza poter identificare le singole caratteristiche di polmoni e gabbia toracica.

Dopo questa breve premessa, iniziamo a costruire concretamente la curva di compliance.

Iniziamo con un grafico vuoto che ci aiuta a capire meglio di cosa stiamo parlando.

Figura 1

Dovremo riempire il grafico con diversi volumi (asse verticale) misurando la corrispondente pressione statica (asse orizzontale). Importante capire cosa rappresentano il punto 0 di pressione e volume (sono entrambi zeri relativi): lo zero di pressione è relativo alla pressione atmosferica, lo zero di volume identifica il volume di rilasciamento (o equilibrio elastico) dell’apparato respiratorio, cioè il volume che l’apparato respiratorio raggiunge al termine di un’espirazione passiva completa che equilibra la pressione intrapolmonare con quella atmosferica. In assenza di iperinflazione dinamica, corrisponde alla capacità funzionale residua.

Ora immaginiamo di ventilare un paziente passivo alla ventilazione meccanica (nessun segno di attività dei muscoli respiratori al monitoraggio grafico ed alla valutazione clinica). Modifichiamo temporaneamente l’impostazione del ventilatore meccanica: azzeriamo la PEEP e riduciamo la frequenza respiratoria (mantenendo un tempo inspiratorio di circa 1 secondo) fino ad ottenere un tempo espiratorio sufficiente ad evitare l’autoPEEP (il flusso espiratorio cioè diventa zero prima dell’inizio dell’inspirazione successiva). Quest’ultima condizione può essere facilmente raggiunta in quasi tutti i pazienti con una frequenza respiratoria di 10-15/minuto. Eseguiamo un’occlusione delle vie aeree a fine inspirazione e manteniamola 3″, tempo solitamente sufficiente ad ottenere la stabilizzazione della pressione delle vie aeree su un plateau. La pressione rilevata durante il plateau, alla fine dei 3″ di occlusione, è la pressione di plateau. Nota pratica: tutte le occlusioni devono avere la medesima durata per garantire che le diverse pressioni di plateau siano rilevate a parità di condizioni.

Procediamo ora con un esempio pratico, analizzando la costruzione della curva di compliance in un paziente con ARDS grave.

Figura 2

Nella figura 2 possiamo visualizzare tutti gli elementi descritti quando il paziente che riceve 500 ml di volume corrente e sviluppa 15 cmH2O di pressione di plateau. Possiamo riportare il risultato sul grafico pressione-volume dell’apparato respiratorio.

Figura 3

Figura 4

Per costruire una relazione pressione-volume è necessaria una serie di punti. Più punti ci sono, più si aumenta la precisione della relazione. Dobbiamo quindi somministrare in rapida successione diversi volumi correnti (possiamo tenere ciascuno solo un minuto) ed eseguire per ogni volume corrente la manovra di occlusione decritta sopra. E’ opportuno che il volume più piccolo porti ad ottenere non più di 2 cmH2O di pressione di plateau e che il più alto abbia superato la soglia di sovradistensione (almeno 2-3 volumi correnti con stress index superiore a 1) o raggiunga una pressione di plateau di 40 cmH2O. Per avere una accettabile relazione pressione-volume di solito sono sufficienti 12-15 diversi volumi correnti, che si ottengono con una differenza di 50-100 ml tra l’uno dall’altro. E’ infine utile alternare volumi alti e volumi bassi per evitare significativi periodi di ipoventilazione durante l’applicazione dei volumi correnti più bassi. Qui a fianco possiamo vedere la sequenza delle occlusioni nel nostro paziente con ARDS: il maggior volume corrente utilizzato (700 ml) è chiaramente associato a segni di sovradistensione (già presenti anche a volumi inferiori). Esso è seguito dal volume corrente minimo, sufficiente ad ottenere non più di 2 cmH2O di pressione di plateau. Da questo punto iniziamo una alternanza di volumi correnti alti e bassi che progressivamente calano di 50 ml dal massimo o aumentano 50 ml dal minimo. Come possiamo vedere la pressione di plateau (Pplat) è semplicemente letta sul diplay del ventilatore in tempo reale durante l’occlusione. Abbiamo applicato 13 diversi volumi correnti, che significano realisticamente (con un po’ di esperienza) una ventina di minuti complessivi di lavoro.

Figura 5

Ora dobbiamo costruire il grafico. Potremmo anche utilizzare carta (un foglio a quadretti o, meglio, di carta millimetrata) e penna  come si faceva in tempi eroici. Ma oggi è molto meglio aprire un foglio elettronico e inserire i risultati su due colonne: nella prima la pressione di plateau, nella seconda il corrispondente volume corrente, come mostrato in figura 5.

Il passaggio finale è la creazione del grafico sul foglio elettronico: finalmente vedremo il risultato del nostro lavoro e trarremo alcune conclusioni che ci potranno aiutare nelle scelte di ventilazione meccanica.

Ecco la relazione pressione-volume statica dell’apparato respiratorio del paziente che stiamo vedendo come esempio:

Figura 6

Osserviamo che gli aumenti di pressione-volume fino a 18 cmH2O-600 ml possono essere ben raggruppati lungo una linea retta (linea tratteggiata grigia in figura 7). Questa linea però non includerebbe i punti oltre i 18 cmH2O-600 ml, che si troverebbero più in basso. Questi punti sono meglio rappresentati da una linea meno pendente (linea tratteggiata rossa in figura 7).

Figura 7

La pendenza di ciascuna delle due rette è una compliance, infatti esprime la variazione in ml per cmH2O: bassa pendenza = bassa compliance, alta pendenza = alta compliance. La linea grigia è una compliance di 31 ml/cmH2O, cioè il rapporto tra la variazione di volume di 500 ml (da 100 a 600 ml) e la variazione di pressione di 16 cmH2O (da 2 a 18 cmH2O). La linea rossa identifica una compliance di 14 ml/cmH2O.

Figura 8

Volendo essere pignoli, dopo aver visto nella figura 6 che 18 cmH2O-600 ml sono il “punto di rottura” della linea, possiamo riscrivere nel foglio elettronico i dati come vediamo in figura 8. Creiamo due colonne di volume, una con i dati sulla prima linea di pendenza ed una con i dati sulla seconda linea di pendenza. Il valore 18 cmH2O-600 ml compare in entrambe le colonne perchè appartiene ad entrambe.

Se creaimo ora il grafico (figura 9), avremo una serie di punti per la prima (in grigio) ed una per la seconda pendenza (in rosso). E potremo chiedere al foglio elettronico di disegnare la retta della pendenza di ciascuna delle due serie, di mostrare l’equazione di questa retta (che è la relazione pressione-volume) ed il coefficiente di determinazione (R2). Vediamo e commentiamo il risultato, rendendolo semplice e comprensibile per tutti.

Figura 9

Le rette che ha disegnato il folgio elettronico sono molto simili a quelle che abbiamo disegnato ad occhio nella figura 7 (quindi noi ed il computer siamo d’accordo!). Vicino ad esse c’è una equazione, che ci deve lasciare tranquilli: il coefficiente della x (nel riquadro blu) è la compliance calcolata sulla retta (praticamente identica a quella che ci siamo calcolati in precedenza, anche questa una conferma dei risultati). Il valore di R2 ci informa di quanto la variazione di volume possa essere spiegata dalla variazione di pressione, in parole povere quanto sia buona la correlazione tra pressione e volume. Un R2 maggiore di 0.9 è un’ottimo risultato perchè significa che la relazione pressione-volume è accurata e non ci stiamo inventando relazioni che non esistono: nel nostro caso abbiamo un’ottima correlazione per entrambe le rette (anche se quella rossa è fatta solo con 3 punti…). Con questo approccio più “matematico” non abbiamo aggiunto nulla di nuovo, ma ci sentiamo tranquilli che le nostre valutazioni occhiometriche non erano forzate. In questo grafico vediamo che l’incrocio tra le due rette, che viene normalmente definito punto di flesso superiore, si verifica ad un livello di pressione leggermente inferiore a 18 cmH2O (linea verticale blu tratteggiata in figura 9).

