Feb 252017
 

Sora Lella la  conosciamo tutti, resa famosa da innumerevoli film di successo e dalla sua passione culinaria.  Non conosco il Body Mass Index (BMI) della sora Lella: il Body Mass Index è quell’indicatore che ci permette di categorizzare le persone obese e si calcola dividendo il peso per il quadrato dell’altezza. Il CDC di Atlanta definisce obesa una persona con un BMI ≥ 30, distinguendo tre classi (30 – 35; 35 – 40; ≥40). Se sora Lella fosse alta 160 cm per 110 Kg di peso avrebbe un BMI di 42. Qualunque fosse il BMI di sora Lella era sicuramente direttamente proporzionale alla sua boccaccesca simpatia.

Fig. 1

Se dovessimo sottoporre sora Lella a ventilazione meccanica la prima cosa di cui dobbiamo tenere conto è che, come mostrato nella Figura 1, la sua Capacità Funzionale Residua è nettamente ridotta a meno del 50% rispetto ad una persona con Body Mass Index di 20. Conseguentemente anche il Volume di Riserva Espiratorio (VRE) è gravemente ridotto. Come possiamo vedere nella figura 2 la Capacità Funzionale Residua è il volume che rimane nell’apparato respiratorio alla fine di una espirazione normale: se l’espirazione prosegue in modo massimale viene espirato il Volume di Riserva Espiratorio (VRE) portando l’apparato respiratorio al Volume Residuo (che è il volume che non possiamo in nessun caso espirare). L’apparato respiratorio dell’obeso è caratterizzato da una riduzione della Capacità Funzionale Residua. 

Fig. 2

Come si vede nella Figura 1 la Capacità Funzionale Residua ed il Volume di Riserva Espiratorio si riducono esponenzialmente al crescere del BMI[2].

 

 

 

Fig. 3

 

Fin dagli anni 60 sono stati pubblicati studi in cui veniva misurata la Compliance dell’apparato respiratorio (CRS) di soggetti obesi in respiro spontaneo: questi hanno riportato una ridotta Compliance del chest wall (Ccw) smentiti da altri su soggetti in respiro spontaneo e in anestesia. Ancora negli anni 90 Pelosi[3] riferisce, in soggetti obesi anestetizzati e dopo chirurgia addominale, una riduzione della Compliance del polmone (CL) e del chest wall.

 

 

Ho trovato perciò interessante un lavoro pubblicato qualche anno fa (2010) dal gruppo di Loring e Talmor che riporto in bibliografia[1]. La loro ipotesi è che i gravi obesi hanno una Pressione Pleurica (Ppl) più alta dei soggetti normali e che la Pressione esofagea è un utile indicatore della Pressione Pleurica. Studiano 50 soggetti con BMI > 38, confrontati con 10 soggetti normali, anestetizzati e paralizzati in posizione supina prima dell’inizio della chirurgia. Lo studio è piuttosto complesso (oltre ad utilizzare la misura diretta della Pressione esofagea utilizzano una misura dalla quale inferire la Pressione Pleurica) e non è mia intenzione analizzarlo in questa sede: voglio però condividere quello che, credo, di aver appreso dagli Autori. I ricercatori hanno anche misurato la Pressione Gastrica (PGa) in 30 soggetti obesi rinvenendo in 23 (= 76%) una PGa ≥ 10 cmH20. Pressione Gastrica e Pressione esofagea hanno tra loro una buona correlazione e la Pressione esofagea ha mostrato mediamente valori più alti: questo perché l’esofago, rispetto al fondo gastrico, è più vicino al piano del letto e subisce il peso del mediastino, inoltre la variabile tensione del diaframma rilasciato può modificare le pressioni in gioco. Inoltre dal BMI non è possibile predire il valore di Pressione esofagea. Il dato che ho fatto mio è che, in questi soggetti obesi, la CRS è ridotta per riduzione della CL mentre la Ccw è normale.

Tab. 1

Il fatto che la Ccw è normale nei soggetti obesi è argomentata dagli Autori con il “mass loading” (potremmo definirlo come il “peso che grava”) in alternativa allo “stiffening of the chest” tipico del lavoro elastico. Nell’obeso non c’è quindi un chest wall più rigido ma c’è semmai “più peso” sul (intorno al) polmone. E’ il grasso variamente ed imprevedibilmente disposto tra i visceri (nel mediastino dove pesa, letteralmente, sulla misura della Pressione esofagea e compete con il volume polmonare, tra i visceri sottodiaframmatici dove contribuisce al volume ed al peso che grava sul diaframma), sulla e nella parete toracica, dove pesa come colonna idrostatica rispetto all’esofago (dove misuriamo la Pressione esofagea) e sulle porzioni declivi del polmone. Utilizzando la Pressione esofagea come stima della Pressione Pleurica dobbiamo tenere conto che, in posizione supina, la Pressione esofagea è probabilmente più alta della Pressione Pleurica alla stessa altezza e che la Pressione Pleurica, in posizione supina, passa da negativa a meno negativa (o positiva) andando dalle regioni anteriori a quelle più prossime al piano del letto. L’assenza di correlazione tra BMI e Pes esprime la personale distribuzione del grasso corporeo (quindi anche nel mediastino, visceri addominali, strutture di parete e sottocute) e la variabile dislocazione del diaframma in torace. Nell’obeso supino la Pressione esofagea esprime quella pressione che circonda parte del polmone soprattutto a fine espirazione correlata ad un ridotto volume di fine espirazione (riduzione del volume aerato).

Questi sono i meccanismi che portano alla riduzione del volume polmonare, nel soggetto obeso anestetizzato, supino. La compliance esprime, come sempre, il volume aerato del polmone: nel caso della sora Lella il peso che grava intorno agli alveoli determina la chiusura delle porzioni più declivi e quelle più prossime al diaframma, porzioni teoricamente riapribili completamente.

Nel caso del paziente obeso da sottoporre ad anestesia le cose si complicano quando vengono ad aggiungersi fattori che possono modificare, in senso favorevole o sfavorevole, questa condizione: per esempio la possibilità della posizione seduta o la chirurgia open come condizioni favorevoli, di contro la necessità di Trendelenburg o lo pneumoperitoneo. Ma questo sarà oggetto di un prossimo post.

In pratica quale può essere un approccio ragionevole, se dovessimo anestetizzare sora Lella per un intervento chirurgico e sottoporla a ventilazione? Dobbiamo innanzitutto essere consapevoli, come emerso da studi epidemiologici, che i pazienti obesi sono particolarmente esposti all’utilizzo di volumi correnti maggiori di quelli fisiologici in rapporto alla loro altezza. L’impiego della PEEP resta il cardine del “trattamento”. Il valore di PEEP più indicato può essere individuato (se non possiamo fare l’occlusione di fine inspirazione) impostando una ventilazione a volume controllato con una pausa inspiratoria, frequenza fisiologica, verifica che il flusso espiratorio raggiunga il valore zero prima dell’inspirazione successiva, calcolando la Compliance dell’apparato respiratorio [ CRS  = volume inspiratorio / (Ppausa – PEEP impostata)], magari con PEEP incrementali (http://www.ventilab.org/2013/10/06/la-peep-nella-ards-tabelline-o-compliance/) compatibilmente con le condizioni cardiocircolatorie ed eventualmente la presenza di monitoraggio cruento della Pressione Arteriosa. Sceglieremo, a parità di Volume Corrente, il livello di PEEP associato alla minor differenza di pressione tra la pressione di plateau e la PEEP (cioè la driving pressure). In casi particolari potrebbe essere eventualmente utile la misurazione della pressione esofagea per stimare lo stress tidal e di fine espirazione.