Ed ora cosa ce ne facciamo di tutto il nostro lavoro? In questo paziente con ARDS è assente il punto di flesso inferiore, manca cioè alle pressioni più basse una linea con compliance inferiore alla massima pendenza. Nei pazienti con punto di flesso inferiore (ci capiterà prossimamente di vederne qualcuno), la PEEP dovrebbe essere leggermente superiore (un paio di cmH2O) alla pressione a cui lo osserviamo. Al contrario, i pazienti senza punto di flesso inferiore (come il nostro) si giovano di bassa PEEP, che potremmo quindi decidere di mettere a 5 cmH2O (meglio se la rivalutiamo con un trial di PEEP per scegliere quella associata alla minor driving pressure, vedi post del 28/2/2015 e del 18/10/2015). Sappiamo inoltre che dovremmo evitare pressioni di plateau superiori a 17 cmH2O (un valore decisamente minore dei 30 cmH2O raccomandati dalle linee guida…). La variazione di pressione da 5 (PEEP) a 17 cmH2O (massima pressione di plateau tollerata) è di 12 cmH2O. Con una complinace di 31 ml/cmH2O, questo corrisponde ad una variazione tidal di volume di circa 370 ml. Questa potrebbe essere un’impostazione razionale del ventilatore meccanico, ricordando che i 5 cmH2O sono sempre di PEEP totale. Quando aumentiamo la frequenza respiratoria dopo la costruzione della curva di compliance, probabilmente genereremo autoPEEP: dovremo quindi riaggiustare la PEEP e misurare la PEEP totale con l’occlusione a fine espirazione per portarla ai 5 cmH2O che ci siamo posti come obiettivo.

La logica di questo approccio è stata utilizzata in alcuni trial clinici (1-3) che, complessivamente, hanno portato a risultati migliori rispetto alla sola riduzione del volume corrente  (4) (l’unica differenza riguarda la scelta della PEEP nei pazienti senza punto di flesso inferiore).

L’applicazione della PEEP può modificare la curva di compliance e rendere più complesso il ragionamento. Ma su questo avremo modo di confrontarci prossimamente, per oggi penso basti così.

Vorrei concludere invitando tutti a ricavare la curva di compliance sui propri pazienti e ricavarne informazioni clinche utili per la ventilazione. Le prime volte certamente non si raggiungerà la perfezione, ma dopo poche esperienze alcuni concetti fondamentali si chiariranno e si scolpiranno nella propria conoscenza e capacità clinica. Un consiglio: alle prime esperienze, evitare pazienti con ipossiemia molto grave: se non si è rapidi e coordinati nella procedura (cosa che si acquisisce con la pratica), le fasi a basso volume corrente senza PEEP potrebbero non essere semplicissime. Presto valuteremo anche approcci più veloci per costruire la curva di compliace, ma vale la pena affrontarli dopo aver digerito questo approccio classico.

Come sempre, un sorriso a tutti gli amici di ventilab.

 

Bibliografia
1) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54
2) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61
3) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8
4) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

May 222017
 

Viene proposto sempre più di frequente l’utilizzo di scale comportamentali per la valutazione del dolore nel paziente che non è in grado di comunicare. Le due scale più accreditate sono la Behavioral Pain Scale (BPS) (1) (figura 1) e la Critical-Care Pain Observation Tool (CPOT) (2) (figura 2), il cui uso è consigliato ormai da tutte le linee guida sulla​ gestione del dolore nel paziente critico.

Figura 1

Queste scale attribuiscono punteggi all’espressione del volto, a posizione e movimenti del corpo ed al cosiddetto “adattamento” alla ventilazione meccanica. Quest’ultimo concetto, espresso in termini più appropriati, è l’interazione paziente-ventilatore, argomento a cui anche ventilab attribuisce da sempre grande importanza. Quindi le scale comportamentali utilizzano le asincronie per la valutazione del dolore.

Figura 2

Nella BPS e nel CPOT non si pretende certo di analizzare tutta l’interazione paziente-ventilatore, ma solo di rilevare quelle grossolane asincronie che possono far suonare l’allarme del ventilatore meccanico. Queste asincronie sono quelle che aumentano la pressione nelle vie aeree oltre il limite prefissato. Vediamo un esempio nella figura 3.

Figura 3

Cerchiamo di capire perché succede. La curva gialla è la pressione delle aeree, quella verde è il flusso. Vediamo che i picchi di pressione che allarmano il ventilatore si verificano nell’ultima fase del flusso inspiratorio. Anzi, l’attivazione dell’allarme di pressione è proprio un evento che fa cessare il flusso inspiratorio ed apre l’espirazione. Se questo diventa frequente, la ventilazione meccanica può divenire anche impossibile.

Ora facciamo attenzione anche alla traccia bianca che compare insieme alla curva gialla. Quando la traccia bianca sale, il paziente inspira, quando scende invece espira. Vediamo una totale asincronia tra i periodi inspiratorio ed espiratorio del paziente (traccia bianca) e quelli del ventilatore (traccia verde). La pressione delle vie aeree (traccia gialla) si avvia verso il limite di allarme quando il paziente inizia ad espirare (la traccia bianca inizia a scendere​) mentre il ventilatore cerca di erogare​ ancora flusso inspiratorio (traccia verde al di sopra dello zero).

Questa asincronia è un ciclaggio ritardato. L’attivazione dell’allarme di pressione si può verificare in particolare durante la ventilazione a volume controllato, come nell’esempio in figura 3. Per risolvere l’asincronia e  far cessare l’attivazione dell’allarme possiamo migliorare l’impostazione della ventilazione a volume controllato oppure cambiare modalità di ventilazione. Nelle ventilazioni ciclate a flusso (pressione di supporto) se questa asincronia persiste, è perlomeno silenziosa ed un occhio poco esperto non se ne accorge.

Torniamo a BPS e CPOT. Sia nella BPS che nel CPOT si interpretano, di fatto, alcune grossolane asincronie come espressione di dolore. Ma che caspita c’entrano le asincronie con il dolore? Il paziente “contrasta” il ventilatore se questo è impostato male. Ed il problema può essere risolto adeguando l’impostazione del ventilatore. Migliorando l’impostazione del ventilatore, abbiamo forse tolto dolore ad un paziente che lo aveva? Nelle ventilazioni ciclate a flusso il paziente di fatto non può “contrastare”, mentre il quelle ciclate a tempo (in particolare il volume controllato) questo accade senza un buon setting del ventilatore. Vuol dire che in pressione di supporto si ha meno dolore che in volume controllato? Siamo evidentemente nel campo dell’assurdo. Che siano forse assurdi anche BPS e CPOT?

Qualche dubbio a me viene. Entrambe le scale del dolore nascono utilizzando variabili selezionate arbitrariamente e non per una dimostrata associazione con il dolore. Di fatto gli autori hanno semplicemente deciso dovessero essere quelle e che dovessero avere i punteggi che essi hanno ritenuto appropriati. È facile inventare score così… Ma se funzionano, visto che si sente sempre dire che sono validate, ce ne potremmo fare una ragione. Ma diamo una rapida occhiata a come BPS e CPOT sono stati validati.

Il BPS è stato “validato” confrontando il punteggio ottenuto durante stimoli ritenuti dolorosi (mobilizzazione o tracheoaspirazione) con quello rilevato durante stimoli ritenuti non dolorosi (applicazione calze compressive o medicazione del catetere venoso centrale). Lascio a ciascuno i commenti sulla scelta di questi stimoli (la tracheoaspirazione non interferisce di per sè forse con la ventilazione?). E accenno solo il fatto che è stato utilizzato un approccio statistico scorretto (i classici test parametrici su dati ordinali evidentemente non distribuiti normalmente).

Entriamo nel merito: il punteggio del BPS può variare da 3 a 12. Nello studio di “validazione” la media del BPS durante le procedure dolorose era tra 4 e 5, mentre durante le procedure non dolorose era tra 3 e 4. Quindi, in media, 1 punto di differenza tra dolore e non dolore. Quando la stessa procedura dolorosa era ripetuta nello stesso paziente, il punteggio del BPS era diverso di almeno 1 punto 14 volte su 31. Cioè la differenza di BPS tra procedure dolorose identiche nello stesso paziente era spesso simile alla differenza media tra procedure dolorose e non dolorose. La concordanza della misurazione del BPS tra diversi operatori è poi stata fatta considerando concordi le valutazioni che differivano di 1 punto… (che abbiamo visto essere la differenza media tra dolore e non dolore…).

Il punteggio di BPS in quasi tutti i pazienti dello studio di “validazione” era inferiore a 8 (gli stessi autori scrivono che per questo motivo non sono stati in grado di valutare la validità dello score sopra 8). Quindi si è inventato uno score che consente una variazione di 10 punti (da 3 a 12), ed alla fine sappiamo che funziona piuttosto male sulla prima metà della scala.
Per brevità, solo una piccola nota dello studio di validazione del CPOT: si nota nei risultati che avevano un CPOT di 2 sia pazienti che dichiaravano di avere dolore che quelli che non riferivano dolore. Penso basti questo.

Come possiamo vedere, BPS e CPOT non solo non​ hanno un razionale clinico-fisiologico e nemmeno un solido costrutto metodologico, ma sono tutt’altro che validati se andiamo a leggere la letteratura originale (ma tanto non lo fa nessuno…).

Restituiamo quindi le asincronie al complesso mondo dell’interazione paziente-ventilatore ed abituiamoci a gestire la complessità invece che impigrirci nella banalizzazione. Certamente le asincronie possono essere frequenti nei pazienti con drive e frequenza respiratoria elevati, come ad esempio quelli con dolore, con febbre, con agitazione, con elevato spazio morto, con ipossiemia, con acidosi metabolica, con iperventilazione centrale,… ma a ciascun problema diamo una soluzione appropriata.

Ancora il tempo per una domanda ed una considerazione prima di salutare.

La domanda. Abbiamo proprio bisogno di dare un numero per sapere se un paziente ha un dolore da trattare? Riteniamo che, nei soggetti incapaci di comunicare correttamente il proprio dolore, scale idiote siano migliori della capacità dell’essere umano di vedere la sofferenza sul volto e sul corpo dei propri simili? È oggettività o ubriacatura da punteggi? Per definizione non si può oggettivare il dolore altrui, siamo però capacissimi di vederlo, fa parte della nostra competenza di esseri umani. Purtroppo quando entriamo in ospedale rischiamo di sminuire quest’ultima competenza a favore di sedicenti oggettività.

La considerazione. Ormai ci si riempie la bocca di linee-guida e strumenti validati. Si crede ad una medicina che produce certezze. Purtroppo (e per fortuna) non è così. L’accettazione acritica di linee-guida, quasi regolarmente prive di raccomandazioni 1A (questo dovrebbe far riflettere…), e di strumenti validati (spesso allo stesso livello di BPS e CPOT) rischia di privare il medico dell’abitudine elementare al ragionamento clinico, della capacità di approfondimento e dell’entusiasmo nel proprio lavoro. Sfruttiamo il prezioso lavoro che per tutti compiono coloro che fanno le linee-guida, ma ad esse cerchiamo sempre di affiancare la nostra capacità critica, evitiamo un atteggiamento di religioso rispetto che deve eventualmente essere riservato a misteri ben più profondi. Cerchiamo sempre di capire e di conoscere in prima persona tutto quello che possiamo.

Un sorriso a tutti gli amici di ventilab, come sempre.

1) Payen JF et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 2001; 29:2258-63
2) Gélinas C et al. Validation of the Critical-Care Pain Observation Tool in adult patients. Am J Crit Care 2006; 15:420–427

Apr 302017
 

Il successo della ventilazione meccanica dipende in maniera decisiva anche dall’appropriatezza della sua impostazione. Se in un paziente con ARDS sbagliamo la scelta di volume corrente e PEEP, possiamo trasformare una tecnica molto efficace in un problema senza soluzione; se durante la ventilazione assistita utilizziamo costantemente un supporto inspiratorio eccessivo o insufficiente, possiamo perpetuare la dipendenza dalla ventilazione meccanica invece che avviarci verso lo svezzamento.

A volte ho la sensazione che ci si dimentichi questo concetto fondamentale quando si parla di ventilazione non-invasiva: si passa il tempo a discutere se sia efficace o meno, senza specificare i criteri di impostazione. E’ un approccio profondamente sbagliato: la ventilazione non-invasiva non è efficace perchè si applica una maschera sulla faccia, ma perchè si eroga una ventilazione meccanica

Oggi vediamo come impostare il supporto inspiratorio (cioè la pressione di supporto o la differenza IPAP-EPAP) in maniera efficace quando curiamo un paziente con insufficienza respiratoria acuta (anche in presenza di una componente cronica). Su questo argomento esistono diversi approcci ed opinioni autorevoli, quello che propongo è ciò che personalmente ritengo più logico.

Consideriamo il momento in cui si inizia la ventilazione non-invasiva. In questa fase la pressione di supporto dovrebbe essere la più elevata possibile. E’ opportuno iniziare con un basso livello di supporto inspiratorio (ad esempio 5 cmH2O) e rapidamente (in pochissimi minuti) raggiungere, per incrementi successivi, il massimo livello che il paziente tollera o ritiene confortevole e che si associa ad un livello gestibile di perdite aeree.

E’ importante raggiungere il massimo possibile perchè in questa fase la ventilazione non-invasiva viene sempre proposta a pazienti che hanno o 1) una insufficienza della pompa respiratoria o 2) un elevato lavoro dei muscoli respiratori.

Dovremmo intendere come insufficienza della pompa respiratoria quella condizione in cui si ha una acidemia (cioè un pH < 7.35) senza ipocapnia (PaCO2 > 35 mmHg) (vedi post del 29/01/2011). Rientrano in questa categoria, oltre alla classica acidosi respiratoria ipercapnica, anche quei casi di acidosi metabolica senza una ipocapnia. Durante acidosi metabolica, la normale risposta di una pompa respiratoria efficiente è qualla di iperventilare per ridurre la PaCO2 e quindi tendere alla correzione del pH. Se la pompa respiratoria è esaurita, la PaCO2 rimane attorno ai 40 mmHg senza alcun tentativo di correzione respiratoria del pH.

L’elevato lavoro dei muscoli inspiratori è una condizione di stress che può precedere la vera e propria insufficenza della pompa respiratoria, e clinicamente si manifesta con dispnea, tachipnea (aumento della frequenza respiratoria), polipnea (aumento della ventilazione/minuto), non di rado iperpnea (aumento della profondità dell’inspirazione),  e utilizzo dei muscoli accessori della respirazione (è ben esplorabile lo sternocleidomastoideo). In questa fase la PaCO2 può essere normale o ridotta ed il pH normale o alcalino. Quando i muscoli inspiratori iniziano a cedere sotto il peso di un prolungato periodo di elevato lavoro respiratorio, iniziamo a vedere il respiro rapido e superficiale ed infine il respiro paradosso (addome e torace si espandono in maniera alternata invece che sincrona durante gli atti respiratori).

In entrambe queste condizioni un obiettivo fondamentale della ventilazione non-invasiva è mettere a riposo il più possibile i muscoli inspiratori. E’ sbagliato pensare di ottenere questo obiettivo impostando una pressione di supporto sufficiente a raggiungere un volume corrente di 6-8 ml/kg (di peso ideale). Questo può essere un obiettivo necessario ma certamente non sufficiente. Infatti molti pazienti con elevato lavoro respiratorio sono già in grado di inspirare un volume corrente normale (o elevato) anche senza alcun supporto inspiratorio: sono cioè ancora in grado di combattere, seppur ad un elevato prezzo metabolico e di stress. In queste condizioni i muscoli respiratori possono utilizzare anche più del 25% dell’ossigeno consumato dall’intero l’organismo (in condizioni di normalità è circa il 1-2%), con sovraccarico della funzione cardiaca e sofferenza di altri tessuti.