 

In conclusione:

pazienti con Body Mass Index elevati, in posizione supina ed anestetizzati, sono caratterizzati da una riduzione esponenziale della Capacità Funzionale Residua, ovvero da un ridotto volume polmonare di fine espirazione.

Questa riduzione della Capacità Funzionale Residua può essere corretta utilizzando una PEEP appropriata valutandola attraverso la Driving Pressure; ovvero, per i diversi livelli di PEEP sperimentati a parità di volume corrente, utilizzando quella che comporta la migliore compliance dell’apparato respiratorio.

Un caro saluto a tutti i lettori di Ventilab.

 

Bibliografia

 

  1. Behazin N et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol 108: 212–218, 2010.
  2. Pelosi P et al.The Effects of Body Mass on lung Volumes, Respiratory Mechanics, and Gas Exchange During General Anesthesia. Anesth Analg 1998;87:654-60.
  3. Pelosi P et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol (1985). 1997 Mar;82(3):811-8.
  4. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes?  Am J Respir Crit Care Med 1998;153:3-11.
Dec 102016
 

alan_ford

Recentemente, mentre ero l’anestesista della sala operatoria di neurochirurgia (l’amore per l’anestesia non finisce mai…), arriva in urgenza Ivan, un paziente con trauma cranico e toracico. Deve evacuare in emergenza un ematoma sottodurale che determina un marcato effetto massa. Il trauma toracico, da parte sua, ha causato una ARDS lieve. Bisogna quindi rispettare i fondamenti della ventilazione protettiva ed al contempo mantenere il controllo della PaCO2. Ho scelto una ventilazione a volume controllato con un volume corrente di 6-7 ml/kg di peso ideale (Ivan mi sembra alto circa 180 cm) ed ho inserito una breve pausa inspiratoria su ogni atto respiratorio. La frequenza respiratoria è stata impostata a 25/min, tenendo conto della necessità di eliminare CO2 in una sindrome (l’ARDS) con un elevato spazio morto (una successiva emogasanalisi arteriosa mostrerà infatti una PaCO2 di 35 mmHg). E’ stata poi scelta una diplomatica PEEP di 5 cmH2O, un compromesso tra ipossiema moderata, ipertensione endocranica ed ipotensione trattata con norepinefrina ed espansione volemica.

Questa il risultato al monitoraggio grafico:

autoPEEP_frequenza _respiratoria_25

Figura 1

E’ evidente chiaramente sulla traccia di flusso (quella verde in figura 1) che il flusso espiratorio viene bruscamente troncato a fine espirazione, segno di autoPEEP (o PEEP intrinseca, che dir si voglia). Ma quanti cmH2O di PEEP intrinseca ha Ivan? In Terapia Intensiva questa domanda avrebbe una facile risposta con la manovra di occlusione espiratoria delle vie aeree (vedi, ad esempio, il post del 18/10/2015). Purtroppo quasi tutti i ventilatori per anestesia non hanno (inspiegabilmente) questa possibilità, ma per fortuna possiamo farci dare la risposta da un corretto uso dei principi fondamentali della meccanica respiratoria.

Una breve premessa fisiologica. L’equazione di moto dell’apparato respiratorio ci dice che la pressione delle vie aeree è uguale alla somma della PEEP totale, della pressione elastica (Pel, prodotto di volume ed elastanza) e pressione resistiva (Pres, prodotto di flusso e resistenza) (figura 2) (vedi anche post del 24/06/2011):

equazione_di_moto

Figura 2

La PEEP totale è la pressione di fine espirazione presente nell’apparato respiratorio. Essa comprende la PEEP (la pressione positiva di fine espirazione nel ventilatore) e, quando presente, la PEEP generatasi autonomamente nell’apparato respiratorio e definita come autoPEEP. Ne deriva quindi che PEEP totale = PEEP + autoPEEP.

La pressione di picco si misura quando è stato erogato tutto il volume corrente ed è ancora presente flusso: è quindi la somma di PEEP totale, pressione resistiva e pressione elastica a fine inspirazione. La pressione di plateau, che viene rilevata quando è stato erogato il volume corrente ma il flusso è cessato, è invece la somma solamente di PEEP totale e pressione elastica a fine inspirazione.

Ora immaginiamo un paziente con autoPEEP: se  si potesse azzerare istantaneamente l’autoPEEP (tra poco vedremo come fare), la pressione di picco e la pressione di plateau si ridurrebbero della stessa entità dell’autoPEEP che abbiamo eliminato. Quindi l’entità della diminuzione delle pressioni di picco e plateau è una stima della precedente autoPEEP. Può essere facile capire questo effetto anche osservando la figura 2: se si toglie il “gradino” dell’autoPEEP, tutte le pressioni sopra l’autoPEEP (cioè pressione di picco e la pressione di plateau) si abbassano dello stesso valore del “gradino” che è stato tolto. Questo è vero ovviamente se nel frattempo restano costanti volume corrente, flusso inspiratorio, elastanza e resistenze, ovvero tutti gli altri determinanti dell’equazione di moto.

Chiaro tutto questo, il gioco è fatto. Per eliminare l’autoPEEP è sufficiente allungare il tempo espiratorio (per pochi atti respiratori) fino a vedere il flusso espiratorio che tocca la linea dello zero prima dell’inizio della inspirazione successiva. Questo in pratica può essere fatto molto semplicemente riducendo drasticamente la frequenza respiratoria e mantenendo il tempo inspiratorio costante.

Ora sappiamo tutto quel che serve per misurare la PEEP intrinseca di Ivan. Di solito con una frequenza respiratoria di 10/min si elimina l’autoPEEP di quasi tutti i pazienti, quindi vediamo nella figura 3 cosa succede al passaggio da 25/min a 10/min di frequenza respiratoria:

Figura 3

Figura 3

Nella figura si possono vedere gli atti respiratori 1-3 registrati con la frequenza respiratoria di 25/min (come in figura 2) ed i primi tre atti successivi alla riduzione della frequenza respiratoria a 10/min (dal 4 al 6). Si vede chiaramente che il passaggio a 10/min di frequenza respiratoria elimina l’autoPEEP (espirazione completa) e le pressioni di picco (PIP) e plateau (Pplat) rilevate dal ventilatore sono ridotte entrambe di 3 cmH2O. Ne consegue che l’autoPEEP era di 3 cmH2O: ecco come l’abbiamo misurata in pochi istanti senza fare alcuna occlusione. Nella figura 3 si apprezza bene anche visivamente la differenza di pressione tra un respiro senza autoPEEP (respiro 6) ed uno con autoPEEP (respiro 1). Come di norma accade, anche in questo caso sono stati sufficienti 3 respiri per stabilizzare i valori di pressione di picco e plateau dopo l’eliminazione dell’autoPEEP. Quindi la riduzione di frequenza respiratoria è sufficiente che sia mantenuta per tempi veramente brevi, di solito poco più del tempo necessario per cambiare le impostazioni e poi ripristinarle.

A questo punto possiamo tornare a 25/min di frequenza respiratoria sapendo che con 5 cmH2O di PEEP abbiamo 8 cmH2O di PEEP totale.