Dobbiamo quindi affidarci a criteri diversi dal volume corrente. Possono aiutarci a scegliere il livello di supporto inspiratorio la valutazione della frequenza respiratoria, della dispnea, dell’utilizzo dei muscoli accessori della respirazione e, come sempre, il monitoraggio grafico della ventilazione.

Se durante ventilazione non-invasiva il volume corrente fosse compreso tra 420 e 470 ml potremmo essere soddisfatti nella maggior parte dei pazienti. Ma il monitoraggio grafico della ventilazione meccanica può fornirci informazioni decisive per una impostazione appropriata della pressione di supporto.

Nella figura 1 vediamo il flusso nelle vie aeree nello stesso paziente con 3 diversi livelli di pressione di supporto (da sinistra a destra: 5, 15 e 20 cmH2O sopra la PEEP di 5 cmH2O). Tra le 3 condizioni, il volume corrente varia effettivamente tra 420 e 470 ml.

Figura 1

Nel riquadro C abbiamo un flusso che, dopo il picco iniziale (porzione verticale viola), è (quasi) decrescente, tipico della ventilazione pressometrica passiva. Questo vuol dire che il paziente, dopo aver attivato il ventilatore, tende a mettere a riposo i muscoli inspiratori. Osserviamo la parte viola della curva di flusso nei riquadri A e B: dopo il picco iniziale, il flusso inspiratorio non decresce come nel riquadro C, segno di una persistente attività dei muscoli inspiratori, che è tanto più marcata tanto più ci si allontana dalla teorica decrescita passiva.

La figura 2 presenta le stesse curve della figura 1, con una retta che congiunge l’iniziale picco di flusso con il flusso quando inizia il ciclaggio tra inspirazione ed espirazione (istante in cui il flusso inizia a crollare verso lo zero).

Figura 2

Questa rappresentazione aiuta a capire cosa si intende per flusso decrescente e come valutare, seppur in maniera grossolana e qualitativa, quando e quanto un soggetto continua ad utilizzare i muscoli inspiratori durante il supporto inspiratorio. Nel riquadro A c’è un’area molto rilevante tra la traccia di flusso e la linea tratteggiata che dovrebbe descrivere l’ipotetico decadimento passivo del flusso; nel riquadro B c’è ancora una evidente area tra flusso e linea di decadimento passivo, però minore rispetto a quella vista in A e quindi segno di un minor contributo dei muscoli inspiratori; in C praticamente tutto il flusso è sulla liena di decadimento e ci fa pensare che resti solo eventualmente una minima attività dei muscoli inspiratori dopo il triggeraggio.

Ora possiamo capire bene perchè, quando iniziamo la ventilazione non-invasiva, dovremmo incrementare la pressione di supporto per avvicinarci il più possibile al profilo di flusso che vediamo in C. E’ importante fermarsi nell’incremento della pressione di supporto appena si nota questo pattern. Il livello di assistenza inspiratoria va rivalutato, con l’approccio appena visto, tutte le volte che si osservi un cambiamento del pattern respiratorio. Spesso vedremo che poco dopo l’inizio della ventilazione non-invasiva potremo ridurre il supporto inspiratorio mantenendo una bassa attività dei muscoli inspiratori.

Quando la condizione di insufficienza di pompa respiratoria o di elevato lavoro dei muscoli inspiratori tendono a risolversi, potremo tranquillamente abbassare il livello di pressione di supporto, senza più ricercare la passività del paziente. Viceversa, se non si dovesse arrivare a questo punto in tempi ragionevolmente brevi, dovremmo iniziare a pensare all’intubazione tracheale.

Se siamo d’accordo su quando detto finora, dobbiamo ammettere che la CPAP raramente può essere una tecnica ottimale di ventilazione non-invasiva.

Uno dei problemi a cui espone questo approccio è quello di avere qualche paziente che genera volumi correnti molto elevati, anche 10-12 ml/kg. Dobbiamo però essere lucidamente consapevoli che questo  volume corrente non è passivamente generato dal livello di supporto inspiratorio se abbiamo scelto il livello di pressione inspiratoria necessario e sufficiente a far riposare i muscoli respiratori. Infatti stiamo semplicemente aiutando il paziente a fare ciò che il suo cervello (=centri del respiro) comanda. Se dal cervello partono ordini potenzialmente dannosi (=generare un alto volume corrente), la soluzione non è mettere in difficoltà la pompa respiratoria per impedire che ciò accada. In questa situazione vale la pena valutare se il volume corrente tenderà a ridursi man mano che si metteno a riposo i muscoli respiratori. Se ciò non dovesse accadere, a noi la responsabilità di scegliere se accettare un volume corrente elevato o iniziare una ventilazione protettiva, che non potrà che essere invasiva e con sedazione/parlisi. Ma questo è un altro capitolo…

Per concludere, facciamo una breve sintesi dei punti principali:

  • all’inizio della della ventilazione non-invasiva il supporto inspiratorio dovrebbe essere regolato per rendere il più decrescente possibile il flusso inspiratorio; ne risulterà anche la riduzione della dispnea, della tachipnea e dell’utilizzo dei muscoli accessori della ventilazione;
  • dopo aver scaricato i muscoli respiratori da un eccessivo lavoro, si dovrebbe iniziare a ridurre il supporto, accettando un livello di attività respiratoria compatibile con le risorse muscolari;
  • qualora con questo approccio si ottenesse un volume corrente che si ritiene causa di possibile danno indotto dalla ventilazione, una soluzione normalmente ragionevole è passare alla ventilazione protettiva invasiva.

Un sorriso a tutti gli amici di ventilab.

 

Mar 262017
 

Spesso chi gestisce un paziente critico si pone la domanda se il paziente sia “pieno” o vuoto” per decidere se somministrare un carico di fluidi.

Oggi ragioniamo sull’indicazione all’espansione volemica in due pazienti, Mario e Pippo. Chi segue ventilab sa che che ogni tanto scomodiamo questi due personaggi per confrontare ipotetiche condizioni cliniche.  In questo caso le caratteristiche di Mario e Pippo non sono inventate, verso la fine del post scopriremo chi sono realmente.

Sia Mario che Pippo hanno una cinquantina di anni e sono ricoverati in Terapia Intensiva con uno shock settico. La fase di rianimazione iniziale è stata completata, ed ora entrambi sono in ritmo sinusale, hanno una pressione arteriosa stabile con norepinefrina, la cui velocità di infusione da alcune ore non necessita di esssere modificata. I due pazienti sono intubati, sedati, completamente passivi alla ventilazione controllata. Le loro principali variabili cardiorespiratorie sono presentate nella tabella 1.

Tabella 1
 MarioPippo
Volume corrente (ml/kg peso ideale)66
Pressione di plateau (cmH2O)2022
PEEP totale (cmH2O)89
PaO2/FIO2 (mmHg)231224
Pressione arteriosa sistolica/diastolica (media) (mmHg)
113/54 (73)115/55 (76)
Frequenza cardiaca (1/min)131115
Norepinefrina (mcg/kg/min)0.90.5
Pressione venosa centrale (mmHg)89
ScvO2 (%)7775
Lattati (mmol/l)3.42.9

Guardando questi dati, riteniamo sia opportuna un’ulteriore espansione volemica per Mario e/o Pippo?

In entrambi i pazienti la pressione arteriosa tutto sommato può essere considerata ragionevole, pressione venosa centrale e saturazione venosa centrale (ScvO2) hanno valori sostanzialmente normali (e quindi sono di scarsa utilità nella decisione). Sia Mario che Pippo sono tachicardici, come molti pazienti con shock settico, tuttavia la frequenza cardiaca di Mario è molto alta e probabilmente meritevole di un intervento: ma quale? Espansione volemica o rallentamento farmacologico? I lattati sono ancora elevati, ma (essendo l’unico valore a disposizione) non sappiamo se siano in riduzione, stabili o in aumento.

Per quanto sappiamo fino ad ora, il dubbio se somministrare un carico di fluidi rimane. Nei casi come quelli di Mario (soprattutto) e Pippo ritengo che conoscere la portata cardiaca possa aiutare a prendere una decisione ragionata.

Dovremme avere chiaro che la somministrazione di fluidi è un mezzo e non un fine. Il fine è infatti aumentare la portata cardiaca, l’espansione volemica è solo uno dei mezzi a nostra disposizione per raggiungere questo fine. La frequente domanda se il paziente sia “vuoto” o “pieno” (assolutamente proibita nella Terapia Intensiva in cui lavoro) è la domanda sbagliata, perchè ciò che conta non è il volume (a cui spesso ci riferiamo con termini vaghi ed immisurabili come “volemia” o “precarico”) ma il flusso del sangue, cioè la misurabilissima portata cardiaca, che determina il trasporto di ossigeno ai tessuti (assieme alla concentrazione di emoglobina ed alla saturazione del sangue arterioso).

La domanda sbagliata (quella proibita…) dovrebbe essere sostituita con altre 2 domande: 1) la portata cardiaca è sufficiente per le necessità metaboliche del paziente? 2) se la risposta alla domanda 1 è ““, abbiamo finito: non abbiamo bisogno di procedere all’espansione volemica; solo se la risposta alla domanda 1 è “no“, dobbiamo farci la seconda domanda: un carico di fluidi può essere efficace per aumentare la portata cardiaca? La risposta a queste domande presuppone necessariamente la conoscenza della portata cardiaca.

Facciomoci queste due domande con Mario e Pippo: 1) la portata cardiaca è sufficiente?

L’indice cardiaco (cioè la portata cardiaca divisa per la superficie corporea) di Mario è 3.9 l/min/m2, quello di Pippo 3.8 l/min/m2, che, data la loro corporatura, corrispondono rispettivamente ad una portata cardiaca di 7.6 e 7.4 l/min. Dalla fisiologia ricordiamo che la portata cardiaca normale di un adulto a riposo è circa 5 l/min, che per la superficie corporea di Mario e Pippo corrisponde ad un indice cardiaco di circa 2.6 l/min/m2. Possiamo quindi dire che Mario e Pippo hanno una portata cardiaca di circa il 50% superiore a quella “normale”

Figura 1

Sia Mario che Pippo sono quindi in “alta portata”, ma questa è associata ad un elevata frequenza cardiaca. Ci può venire il legittimo dubbio che in realtà il cuore abbia un basso stroke volume (gittata sistolica), cioè che “pompi” poco sangue per singolo battito cardiaco, e che quindi che l’elevata portata cardiaca sia il prodotto di una eiezione sistolica ridotta per una frequenza cardiaca elevata. In questo caso la somministrazione di fluidi (e quindi l’aumento del precarico) potrebbe mantenere la portata cardiaca grazie all’aumento dello stroke volume (figura 1) e la conseguente riduzione della frequenza cardiaca.

Calcoliamo quindi lo stroke volume dividendo la portata cardiaca per la frequenza cardiaca. Lo stroke volume di Mario risulta così essere di 58 ml e quello di Pippo 65 ml, valori non molto diversi dai 70 ml di un soggetto normale. Se il cuore non è dilatato, questi corrisponderebbero a frazioni di eiezione di almeno il 50%.

Abbiamo gli elementi per rispondere alle 2 domande che abbiamo formulato: 1) nè Mario nè Pippo hanno bisogno di aumentare la portata cardiaca avendone una che è già superiore a quella normale (soprattutto considerando che sono sedati). Sappiamo infatti da almeno 20 anni che nel paziente critico l’aumento della portata cardiaca a valori sovranormali non produce alcun vantaggio clinico; 2) visto che la risposta alla prima domanda è “no“, non mi pongo la seconda domanda

Non abbiamo quindi un buon motivo per somministrare in questa fase un ulteriore carico di fluidi, che apparirebbe non solo inutile ma addirittura potenzialmente pericoloso. Sono ormai numerosi i dati che supportano la convinzione che la somministrazione generosa di fluidi ed il bilancio idrico positivo si associano ad un incremento del rischio di morte.

In questa fase ciò che mi preoccupa maggiormente è la tachicardia di Mario, ed a questo punto vorrei rivalutare l’emodinamica dopo aver rallentato la frequenza cardiaca, ad esempio con un beta-bloccante. Non è detto peraltro che la riduzione della frequenza riduca la portata cardiaca: l’incremento del tempo di diastole che ne consegue allunga il periodo di riempimento del cuore e quindi aumenta il volume di fine diastole, che in fisiologia si definisce precarico ventricolare L’incremento di precarico potrebbe tradursi in un aumento dello stroke volume: quanto raffigurato in figura 1 potrebbe verificarsi senza necessità di una espansione volemica. Tutte questo sono ovviamente mere ipotesi, assolutamente da verificare con la misurazione della portata cardiaca dopo la riduzione della frequenza.

Sei d’accordo con questo approccio? In medicina (come nella vita) raramente esiste un chiaro confine tra il giusto e lo sbagliato, ma solo cose più o meno ragionevoli, quindi più opzioni possono essere plausibili. Se hai commenti, non esitare a scriverli alla fine del post.

A questo punto sveliamo chi sono veramente Mario e Pippo. Sono i pazienti di un articolo pubblicato questo mese su Critical Care Medicine (1). Nello studio è stata valutata la variazione di portata cardiaca dopo una espansione volemica (circa 500 ml di soluzione fisiologica in 10′). Sono stati definiti “fluid-responder” i pazienti che aumentavano l’indice cardiaco di almeno il 15%, chi non raggiungeva questo risultato era “non fluid-responder”. Il nostro Mario ha riassunto i valori medi, precedenti l’espansione volemica, dei pazienti “fluid-responder“, mentre Pippo è stato descritto con i valori medi dei soggetti “non fluid-responder“. Non entriamo nel dettaglio dello studio (meriterebbe un post tutto per sè), riflettiamo solo sulle sue premesse: per quale motivo i pazienti (che sono simili a Mario e Pippo) hanno ricevuto una espansione volemica? Dai dati presentati, l’aggiunta di un carico di fluidi sembra inappropriato. Nel testo dell’articolo si afferma diplomaticamente “che sono stati arruolati pazienti in cui il medico curante aveva programmato un carico di fluidi”…

Le conclusioni dello studio sono efficacemente riassunte nel suo titolo:” The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation.” Con questo bel titolo ad effetto, quello che inevitabilmente resta in mente è che la “pulse pressure variation” (vedi post del 28 maggio 2014) è utile per decidere se fare o meno espansione volemica.