Il ventilatore utilizzato con Ivan richiede l’impostazione diretta del tempo inspiratorio, che quindi viene mantenuto costante (e con esso il flusso inspiratorio) durante i cambi di frequenza respiratoria. Ovviamente questo è possibile solo perchè contemporaneamente il ventilatore ha opportunamente adeguato il rapporto I:E. Nei ventilatori che ci fanno impostare il rapporto I:E, si deve regolare anche quest’ultimo per mantenere costante il tempo inspiratorio quando si modifica la frequenza respiratoria. Vediamo ora il caso di un paziente ricoverato in Terapia Intensiva proprio con un ventilatore che di default tiene costante il rapporto I:E.

Figura 4

Figura 4

Anche questo paziente presenta un evidente segno di autoPEEP, cioè il flusso espiratorio troncato dall’inizio dell’inspirazione successiva (traccia verde). Utilizzando un ventilatore da Terapia Intensiva, non abbiamo difficoltà a misurare la PEEP totale con la manovra di occlusione delle vie aeree a fine espirazione, come vediamo nella figura 5.

Figura 5

Figura 5

Il valore di PEEP misurato durante l’occlusione (9 cmH2O, nel riquadro rosso) misura la PEEP totale, mentre la PEEP impostata è 5 cmH2O, come evidenziato nel pannello grigio. Ne consegue che la PEEP intrinseca è 4 cmH2O. Verifichiamo se funziona il metodo descritto sopra confrontandolo con la tradizionale misurazione della PEEP intrinseca.

Riduciamo la frequenza respiratoria a 10/min ed portiamo il rapporto I:E da 1:1.4 a 1:5 (se fai due conti vedrai che il tempo inspiratorio resta di 1 secondo. Se hai dei dubbi, ne possiamo discutere nei commenti). E modifichiamo la durata della pausa dal 8% al 3% del ciclo respiratorio (per avere una pausa simile, anche in questo caso possiamo discutere i dubbi nei commenti). E’ un po’ più cervellotico, vero? Questo è il motivo per cui preferisco l’impostazione diretta del tempo inspiratorio…però ce la si può fare. Vediamo il risultato di questa nuova impostazione nella figura 6:

Figura 6

Figura 6

Il flusso espiratorio si azzera a fine espirazione ed abbiamo quindi eliminato l’autoPEEP. Vediamo che la pressione di plateau si riduce effettivamente di 4 cmH2O (da 25 a 21 cmH2O), cioè della stessa entità dell’autoPEEP che abbiamo misurato in precedenza. La stessa cosa però non accade alla pressione di picco, che diminuisce solamente di 1 cmH2O. Perchè?

Se guardiamo bene, si è modificata la rampa, cioè la pendenza con cui cresce il flusso inspiratorio (accade nei ventilatori che la impostano come percentuale, bisognerebbe opportunamente modificare anche questo parametro, una ulteriore complicazione…) e questo ha inevitabilmente modificato il flusso inspiratorio costante nonostante il mantenimento dello stesso tempo inspiratorio. Poco male, però. Questa imprecisione ci consente di verificare che la variazione di pressione di plateau rimane una stima affidabile dell’autoPEEP anche quando si modifica il flusso inspiratorio. L’unica attenzione da prestare è che la durata della pausa di fine inspirazione rimanga sostanzialmente costante.

Tutto ciò che abbiamo visto fino ad ora, oltre a fornire un metodo alternativo semplice per la misurazione dell’autoPEEP (che in qualche caso potrebbe anche essere addirittura preferibile a quello tradizionale), penso sia stato anche un utile ripasso dell’equazione di moto, un fondamento ineludibile per la comprensione della ventilazione meccanica.

Riassumiamo i principali concetti visti oggi:

  • la riduzione della frequenza respiratoria consente (solitamente) l’eliminazione quasi immediata dell’autoPEEP (spesso entro 2-3 atti respiratori);
  • quando si elimina l’autoPEEP riducendo la frequenza respiratoria, l’entità della riduzione della pressione di picco è uguale all’autoPEEP precedentemente presente se è rimasto inalterato il flusso inpiratorio (cioè se non si è modificata la durata in secondi del tempo inspiratorio, della pausa e della rampa);
  • la riduzione della pressione di plateau (quella ottenuta con una breve pausa inspiratoria) associata all’eliminazione della PEEP intrinseca è pari alla PEEP intrinseca precedentemente presente anche se si modifica il flusso inspiratorio (cioè la durata in secondi di tempo inspiratorio e rampa); è però raccomandabile che la durata della pausa (in secondi) rimanga grossolanamente costante.

Come sempre, un sorriso a tutti gli amici di ventilab. E, se non ci sentiamo prima, BUON NATALE!

ONE LUNG VENTILATION

 Posted by on 16/05/2015  8 Responses »
May 162015
 

La ventilazione monopolmonare (“one lung ventilation” o OLV) è parte integrante delle tecniche anestesiologiche nella chirurgia del polmone e dell’esofago toracico nelle quali, come nella maggior parte della chirurgia toracoscopica, sono richiesti il decubito laterale del paziente, l’apertura del torace ed il collasso del polmone “superiore” (“non dependent”) per consentire l’atto chirurgico. L’ipossia è la problematica Continue reading »

Jun 122014
 

Gulp_1Su Lancet di giugno sono state pubblicate le conclusioni dello studio multicentrico controllato randomizzato PROVHILO  (PROtective Ventilation using HIgh versus LOw PEEP). Lo scopo é testare l’ipotesi per cui una strategia ventilatoria con PEEP elevate e manovre di reclutamento durante anestesia generale per interventi laparotomici protegge da complicanze polmonari postoperatorie pazienti a rischio per queste complicazioni. Tra febbraio 2011 e gennaio 2013 in 30 centri sono stati reclutati 900 pazienti randomizzati in due gruppi…

 

Il DISEGNO SPERIMENTALE prevedeva il reclutamento di pazienti da sottoporre a chirurgia addominale laparotomica con rischio medio – alto (secondo lo score ARISCAT) di complicanze polmonari postoperatorie, escludendo quelli sottoposti a laparoscopia, con BMI > 40 o con grave cardiopatia o pneumopatia preoperatoria. 447 pazienti sono stati arruolati nel gruppo a PEEP “alta” e manovre di reclutamento, 453 in quello con PEEP “bassa” senza manovre di reclutamento.

Quale risultato principale gli sperimentatori hanno voluto verificare l’incidenza di complicanze polmonari postoperatorie nei cinque giorni successivi all’intervento; secondariamente l’incidenza di complicanze intraoperatorie e l’insorgenza di complicanze extrapolmonari successivamente alla quinta giornata postoperatoria.

Il protocollo prevedeva ventilazione in volume controllato a 8 ml/Kg/PBW (Predicted Body Weight), FiO2 ≥ 40% con l’obiettivo di SpO2 ≥ 92% , frequenza respiratoria per mantenere ETCO2 tra 35 e 45 mmHg, manovre di reclutamento immediatamente dopo l’intubazione, dopo ogni disconnessione dal ventilatore e immediatamente prima dell’estubazione. I pazienti del braccio PEEP “bassa” (o strategia convenzionale) prevedevano una ventilazione con 8 ml/Kg/PBW, PEEP ≤ 2 cm H2O senza reclutamento.

11 pazienti (2%) nel gruppo “alta” PEEP hanno avuto bisogno di una procedura di “salvataggio” per comparsa di desaturazione, realizzata (secondo una tabellina) attraverso una riduzione della PEEP e/o incremento della FiO2 di contro a 34 (8%) nel gruppo convenzionale (per il quale la procedura prevedeva incremento della PEEP e della FiO2).

I RISULTATI  hanno evidenziato l’assenza di differenze negli outcome dei due gruppi: il 40% dei pazienti nel gruppo PEEP ed il 39% di quelli con strategia convenzionale hanno riportato complicanze nei primi 5 giorni postoperatori; il 4% ed il 5% rispettivamente hanno richiesto ventilazione meccanica nello stesso periodo.

Differenze statisticamente significative sono emerse nel fabbisogno di liquidi intraoperatori e nella necessità di utilizzare farmaci vasopressori, entrambi più elevati nel gruppo PEEP alta.

L’analisi multivariata su due gruppi di pazienti (con complicanze vs senza complicanze) mostra che età, durata dell’intervento chirurgico, necessità di infusioni intraoperatorie elevate o perdite ematiche significative, costituiscono fattori di rischio per lo sviluppo di complicanze polmonari postoperatorie.

CONCLUSIONI Nei pazienti con rischio medio – elevato di sviluppare complicanze polmonari postoperatorie una strategia ventilatoria caratterizzata da bassi volumi correnti con PEEP “alta” e manovre di reclutamento non comporta vantaggi rispetto ad una ventilazione convenzionale con 8 ml/Kg/PBW, PEEP assente, nessuna manovra di reclutamento (1).

 

COMMENTO –  Quali risvolti possiamo trasferire nella nostra pratica clinica?

Resta da stabilire, nella ventilazione protettiva del polmone “sano”, il valore adeguato di PEEP; di contro, anche questo studio, ci conferma gli effetti emodinamici che la PEEP può produrre tanto maggiori e più frequenti quanto maggiore è il suo valore. Più i volumi correnti utilizzati sono bassi più la PEEP è utile per evitare il danno da chiusura e riapertura degli alveoli e contrastare la formazione di atelettasie declivi conseguenti all’induzione dell’anestesia. Facciamo attenzione quando applichiamo la PEEP in pazienti in precario equilibrio emodinamico. L’applicazione di un valore di PEEP “a priori” conferma quanto già visto in studi su pazienti con ARDS (2) che hanno fallito nel dimostrare la superiorità, in termini di morbilità e mortalità, di un arbitrario valore di PEEP, e l’importanza invece della sua personalizzazione (3).

Ci sono evidenze sperimentali, con il dosaggio di markers biochimici (4) e con outcome clinici (5) (6), che l’utilizzo, nel polmone sano, di bassi volumi correnti e PEEP è protettivo rispetto a volumi correnti “tradizionali” senza PEEP. La ventilazione a bassi volumi correnti con bassi valori di PEEP è praticamente coincidente con la respirazione fisiologica e, dal momento che nessuno studio ha mai dimostrato il beneficio di una ventilazione ad alti volumi correnti, viene da chiedersi perché non usare sempre, anche e soprattutto nel polmone sano, una ventilazione artificiale che sia la più fisiologica possibile. Il fatto che anche il presente studio utilizzi in entrambi i gruppi una ventilazione  a bassi volumi correnti sembra quasi dirci che questo può ormai considerarsi uno standard in sala operatoria.

Evidenze sperimentali, con il dosaggio di markers infiammatori, ci dicono che più lungo è il periodo di ventilazione del polmone sano maggiore è l’effetto protettivo della ventilazione  a bassi volumi correnti. Allo stesso modo questa scelta produce meno complicanze postoperatorie quanto più i pazienti sono compromessi in termini di gravità complessiva o nel caso di chirurgia polmonare, cardiaca, per neoplasia.

Personalmente quando sono in sala operatoria ventilo sempre a bassi volumi correnti (~ 7 – 8 ml/Kg/peso corporeo ideale) con un livello di PEEP minimo “personalizzato” (obeso / non obeso; Laparoscopia / laparotomia; trendelemburg o no; ecc.) evitandola quando è presente grave instabilità emodinamica.

 

Vi invito a rileggere i precedenti post di argomento simile taggando su “anestesia”. Lo studio è sicuramente stimolante e mi aspetto vostri commenti e/o domande cui sarò ben lieto di rispondere.

 

Bibliografia.

  1.  The PROVE Network Investigators. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a  multicentre randomised controlled trial.
  2. Brower RG et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratorydistress syndrome. ARDS Clinical Trials Network. N Engl J Med. 2004 Jul 22;351(4):327-36.  June 1, 2014 http://dx.doi.org/10.1016/S0140-6736(14)60416-5
  3. Villar J et al. A high positive end-expiratory pressure , low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006;34:1311-1318.
  4.  Ranieri M. et al. Effect of mechanical ventilation on Inflammatory Mediators in Patients with Acute Respiratory Distress Syndrome. JAMA 1999; 282:54-61
  5. Futier E, Constantin JM, Paugam-Burtz C, et al, for the IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369: 428–37   Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118: 1307–21.
Dec 052013
 

clintLa ventilazione meccanica in anestesia è un argomento di crescente interesse. Michele Bertelli,  un anestesista rianimatore che lavora assieme a me, ci ha preparato un post su questo argomento. Un grazie a Michele per questo spunto che sarà certamente capace di farci riflettere (e forse di cambiare alcune consuetudini consolidate sulla ventilazione in anestesia).

_°_°_°_°_°_°_°_°_°_°_

Qualche giorno fa mi trovavo in sala operatoria di Chirurgia Generale, io e Roberta, un dottoressa al primo anno di specialità. Primo intervento della mattinata, un laparotomia per un intervento di resezione retto-colica.
La nostra paziente non prevede difficoltà pre-operatorie particolari: ipertesa, diabetica, buone condizioni generali. Posizioniamo un catetere peridurale ed iniziamo l’anestesia generale. Induzione, intubazione oro-tracheale senza problemi e Roberta mi chiede: “Come imposto il ventilatore?” “Fai come se io non ci fossi”.
La paziente pesa 74 kg ed è alta 158 cm. Il ventilatore viene impostato con ventilazione in volume controllato con un volume corrente di 500 ml per 14 atti /minuto, PEEP 0 cmH2O.
Abbiamo una buona saturazione periferica SpO2 99% con FIO2 60%, EtCO2 39-40 mmHg e pressioni di picco intorno a 30 cmH20.
L’intervento è cominciato, è prevista una durata superiore alle 2 ore, nessun problema di emodinamica, la paziente è in lieve Trendelenburg. Chiedo a Roberta il motivo delle impostazioni del ventilatore e iniziamo a discutere. Dal computer della sala operatoria apro la pagina di Ventilab e leggiamo insieme il post del 24 luglio 2010, commentiamo le opinioni PERSONALI di chi ha scritto e modifichiamo i parametri ventilatori:
Calcoliamo il peso ideale (post 18 dicembre 2011): donne = 45.5 + 0.91 x (altezza in cm – 152.4) = 45.5 + 0.91 x (158 – 152.4) = 50 kg. Impostiamo un volume corrente di 5-8 ml/kg di peso corporeo ideale, scegliamo arbitrariamente 7 ml/kg x 50 kg = 350 ml
La paziente non è obesa, quindi PEEP 5 cmH2O. Frequenza respiratoria iniziale di 18 atti/minuto con l’accortezza di non dimenticare EtCO2 e monitoraggio grafico del ventilatore.
Un rapporto inspirazione/espirazione (I:E) tale da garantire un tempo inspiratorio pari a 1 secondo.
Contenti? Io sì, Roberta un po’ meno (giustamente!!!) e ora lei chiede a me “Perché queste impostazioni ti piacciono?”. Esclusa la stima e la completa fiducia di chi ha scritto il post preso come esempio, non so dirle se effettivamente le impostazioni scelte (che sono valide per un paziente in ventilazione meccanica ricoverato in terapia intensiva) possano “far bene” anche alla nostra signora con l’addome aperto.