Tuttavia, dopo tutto quello che abbiamo detto finora, il suo titolo avrebbe dovuto essere invece: “Attenzione! La pulse pressure variation induce a somministrare fluidi anche a chi non ne ha bisogno“. In altre parole, riuscire ad aumentare la portata cardiaca con un’espansione volemica non significa aver bisogno di farlo.  Questo la sanno benissimo anche gli autori degli studi sugli indici dinamici (di cui fanno parte pulse pressure variation e stroke volume variation), che in qualche angolo della discussione di solito non mancano di precisare che essere fluid-responder non significa aver bisogno di fluidi (per inciso, in questo articolo mi sembra si siano dimenticati di farlo…). Ma purtroppo questa fondamentale avvertenza scompare nel clamore di presunti grandi risultati, allo stesso modo in cui si perde la smentita di una notizia da prima pagina se avviene con un anonimo trafiletto nelle pagine interne…

Essere “fluid-responder” è una condizione di assoluta normalità: tutti noi siamo fisiologicamente “fluid-responder” e contemporaneamente abbiamo una normale portata cardiaca (siamo cioè nella parte ripida della relazione di Frank-Starling in figura 1). Ma non per questo pensiamo di doverci imbottire di fluidi, a meno che non ci si trovi a tavola con gli amici…

Possiamo quindi condividere che, nel paziente critico stabilizzato, l’ipotesi di somministrazione di ulteriori carichi di fluidi dovrebbe venire in mente dopo il riscontro di una bassa portata cardiaca associata a segni di ipoperfusione tissutale. Solo a questo punto ci possiamo porre il quesito se i fluidi siano una scelta efficace per aumentare la portata cardiaca, e quindi, solo a questo punto, la valutazione della pulse pressure variation potrebbe avere un senso.

Prima dei saluti, possiamo provare a tradurre clinicamente quello che abbiamo finora discusso:

  1. nella primissima fase di supporto cardiocircolatorio, reintegro volemico e vasocostrittori devono essere guidati dall’integrazione dei dati anamnestici, clinici e strumentali (anche ecografici); la somministrazione di vasocostrittori dovrebbe essere limitata al mantenimento di una sufficiente pressione arteriosa media (approssimativamente 70 mmHg, cioè circa 80-90/50-60 mmHg di pressione arteriosa);
  2. se, dopo il trattamento iniziale, permane la necessità di dosaggi medio-elevati di farmaci vasoattivi, può essere opportuno misurare la portata cardiaca, oltre a valutare i segni di ipoperfusione/ipossia tissutale (riduzione di diuresi e saturazione venosa centrale, aumento di lattati e tempo di refilling capillare,…)
    • se la portata cardiaca è normale/elevata (indice cardiaco > 3 l/min/m2, anche meno in assenza di segni di ipoperfusione  tissutale), ci si potrebbe limitare a modulare il vasocostrittore (ad esempio la noradrenalina) con l’obiettivo di mantenere una sufficiente pressione arteriosa (vedi punto 1); in questa fase l’espansione volemica di norma è inappropriata ed inopportuna, a meno che non vi sia uno stroke volume ridotto associato ad una frequenza cardiaca molto alta (ad esempio > 120/min);
    • se la portata cardiaca è ridotta, la misurazione degli indici dinamici (pulse pressure variation, passive leg raising, ecc….) può aiutare a decidere se procedere all’espansione volemica o all’utilizzo di inotropi, senza dimenticare ovviamente la valutazione clinica degli edemi, la variazione del peso corporeo e la rilevazione degli indici statici (PVC e/o pressione di occlusione dell’arteria polmonare, vedi post del 3 maggio 2015).

Un post non può certo esaurire un argomento così complesso, spero comunque di aver dato qualche utile spunto di riflessione.

Un sorriso 🙂 a tutti gli amici di ventilab.

Bibliografia.

1) Myatra SN et al. The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017; 45;415-21

PS: per un piccolo ringraziamento a Mario e Pippo, clicca qui.

Jan 292017
 

Il rapporto PaO2/FIO2 è normalmente utilizzato per definire la gravità di una malattia del parenchima polmonare, che come sappiamo genera ipossiemia. Nel caso della ARDS il rapporto PaO2/FIO2 è l’unica variabile che ne classifica la gravità. Il rapporto PaO2/FIO2 è indica la gravità della disfunzione respiratoria anche nel SOFA (Sequential Organ Failure Assessment), lo score di gravità delle disfunzioni d’organo più diffuso ed ora utilizzato anche per fare la diagnosi di sepsi. Nella pratica clinica il PaO2/FIO2 viene normalmente utilizzato per confrontare PaO2 ottenute con FIO2 differenti e per valutare l’evoluzione di una malattia polmonare o la sua risposta al trattamento.

L’uso del PaO2/FIO2 nella valutazione della gravità delle malattie polmonari si basa sul pressupposto che esso si modifichi al variare dello shunt, cioè della perfusione di aree polmonari non ventilate: nelle zone con addensamenti polmonari (quindi con ventilazione assente o molto ridotta), il sangue nei capillari polmonari continua a fluire senza però ossigenarsi, si crea shunt e la sua entità è stimata con la riduzione del PaO2/FIO2. Da notare che non vi sono basi fisiopatologiche nè dati clinici che supportino questo impiego del PaO2/FIO2. Vediamo ora alcuni casi che ci possono far riflettere.

Osserviamo l’evoluzione radiologica di una malattia parenchimale polmonare:

Figura 1

La radiografia A è quella basale, nella radiografia B, eseguita alcuni giorni dopo, si notano infiltrati parenchimali bilaterali. Il rapporto PaO2/FIO2 si riduce drasticamente dalla condizione A alla B. Tutto in linea con l’atteso.

Guardiamo ora 2 radiografie di un paziente ricoverato nella nostra Terapia Intensiva, eseguite a 48 ore di distanza l’una dall’altra:

Figura 2

Come ci aspettiamo sia la variazione del PaO2/FIO2?

Quando il paziente ha fatto la radiografia A della figura 2, era intubato ed aveva 73 mmHg di PaO2 con FIO2 1, quindi un rapporto PaO2/FIO2 di 73 mmHg. Quando è stata eseguita la radiografia B, la PaO2 era 68 mmHg con respirazione spontanea in ambiente (FIO2 0.21), quindi un rapporto PaO2/FIO2 di 324 mmHg. (vedi nota alla fine del post)

Come possiamo spiegare tutto questo? Nella condizione della figura 2A, il paziente aveva appena avuto una embolia polmonare. L’embolia polmonare è una malattia che colpisce esclusivamente il versante circolatorio dei polmoni, lasciando intatti gli spazi aerei del parenchima polmonare: in altre parole, il polmone è sano, solo la sua circolazione è alterata. Questo è talmente vero che un’improvvisa ipossiemia grave con normali reperti polmonari ci può far venire il sospetto proprio di un embolismo polmonare. Ma perchè l’embolia polmonare dà ipossiemia se il parenchima polmonare è sano? Nelle aree interessate dell’evento embolico si riduce la perfusione (per effetto dell’ostruzione determinata dall’embolo) mantenedosi una ventilazione normale (parenchima sano). Quindi il rapporto ventilazione/perfusione aumenta, condizione che dovrebbe determinare un aumento dell’ossigenazione secondo la fisiologia classica (area rossa nella figura 3).

Figura 3

L’ipossiemia infatti non si genera nelle aree ostruite dall’embolo, ma nelle restanti parti del polmone (figura 4). In queste infatti viene dirottato quasi tutto il sangue che il ventricolo destro riesce a pompare, generando un aumento della perfusione a parità di ventilazione, che non è modificata dall’embolismo. Quindi il rapporto ventilazione/perfusione si riduce, condizione che genera ipossiemia (area azzurra nella figura 3). Questa è una delle cause (anche se non l’unica) dell’ipossiemia nell’embolia polmonare.

Figura 4

In questo caso il rapporto PaO2/FIO2 si riduce nonostante il polmone sia sano… dimostrando di non essere una dimensione appropriata per descrivere la gravità una malattia del parenchima polmonare.

L’esempio dell’embolia polmonare ci fa capire quanto sia importante l’aspetto “perfusione” nella genesi dell’ipossiema (e quindi della riduzione del rapporto PaO2/FIO2). Siamo spesso portati a pensare all’ipossiemia come conseguenza delle sole alterazioni della “ventilazione”, dimenticando che il rapporto ventilazione/perfusione ha un numeratore ed un denominatore e che entrambi contribuiscono allo stesso modo alle variazioni del PaO2/FIO2. Questo è particolarmente vero in presenza di piccole zone di shunt, presenti nei pazienti in ventilazione meccanica anche con polmoni sani. Proviamo a pensare, ad esempio, a cosa potrebbe succedere durante una condizione di alta portata cardiaca: potrebbe esserci una riduzione del PaO2/FIO2 per effetto della riduzione del rapporto ventilazione/perfusione. In questa condizione l’applicazione di una PEEP potrebbe migliorare il PaO2/FIO2 sia aumentando il numeratore del rapporto ventilazione/perfusione (per “ventilazione” dobbiamo intendere infatti il volume delle aree ventilate, vedi il post del 21/10/2012), sia riducendo il denominatore, cioè la portata cardiaca.