Oggi però posso tentare di dare una risposta: The New England Journal of Medicine (1) ha pubblicato in agosto un articolo che fa al caso nostro.

È uno studio multicentrico francese, condotto in doppio cieco, sono stati studiati 400 pazienti adulti sottoposti a intervento di chirurgia addominale (laparoscopica o no) della durata prevista maggiore di due ore.
I pazienti del gruppo di controllo sono stati ventilati in modalità volume controllato, con volume corrente di 10-12 ml/kg di peso corporeo ideale, con PEEP zero. I pazienti del gruppo di studio sono stati ventilati in modalità volume controllato, con volume corrente di 6-8 ml/kg di peso corporeo ideale, con PEEP 6-8 cmH2O e manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
In entrambi i gruppi si è stati attenti a non superare una pressione di plateau di 30 cmH2O (in media 15 cmH2O nel gruppo con basso volume corrente e PEEP e 16 cmH2O nel gruppo di controllo).
Nella valutazione dell’outcome primario, definito come insorgenza di complicanze polmonari maggiori (polmonite, insufficienza respiratoria con necessità di ventilazione artificiale) o extrapolmonari (sepsi, sepsi grave, shock settico, decesso) nella prima settimana postoperatoria, si è evidenziata una differenza significativa tra i due gruppi: 22 (10.5%) complicanze nel gruppo di pazienti ventilati con basso volume corrente e PEEP e 55 (27.5%) complicanze nel gruppo di controllo (rischio relativo 0.4, CI95% 0.24-0.68, p = 0.001). L’analisi degli outcome secondari ha mostrato una ridotta permanenza in ospedale nei pazienti ventilati con basso volume corrente e PEEP.

Lo studio dimostra come la ventilazione protettiva possa essere più vantaggiosa rispetto alla “ventilazione standard” anche in anestesia. Un’ipotesi (post 26 dicembre 2011) (2) è che questa modalità ventilatoria più “soft” riduca barotrauma (da elevate pressioni), volotrauma (da sovradistensione di aree), atelectrauma (da dereclutamento), biotrauma (danno strutturale da mediatori proinfiammatori locali) e forse anche microaspirazioni di contenuto gastrico (3).

Ogni anno nel mondo circa 230 milioni di pazienti vengono sottoposti a chirurgia addominale maggiore e ventilazione meccanica: le problematiche respiratorie sono seconde solo alla infezioni (4) tra le complicanze post-operatorie. L’anestesista può contribuire a ridurre le complicanze postoperatorie con una appropriata impostazione della ventilazione meccanica.

Conclusioni.

Possiamo concludere che in tutte le condizioni in cui impostiamo una ventilazione meccanica controllata in interventi di chirurgia addominale maggiore dovremmo:
1. stabilire un volume corrente di 6-8 ml/kg di peso corporeo ideale
2. impostare una PEEP di 6-8 cmH2O
3. valutare manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
4. regolare la frequenza respiratoria per mantenere una PaCO2 “ragionevole”
5. mantenere una pressione di plateau inferiore a 30 cmH2O
6. ricordarci che il ventilatore può essere un’arma molto potente, sia in positivo che in negativo.

Grazie per la pazienza.

Bibliografia
1. Futier E et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369:428-37
2. Vidal Melo MF et al. Protect the lungs during abdominal surgery. Anesthesiology 2013; 118: 1254-7
3. Lam SM et al. Intraoperative low-tidal-volume ventilation (letter). N Engl J Med 2013; 369:1861-3
4. Weiser TG et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372:139-44

Oct 202013
 

ObelixSaludaLa ventilazione meccanica in anestesia ci offre talora difficoltà e spunti interessanti. Oggi ho il piacere di condividere con gli amici di ventilab un caso che mi è stato inviato da Chiara. E’ un concentrato di difficoltà: la ventilazione meccanica durante chirurgia laparoscopica  in posizione di Trendelenburg in una paziente obesa. Suggerisco di continuare leggere questo post anche chi non si occupa di anestesia, perchè i problemi che Chiara ha incontrato e le strategie per gestirli appropriatamente sono di interesse generale per tutti coloro che si occupano di ventilazione meccanica.

Ecco il caso di Chiara: “Ho seguito un’anestesia generale in una paziente di 24 anni ma di quasi 100 Kg per 150 cm, Mallampati IV, collo, mammelle e addome voluminosi : habitus “batraciano”; superata la difficoltà ventilatoria all’induzione, l’intubazione tracheale non è stata difficoltosa. Inizio la ventilazione in volume controllato con PEEP 5 –> 7  cmH20 e un volume corrente di circa 600 ml per 14 atti /minuto; saturazione buona, ETCO2 39-40 mmHg e pressioni di picco intorno a 40 cmH20 in Trendelemburg e pneumoperitoneo con pressione media delle vie aeree di 12-13 mmHg; ho osservato però un volume corrente espirato inferiore di 200 ml rispetto a quanto erogato e ho provato a variare il rapporto I:E  che da 1:2 ho corretto come 1,5:1; il risultato è stato un netto miglioramento del volume corrente (600ml erogati e circa 600 ml espirati), una riduzione della ETCOa 35 mmHg ed una lieve riduzione delle pressioni di picco a 37 cmH20; nessun problema al risveglio, dopo 50 minuti di Trendelemburg ; premetto che si trattava di chirurgia pelvica.  A prescindere dal singolo caso, la scelta di variare il rapporto I:E , trattandosi di una paziente con un quadro “restrittivo” può ritenersi valida? Grazie.

Grazie a te Chiara per lo spunto e per avere accettato di farlo discutere su ventilab.

Il problema.

Chiara aveva impostato 600 ml di volume corrente con la ventilazione a volume controllato ma la sua paziente riceveva in realtà 400 ml di volume corrente (ricordo che il volume corrente espiratorio è quello che di norma dobbiamo considerare come volume realmente erogato, indipendentemente da quello impostato). Durante la ventilazione a volume controllato (in assenza di perdite dal circuito) il volume corrente può non essere ottenuto per un solo motivo: la pressione di picco raggiunge il limite massimo consentito nel corso dell’inspirazione. Quindi il ventilatore “protegge” il paziente interrompendo l’insufflazione nel momento in cui la pressione nelle vie aeree diventa superiore al limite prestabilito. Chiara ci dice in effetti che la pressione di picco era 40 cmH2O, un valore a cui spesso si imposta il limite di pressione di insufflazione.

Effetto della variazione del rapporto I:E.

In questo caso si è deciso di aumentare il tempo inspiratorio ed abbreviare il tempo espiratorio  modificando il rapporto inspirazione/espirazione (I:E) da 1:2 a 1.5:1. La frequenza respiratoria era 14/min, quindi ogni ciclo respiratorio durava circa 4.3 secondi (=60/frequenza respiratoria). Quando il rapporto I:E era 1:2, l’inspirazione occupava il 33% del ciclo respiratorio e quindi circa 1.4 secondi ed il restante tempo (circa 2.9 secondi) era lasciato all’espirazione. Impostando un rapporto I:E di 1.5:1, significa che l’inspirazione occupa il 60% del ciclo respiratorio, quindi in questo caso circa 2.6 secondi ed l’espirazione si riduce a 1.7 secondi. Come può questo ridurre le pressioni di picco a 37 cmH2O ed ottenere la completa erogazione dei 600 ml di volume corrente?

pres_flowIl segreto è nella riduzione della pressione resistiva (vedi post del 05/12/2011): il flusso inspiratorio (data dal rapporto tra volume corrente e tempo inspiratorio) passa da circa 430 ml/s (= 600 ml/1.4 s) a circa 230 ml/s (=600 ml/ 2.6 s). Se il flusso inspiratorio si riduce quasi del 50%, la pressione resistiva (= flusso x Resistenza dell’apparato respiratorio) si riduce molto di più, visto che la relazione tra le due è esponenziale (vedi figura a fianco). Quindi se si riduce la pressione resistiva, si riduce anche la pressione di picco, della quale la pressione resistiva è una componente (vedi post del 24/06/2011).

Così facendo abbiamo però ridotto la pressione di picco, ma aumentato la pressione di plateau, cioè quella parte di pressione delle vie aeree che si scarica sui polmoni. Infatti ricordiamo che la pressione di plateau è la somma di pressione elastica e PEEP totale, come possiamo vedere nella figura qui sotto:

pplat26

La pressione elastica è data dal volume corrente per l’elastanza. Immaginando che l’elastanza non si sia modificata, l’aumento del volume corrente del 50 % (da 400 a 600 ml effettivi) avrà determinato un aumento della pressione elastica del 50%.

La PEEP totale (somma di PEEP + PEEP intrinseca) è poi molto probabile che sia aumentata, visto che abbiamo ridotto drasticamente il tempo espiratorio (da 2.9 a 1.7 secondi) e contemporaneamente aumentato il volume corrente.

Quindi il risultato del cambio del I:E non ha certamente migliorato la protezione dei polmoni, pur avendo dato l’illusione di farlo. Anzi potrebbe averli esposti a qualche rischio in più.

Una possibile soluzione alternativa.

Prima di tutto, ripensiamo all’impostazione della ventilazione. La signora, ancorchè obesa, era di bassa statura. Il volume corrente andrebbe deciso sulla base del peso ideale e non di quello effettivo (vedi post del 18/12/2011). Se fai due calcoli, il peso ideale della signora sarebbe circa 45 kg (!). Forse un volume corrente di 350-400 ml (circa 8 ml/kg) poteva essere già sufficiente, provvedendo evidentemente ad associare una buona PEEP (nei gravi obesi si potrebbe iniziare con 10 cmH2O, emodinamica permettendo), con una frequenza respiratoria sufficiente ad avere una dignitosa eliminazione della CO2 (per quanto possa essere contronatura quando facciamo gli anestesisti, ricordiamo che un po’ di ipercapnia acuta non fa male, anzi potrebbe fare bene).

Secondariamente diamo un’occhiata alla pressioni di plateau (quella che arriva nei polmoni), trascurando la pressione di picco. Nei ventilatori da anestesia spesso non possiamo fare la manovra di occlusione di fine inspirazione. E’ però un’ottima abitudine inserire una breve pausa di fine inspirazione nell’impostazione della ventilazione a volume controllato. Avremo il monitoraggio continuo di una pressione di plateau che sarà forse di un paio di cmH2O più alta della pressione di plateau misurata a 3 secondi, ma che consiglio di utilizzare come come soglia da non superare durante la ventilazione: si avvicina alla pressione alveolare delle unità polmonari a bassa costante di tempo (presto dedicherò un post alla costante di tempo, qui non ho lo spazio di approfondire l’argomento). Se la pressione di plateau “va bene” (è cioè inferiore a 30 cmH2O, per dare retta all’opinione comune), non farei nulla anche in presenza di elevate pressioni di picco e non avrei alcun problema ad aumentare il limite della pressione massima delle vie aeree se necessario.

In casi come quello descritto in questo post, se necessario sarei propenso ad accettare anche una pressione di plateau un po’ superiore a 30 cmH2O se non ci fossero di segni di rilevante iperinflazione dinamica. Ci possiamo aspettare che una obesa in Trendelenburg con pneumoperitoneo possa avere pressioni addominali e pleuriche elevate. Quindi la pressione transpolmonare e lo stress dovrebbero essere comunque normali anche con pressione di plateau un po’ più alta di quanto normalmente raccomandate (vedi post del 24/06/2011).

Conclusioni.

Possiamo concludere che, in tutte le condizioni in cui facciamo ventilazione meccanica controllata, dovremmo:

1) stabilire un volume corrente appropriato rispetto al peso ideale (per le corporature standard massimo 500 ml nei maschi e 400 ml nelle femmine);

2) regolare la frequenza respiratoria per mantenere una PaCO2ragionevole” (anche 50 mmHg potrebbero andare benissimo);

3) favorire l’espirazione, quindi utilizzando I:E non troppi alti (misurando se possibile la PEEP intrinseca);

4) monitorare la pressione di plateau (anche su plateau molto brevi) e stare tranquilli se questa è inferiore 30 cmH2O. Se in queste condizioni la pressione di picco è alta, non lasciamoci influenzare, alziamo il limite di pressione massima delle vie aeree;

5) nei pazienti con “molta pancia” (obesi, gravide, pneumoperitoneo, posizione di Trendelenburg) se necessario accettiamo una pressione di plateau anche superiore a 30 cmH2O, a patto che il volume corrente sia ragionevolmente basso e non vi sia una rilevante autoPEEP.

Un sorriso a tutti gli amici di ventilab.

 

 

Aug 112013
 

Una volta recuperato il filo guida, il tracheoscopio rigido viene rimosso e posizionato il tubo di piccolo diametro mantenendo le precedenti impostazioni della ventilazione. Nel giro di pochi minuti compare bradicardia progressiva e ipotensione con  desaturazione periferica. Dopo i primi attimi d’interrogativi è stato preso un semplice provvedimento: deconnettere la paziente dal  ventilatore e lasciarla espirare per 30 secondi. Purtroppo non abbiamo documentazione fotografica del ventilatore  prima della deconnessione ma era più o meno come questa:

 

 

 

 

 

Deconnessa dal ventilatore, la paziente ha presentato una rapida risalita della frequenza cardiaca ai valori precedenti insieme alla pressione arteriosa. A quel punto si è ripresa la procedura modificando l’impostazione della ventilazione.

Come spieghiamo quanto successo? La paziente è andata incontro ad iperinflazione dinamica con un progressivo aumento del volume polmonare totale e conseguente risentimento emodinamico. Questo è un quadro molto simile a un grave stato asmatico acuto nel quale è possibile l’insorgenza di arresto cardiaco per grave e irrisolvibile iperinflazione.

Forse sapete che la PEEP “occulta” è stata scoperta da Marini proprio per l’effetto emodinamico che produce: si era accorto che alcuni pazienti, sottoposti a monitoraggio emodinamico, quando deconnessi dal ventilatore per le normali pratiche assistenziali, presentavano un incremento della portata cardiaca. Nel caso della nostra paziente l’interazione tra le impostazioni del ventilatore e le caratteristiche dell’apparato toraco – polmonare ha prodotto iperinflazione responsabile a sua volta di una condizione di bassa portata cardiaca: vediamo di capire gli elementi in gioco.