Vediamo ora cosa succede al PaO2/FIO2 quando ci aspettiamo che resti costante, cioè quando il rapporto ventilazione/perfusione è costante. Immaginiamo quindi un soggetto con uno shunt del 20%. Questo significa che c’è una riduzione del rapporto ventilazione/perfusione che corrisponde al passaggio del 20% della portata cardiaca in zone del polmone non ventilate. Immaginiamo di ventilare questo soggetto con FIO2 0.5. Cosa accade al PaO2/FIO2 quando si modifica la differenza tra il contenuto di O2 nel sangue arterioso ed il contenuto di O2 nel sangue venoso misto (AVDO2)? Ricordiamo che la AVDO2 aumenta quando si riduce la portata cardiaca o l’emoglobina (cioè il trasporto di ossigeno) oppure aumenta il consumo di ossigeno; la AVDO2 invece si riduce nelle situazioni opposte. Uno studio recentissimo (1) ci mostra che in questo ipotetico soggetto, il PaO2/FIO2 è tutt’altro che costante, variando tra circa 140 e 400 mmHg al variare della AVDO2 tra 1.5 e 6 ml O2/dL (figura 5, frecce tratteggiate):

Figura 5

Da notare che nell’embolia polmonare dell’esempio precedente, si riduce la portata cardiaca ed aumenta quindi la AVDO2: questo è un altro fattore extrapolmonare che contribuisce quindi all’ipossiemia ed alla riduzione del PaO2/FIO2.

Nella figura 5 vediamo anche un’altra importante caratteristica del PaO2/FIO2: a parità di tutti gli altri fattori (inclusa la AVDO2), varia al variare della FIO2. Seguiamo, ad esempio, la linea verde, che corrisponde alla variazione del PaO2/FIO2 al variare della FIO2 quando AVDO2 è costante a 3.5 mL O2/dL. Il PaO2/FIO2 ha un minimo di circa 210 mmHg a FIO2 0.5 ed un massimo a circa 390 mmHg a FIO2 1.

Possiamo facilmente riassumere tutto quello che abbiamo finora detto in pochi punti:

  1. non esistono un razionale fisiologico dati sperimentali per utilizzare il PaO2/FIO2 come misura di malattia o disfunzione polmonare;
  2. il PaO2/FIO2 è modificato da molti fattori extrapolmonari (cioè non inerenti al parenchima polmonare):
    1. dalle alterazioni della quantità e della distribuzione della perfusione polmonare;
    2. dalle variazioni di trasporto e consumo di ossigeno (cioè della AVDO2);
    3. dalle variazioni di FIO2.

In altre parole, il PaO2/FIO2 si può modificare sia quando il polmone è ammalato sia quando è sano. Perchè allora si usa il PaO2/FIO2 nella pratica clinica per valutare la gravità di malattia e disfunzione polmonare? La spiegazione è una sola: perchè è facile da calcolare, dimenticandone però tutti i limiti. Ormai, purtroppo, la medicina si sta riducendo sempre di più alla semplificazione ed alla banalizzazione, facendo perdere di vista ai medici la complessità che caratterizza la fisiologia e la malattia. Questa è la strada che molti ci vogliono far percorrere, ma se vogliamo possiamo continuare a cercare di capire ed approfondire piuttosto che rassegnarci alla superficialità degli slogan (magari presentati sotto forma di linee guida).

Dobbiamo smettere di usare il PaO2/FIO2 nella nostra pratica clinica? Penso proprio di no, io lo utilizzo quotidianamente. Dobbiamo solo conoscerlo bene, per sapere quando credergli e quando invece non farci ingannare.

Un sorriso a tutti gli amici di ventilab.

Bibliografia.

  1. Feiner JR et al. Evaluating pulmonary function: an assessment of PaO2/FIO2. Crit Care Med 2017; 45:e40-e48

Nota: La FIO2 non si esprime in percentuale, è infatti la concentrazione frazionale, come indica proprio la lettera “F” di FIO2. FIO2 significa quindi: “frazione inspiratoria di ossigeno” ed è un numero che può teoricamente variare da 0 a 1. FIO2 0.21 è quella dell’aria atmosferica, 1 della respirazione con ossigeno puro. Non ha importanza se su alcuni ventilatori meccanici ed alcune cartelle cliniche elettroniche la FIO2 ha come unità di misura il %: sono sbagliati! Così come la lettera “I” dovrebbe essere maiuscola (ancor meglio se di dimensione ridotta, perchè simbolo qualificante), come la convenzione vuole per indicare la fase inspiratoria. E’ un po’ pedestre leggere “FiO2 40%”, due errori in poche lettere… .

Dec 102016
 

alan_ford

Recentemente, mentre ero l’anestesista della sala operatoria di neurochirurgia (l’amore per l’anestesia non finisce mai…), arriva in urgenza Ivan, un paziente con trauma cranico e toracico. Deve evacuare in emergenza un ematoma sottodurale che determina un marcato effetto massa. Il trauma toracico, da parte sua, ha causato una ARDS lieve. Bisogna quindi rispettare i fondamenti della ventilazione protettiva ed al contempo mantenere il controllo della PaCO2. Ho scelto una ventilazione a volume controllato con un volume corrente di 6-7 ml/kg di peso ideale (Ivan mi sembra alto circa 180 cm) ed ho inserito una breve pausa inspiratoria su ogni atto respiratorio. La frequenza respiratoria è stata impostata a 25/min, tenendo conto della necessità di eliminare CO2 in una sindrome (l’ARDS) con un elevato spazio morto (una successiva emogasanalisi arteriosa mostrerà infatti una PaCO2 di 35 mmHg). E’ stata poi scelta una diplomatica PEEP di 5 cmH2O, un compromesso tra ipossiema moderata, ipertensione endocranica ed ipotensione trattata con norepinefrina ed espansione volemica.

Questa il risultato al monitoraggio grafico:

autoPEEP_frequenza _respiratoria_25

Figura 1

E’ evidente chiaramente sulla traccia di flusso (quella verde in figura 1) che il flusso espiratorio viene bruscamente troncato a fine espirazione, segno di autoPEEP (o PEEP intrinseca, che dir si voglia). Ma quanti cmH2O di PEEP intrinseca ha Ivan? In Terapia Intensiva questa domanda avrebbe una facile risposta con la manovra di occlusione espiratoria delle vie aeree (vedi, ad esempio, il post del 18/10/2015). Purtroppo quasi tutti i ventilatori per anestesia non hanno (inspiegabilmente) questa possibilità, ma per fortuna possiamo farci dare la risposta da un corretto uso dei principi fondamentali della meccanica respiratoria.

Una breve premessa fisiologica. L’equazione di moto dell’apparato respiratorio ci dice che la pressione delle vie aeree è uguale alla somma della PEEP totale, della pressione elastica (Pel, prodotto di volume ed elastanza) e pressione resistiva (Pres, prodotto di flusso e resistenza) (figura 2) (vedi anche post del 24/06/2011):

equazione_di_moto

Figura 2

La PEEP totale è la pressione di fine espirazione presente nell’apparato respiratorio. Essa comprende la PEEP (la pressione positiva di fine espirazione nel ventilatore) e, quando presente, la PEEP generatasi autonomamente nell’apparato respiratorio e definita come autoPEEP. Ne deriva quindi che PEEP totale = PEEP + autoPEEP.