L’impostazione del ventilatore era di 500 ml di volume corrente per 15 atti/minuto con un rapporto I:E di 1:2 e quindi con un ridotto tempo espiratorio (2,2 secondi) rispetto ad un volume relativamente grande. I limiti d’allarme sulla “Pressione di picco” erano alti tanto che il ventilatore erogava senza problemi il volume corrente impostato. Durante la procedura con il tubo di piccolo diametro si è avuto un progressivo rialzo sia delle pressioni di picco (superate tranquillamente dal ventilatore) sia della pressione di pausa. Il meccanismo è quello descritto nell’immagine qui sotto con l’aggravante che la ventilazione meccanica insuffla inesorabilmente volume nei polmoni oltre qualunque punto d’equilibrio.  Inoltre il tubo piccolo, a causa di un aumento delle resistenze pari alla quarta potenza del raggio, richiede un tempo espiratorio prolungato rispetto ad uno di maggior diametro e questo costituisce fattore aggravante della dinamica respiratoria. Condizioni di rischio per lo sviluppo di tale fenomeno sono la presenza di uno o più fattori quali: tempo espiratorio ridotto, resistenze espiratorie elevate (come negli asmatici e nei BPCO, o per tubi di calibro ridotto), volumi correnti elevati, bassa elastanza toraco – polmonare (per es. enfisema), flow limitation.

Abbiamo visto in un precedente post (http://www.ventilab.org/2013/04/30/ventilazione-meccanica-ed-emodinamica-cosa-fare-e-perche-quando-lipotensione-complica-la-ventilazione-meccanica/) come sia stretta l’interazione tra l’apparato cardiovascolare e polmonare. In particolare l’aumento delle pressioni intratoraciche (in sostanza quella intrapolmonare) è in grado di ridurre la portata cardiaca riducendo il ritorno venoso. Il caso della nostra paziente è assimilabile a quello di un asmatico (http://www.ventilab.org/2010/12/31/ventilazione-meccanica-del-paziente-asmatico-grave/), il cui problema cruciale è la lentezza del flusso espiratorio dovuta all’ostruzione bronchiale: i pazienti iniziano l’inspirazione prima che l’espirazione sia stata completata e così ad ogni nuova inspirazione sempre più volume resta nei polmoni con lo sviluppo d’iperinflazione polmonare e PEEP occulta. Una ventilazione meccanica inappropriata può rapidamente peggiorare l’iperinflazione, indurre danno polmonare, pneumotorace o collasso cardiovascolare, aumentando quindi la morbilità e la mortalità di questi pazienti.

In pratica cosa possiamo fare in casi come questi?

Ventiliamo in modalità “volume controllato” inserendo una pausa inspiratoria di durata adeguata (15 – 20%). In questo modo possiamo osservare attentamente la pressione di pausa (assimilabile al plateau) per individuare precocemente l’insorgenza d’iperinflazione: il volume intrappolato viene svelato dall’aumento della pressione statica nelle vie aeree. Rispetto all’inizio della procedura aumenteranno le pressioni di picco e di pausa.

All’inizio della ventilazione meccanica o subito dopo il posizionamento del tubo di piccolo diametro la possibile inflazione non si è ancora prodotta; dobbiamo identificare a quale pressione di picco, dopo il posizionamento del tubo di piccolo diametro (o all’inizio della ventilazione meccanica nell’asmatico), si ottiene il volume corrente desiderato e quali sono i valori di pressione statica. In questo modo possiamo settare i limiti d’allarme della “Pressione di picco” che ci permettano di erogare il volume corrente e nel caso questi limiti vengano superati disporre di un allarme d’iperinflazione. Questa, infatti, produrrà il rialzo della pressione statica (di pausa) e conseguentemente di picco: il ventilatore ci avviserà e potremo intervenire tempestivamente per prevenire l’aggravamento del fenomeno.

E’ inoltre corretto impostare i parametri della ventilazione con gli obiettivi di un piccolo volume corrente (6 ml/Kg), un adeguato tempo espiratorio intervenendo sia sulla frequenza (10 – 12 atti/minuto, forse l’intervento più efficace) sia sul tempo espiratorio (I:E = 1:3 o 1:4) sapendo che questo comporterà un aumento delle pressioni di picco (quella pericolosa è il plateau!); PEEP ridotta al minimo indispensabile fino a ZEEP.

 

Post Scriptum – Il caso si è presentato nel nostro reparto alcune settimane fa e non è stato volutamente ricercato. Per questo motivo durante la procedura non è stata raccolta documentazione fotografica: tuttavia la prima fotografia è della paziente in oggetto ed è stata scattata in quanto reclutata in uno studio clinico e ben si è prestata allo scopo. La seconda fotografia è la prima, ritoccata per riprodurre quanto osservato ma non documentato iconograficamente per la rapidità con si sono succeduti gli eventi.

Bibliografia

1. Ciaglia P, Firsching R, Syniec C. Elective percutaneous dilatational tracheostomy. A new simple bedside procedure preliminary report. Chest 1985; 87: 715–9.

2. Fantoni A, Ripamonti D. A non-derivative, non-surgical tracheostomy: the translaryngeal method. Intensive Care Med 1997; 23: 386–92.

3. Pepe PE, Marini JJ. Occult positive end expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto PEEP effect. Am Rev Resp Dis 1982;123:166-70.

4. Marini JJ, Culver BII, Btler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis. 1981 Oct;124(4):382-6.

Jul 252013
 

Quando la necessità di ventilazione meccanica si prolunga oltre i sette – dieci giorni è consuetudine sottoporre i pazienti a tracheotomia percutanea. Questo consente di ridurre le complicanze a distanza legate al permanere tra le corde del tubo tracheale, facilita il raggiungimento del respiro spontaneo da parte del paziente, consente una migliore igiene orale e un confort in genere superiore per il paziente.

Nella nostra terapia intensiva utilizziamo, al letto del paziente, due tecniche tracheotomiche percutanee: Ciaglia monodilatatore e Fantoni. Utilizziamo la Ciaglia in caso di disfagia e/o danno neurologico, e posizioniamo una cannula con aspirazione sottoglottica per poter rimuovere le secrezioni che si raccolgono tra il piano cordale e la cuffia; questo provvedimento è riconosciuto efficace, quando applicato insieme ad altri, nella prevenzione delle polmoniti associate alla ventilazione. Nel caso di questa paziente si è deciso di adottare la tecnica di Fantoni.

La tecnica

La tracheotomia con tecnica di Fantoni viene definita translaringea per sottolineare una sua particolarità.

Il paziente viene intubato con un tubo rigido (tracheoscopio) e, sotto controllo fibroscopico, si procede a puntura della trachea. Attraverso l’ago si introduce un filo guida che risale dentro il tubo e viene recuperato dall’alto. A questo punto, per consentire il passaggio translaringeo della cannula, è necessario sostituire il tubo rigido con uno di calibro ridotto (4 ID) la cui cuffia deve posizionarsi nettamente più distale rispetto al punto prescelto per l’inserimento della cannula. Si fissa la cannula al filo guida, si arrotola intorno ad un manubrio il filo guida che fuoriesce dal collo, si esercita una trazione sul filo impugnando il manubrio e con una contropressione sulla trachea, fino a far fuoriuscire la cannula dal collo. Quindi si posiziona correttamente la cannula aiutandosi con un mandrino rigido. Si controlla il corretto posizionamento con il fibroscopio e si rimuove, a questo punto, il tubo di piccolo diametro prima di connettere il ventilatore alla cannula. Questa è l’unica tecnica di tracheotomia percutanea in cui la cannula viene posizionata per via translaringea ed in cui sia necessario sostituire il tubo utilizzato all’inizio della procedura per consentire alla cannula di passare dalla bocca alla trachea.