La pressione di picco si misura quando è stato erogato tutto il volume corrente ed è ancora presente flusso: è quindi la somma di PEEP totale, pressione resistiva e pressione elastica a fine inspirazione. La pressione di plateau, che viene rilevata quando è stato erogato il volume corrente ma il flusso è cessato, è invece la somma solamente di PEEP totale e pressione elastica a fine inspirazione.

Ora immaginiamo un paziente con autoPEEP: se  si potesse azzerare istantaneamente l’autoPEEP (tra poco vedremo come fare), la pressione di picco e la pressione di plateau si ridurrebbero della stessa entità dell’autoPEEP che abbiamo eliminato. Quindi l’entità della diminuzione delle pressioni di picco e plateau è una stima della precedente autoPEEP. Può essere facile capire questo effetto anche osservando la figura 2: se si toglie il “gradino” dell’autoPEEP, tutte le pressioni sopra l’autoPEEP (cioè pressione di picco e la pressione di plateau) si abbassano dello stesso valore del “gradino” che è stato tolto. Questo è vero ovviamente se nel frattempo restano costanti volume corrente, flusso inspiratorio, elastanza e resistenze, ovvero tutti gli altri determinanti dell’equazione di moto.

Chiaro tutto questo, il gioco è fatto. Per eliminare l’autoPEEP è sufficiente allungare il tempo espiratorio (per pochi atti respiratori) fino a vedere il flusso espiratorio che tocca la linea dello zero prima dell’inizio della inspirazione successiva. Questo in pratica può essere fatto molto semplicemente riducendo drasticamente la frequenza respiratoria e mantenendo il tempo inspiratorio costante.

Ora sappiamo tutto quel che serve per misurare la PEEP intrinseca di Ivan. Di solito con una frequenza respiratoria di 10/min si elimina l’autoPEEP di quasi tutti i pazienti, quindi vediamo nella figura 3 cosa succede al passaggio da 25/min a 10/min di frequenza respiratoria:

Figura 3

Figura 3

Nella figura si possono vedere gli atti respiratori 1-3 registrati con la frequenza respiratoria di 25/min (come in figura 2) ed i primi tre atti successivi alla riduzione della frequenza respiratoria a 10/min (dal 4 al 6). Si vede chiaramente che il passaggio a 10/min di frequenza respiratoria elimina l’autoPEEP (espirazione completa) e le pressioni di picco (PIP) e plateau (Pplat) rilevate dal ventilatore sono ridotte entrambe di 3 cmH2O. Ne consegue che l’autoPEEP era di 3 cmH2O: ecco come l’abbiamo misurata in pochi istanti senza fare alcuna occlusione. Nella figura 3 si apprezza bene anche visivamente la differenza di pressione tra un respiro senza autoPEEP (respiro 6) ed uno con autoPEEP (respiro 1). Come di norma accade, anche in questo caso sono stati sufficienti 3 respiri per stabilizzare i valori di pressione di picco e plateau dopo l’eliminazione dell’autoPEEP. Quindi la riduzione di frequenza respiratoria è sufficiente che sia mantenuta per tempi veramente brevi, di solito poco più del tempo necessario per cambiare le impostazioni e poi ripristinarle.

A questo punto possiamo tornare a 25/min di frequenza respiratoria sapendo che con 5 cmH2O di PEEP abbiamo 8 cmH2O di PEEP totale.

Il ventilatore utilizzato con Ivan richiede l’impostazione diretta del tempo inspiratorio, che quindi viene mantenuto costante (e con esso il flusso inspiratorio) durante i cambi di frequenza respiratoria. Ovviamente questo è possibile solo perchè contemporaneamente il ventilatore ha opportunamente adeguato il rapporto I:E. Nei ventilatori che ci fanno impostare il rapporto I:E, si deve regolare anche quest’ultimo per mantenere costante il tempo inspiratorio quando si modifica la frequenza respiratoria. Vediamo ora il caso di un paziente ricoverato in Terapia Intensiva proprio con un ventilatore che di default tiene costante il rapporto I:E.

Figura 4

Figura 4

Anche questo paziente presenta un evidente segno di autoPEEP, cioè il flusso espiratorio troncato dall’inizio dell’inspirazione successiva (traccia verde). Utilizzando un ventilatore da Terapia Intensiva, non abbiamo difficoltà a misurare la PEEP totale con la manovra di occlusione delle vie aeree a fine espirazione, come vediamo nella figura 5.

Figura 5

Figura 5

Il valore di PEEP misurato durante l’occlusione (9 cmH2O, nel riquadro rosso) misura la PEEP totale, mentre la PEEP impostata è 5 cmH2O, come evidenziato nel pannello grigio. Ne consegue che la PEEP intrinseca è 4 cmH2O. Verifichiamo se funziona il metodo descritto sopra confrontandolo con la tradizionale misurazione della PEEP intrinseca.

Riduciamo la frequenza respiratoria a 10/min ed portiamo il rapporto I:E da 1:1.4 a 1:5 (se fai due conti vedrai che il tempo inspiratorio resta di 1 secondo. Se hai dei dubbi, ne possiamo discutere nei commenti). E modifichiamo la durata della pausa dal 8% al 3% del ciclo respiratorio (per avere una pausa simile, anche in questo caso possiamo discutere i dubbi nei commenti). E’ un po’ più cervellotico, vero? Questo è il motivo per cui preferisco l’impostazione diretta del tempo inspiratorio…però ce la si può fare. Vediamo il risultato di questa nuova impostazione nella figura 6:

Figura 6

Figura 6

Il flusso espiratorio si azzera a fine espirazione ed abbiamo quindi eliminato l’autoPEEP. Vediamo che la pressione di plateau si riduce effettivamente di 4 cmH2O (da 25 a 21 cmH2O), cioè della stessa entità dell’autoPEEP che abbiamo misurato in precedenza. La stessa cosa però non accade alla pressione di picco, che diminuisce solamente di 1 cmH2O. Perchè?

Se guardiamo bene, si è modificata la rampa, cioè la pendenza con cui cresce il flusso inspiratorio (accade nei ventilatori che la impostano come percentuale, bisognerebbe opportunamente modificare anche questo parametro, una ulteriore complicazione…) e questo ha inevitabilmente modificato il flusso inspiratorio costante nonostante il mantenimento dello stesso tempo inspiratorio. Poco male, però. Questa imprecisione ci consente di verificare che la variazione di pressione di plateau rimane una stima affidabile dell’autoPEEP anche quando si modifica il flusso inspiratorio. L’unica attenzione da prestare è che la durata della pausa di fine inspirazione rimanga sostanzialmente costante.

Tutto ciò che abbiamo visto fino ad ora, oltre a fornire un metodo alternativo semplice per la misurazione dell’autoPEEP (che in qualche caso potrebbe anche essere addirittura preferibile a quello tradizionale), penso sia stato anche un utile ripasso dell’equazione di moto, un fondamento ineludibile per la comprensione della ventilazione meccanica.

Riassumiamo i principali concetti visti oggi:

  • la riduzione della frequenza respiratoria consente (solitamente) l’eliminazione quasi immediata dell’autoPEEP (spesso entro 2-3 atti respiratori);
  • quando si elimina l’autoPEEP riducendo la frequenza respiratoria, l’entità della riduzione della pressione di picco è uguale all’autoPEEP precedentemente presente se è rimasto inalterato il flusso inpiratorio (cioè se non si è modificata la durata in secondi del tempo inspiratorio, della pausa e della rampa);
  • la riduzione della pressione di plateau (quella ottenuta con una breve pausa inspiratoria) associata all’eliminazione della PEEP intrinseca è pari alla PEEP intrinseca precedentemente presente anche se si modifica il flusso inspiratorio (cioè la durata in secondi di tempo inspiratorio e rampa); è però raccomandabile che la durata della pausa (in secondi) rimanga grossolanamente costante.

Come sempre, un sorriso a tutti gli amici di ventilab. E, se non ci sentiamo prima, BUON NATALE!