In entrambe le tecniche tracheotomiche l’impostazione del ventilatore prevede ventilazione in volume controllato con FiO2 = 1, e livelli molto alti degli allarmi di “Pressione di picco” del ventilatore per poter erogare il volume corrente impostato. Infatti a causa della presenza del fibroscopio che riduce il lume del tubo o a causa del piccolo diametro del tubo inserito nella seconda fase della metodica di Fantoni, si raggiungono elevati valori di pressioni picco come conseguenza dell’aumento delle resistenze al flusso inspiratorio.

 

Il caso

TA, 75 anni, ricoverata per emorragia del tronco encefalico; per il persistere di grave danno neurologico e la necessità di assicurare autonomia del respiro e protezione delle vie aeree, viene sottoposta a procedura di tracheotomia percutanea. Viene posta indicazione a tecnica di Fantoni.

Dopo l’inizio dell’anestesia generale endovenosa la paziente viene posizionata per la tracheotomia e intubata con il tubo rigido. Le impostazioni del ventilatore sono 500 ml di volume corrente per 15 atti/minuto con un rapporto I:E di 1:2, PEEP di 5 cmH2O.

Nella foto (ventilazione durante fibroscopia) notate nei parametri d’impostazione (quelli in basso) la FiO2 = 1 e il limite della pressione di picco a 100 cmH2O, nella parte destra del monitor le pressioni di picco alte con normali pressioni di plateau.


Una volta recuperato il filo guida, il tracheoscopio rigido viene rimosso e posizionato il tubo di piccolo diametro mantenendo le precedenti impostazioni della ventilazione. Nel giro di pochi minuti compare bradicardia progressiva e ipotensione con desaturazione periferica. Dopo i primi attimi d’interrogativi è stato preso un semplice provvedimento … (continua)

Apr 012012
 

Riprendiamo il post sulla ventilazione in anestesia del 22 marzo. Oggi vedremo come si sono realmente svolte le cose, interpreteremo gli eventi e li analizzeremo anche alla luce dei commnenti ricevuti. Infine, come abitudine, termineremo alcune raccomandazioni pratiche sulla ventilazione meccanica in anestesia.

Prima di iniziare, i risultati del sondaggio: perfetta parità tra le due risposte. Un motivo di più per ragionare sul caso e cercare di esplicitare bene i problemi da gestire.

I fatti: la fine della storia.

Arrivato in sala operatoria, con la collega facciamo queste cose:

-Cerchiamo di ottimizzare il posizionamento della maschera laringea Proseal. Introduciamo un sondino gastrico tramite la via gastrica della ProSeal, sgonfiamo la cuffia della maschera, la estraiamo parzialmente la ProSeal e quindi la facciamo scorrere fino a fine corsa (cioè contro lo sfintere esofageo superiore) sulla guida della sonda gastrica. Insuffliamo la cuffia della Proseal introducendo tutta l’aria che serve per ridurre al minimo le perdite dalla maschera mentre riprendiamo la ventilazione.

– Impostiamo la ventilazione meccanica. Iniziamo una ventilazione a volume controllato con 500 ml di volume corrente e portiamo a 80 cmH2O il limite delle pressione nelle vie aeree. Tutto questo non cambia molto: otteniamo ancora pressioni di insufflazione molto elevate ed il volume corrente è praticamente nullo.

– Rivediamo il piano di anestesia. Approndiamo l’anestesia con un bolo di propofol e potenziamo la miorisoluzione con un nuovo bolo di mivacurium. Stiamo ormai veleggiando verso gli 82% di SpO2, ma in breve tempo si ricomincia a vedere il volume corrente sulla spirometria del ventilatore e le pressioni di picco si abbassano a circa 60 cmH2O, ricompare il tracciato capnografico. Si rileva ancora qualche perdita aerea dalla LMA, ma otteniamo facilmente un volume corrente sempre superiore a 300 ml. Iniziamo a respirare tutti (paziente ed anestesisti). Non so quanto tempo sia passato, probabilmente un paio di minuti dal mio arrivo.

– Progressivamente la pressione di picco si assesta intorno ai 50 cmH2O, il volume corrente espirato aumenta fino a circa 450 ml. Ora non abbiamo più significative perdite dalla maschera laringea ProSeal. L’introduzione di una breve pausa di fine inspirazione fa vedere che la pressione dal picco di 50 cmH2O scende a 30 cmH2O prima di iniziare l’espirazione. In altre parole, nonostante l’elevata pressione di picco, la pressione di plateau sarà sicuramente inferiore a 30 cmH2O. A questo punto decidiamo di mettere 10 cmH2O di PEEP e vediamo che le pressioni non si modificano. La saturazione sale sopra il 95% anche riducendo la FIO2 sotto 0.5.

E così concludiamo l’intervento, con la paziente che si sveglia al termine tutta soddisfatta, lamentando solo un lieve mal di gola… Beh, signora, va bene così…

L’interpretazione dei fatti.

Premetto che ho non ho presentato questo caso per mostrare una gestione esemplare (non voglio cioè dire che sia stato fatto tutto il meglio che si potesse fare), ma semplicemente per ragionare su come e perchè è accaduto quel che è accaduto.

– Gestione delle vie aeree.
Innanzitutto un complimento alla collega che, quando si è trovata in difficoltà, ha chiamato aiuto: questa è sempre la prima cosa da fare, chiaramente indicata anche nelle linee guida SIAARTI sulle vie aeree difficili (1).

E’ stato discusso l’utilizzo della ProSeal come scelta iniziale. Nella discussione al post precedente sono emerse anche due opzioni diverse da quella scelta nel nostro caso: intubazione fibroscopica in sedazione o intervento in analgosedazione. La mia opinione personale è che sia l’utilizzo della maschera laringea ProSeal, sia l’intubazione fibroscopica, sia l’analgosedazione come tecnica di anestesia possano essere scelte ragionevoli. Molto spesso in medicina non ci sono scelte giuste e scelte sbagliato, piuttosto esistono decisioni ragionevoli e decisioni irragionevoli: a volte lo stesso problema può essere risolto brillantemente anche con approcci diversi se si usa il cervello (alla faccia dei protocolli!).

Non entro nel merito del confronto delle tre possibilità (il post è già abbastanza lungo e ricco di spunti), cercherò solo di spiegare il razionale della maschera laringea. Premetto che nel nostro ospedale si fa un uso ampio della maschera laringea (oltre il 50% degli interventi in anestesia generale vengono eseguiti con essa) ed abbiamo molta esperienza nel suo uso. L’utilizzo della maschera laringea nelle linee guida per la gestione delle vie aeree difficili è confinato alla drammatica condizione di impossibilità di ventilazione (1). Tuttavia l’utilizzo della maschera laringea fin dall’inizio nei casi di intubazione difficile normalmente evita qualunque problema anestesiologico: si ottiene una ventilazione efficace e sicura senza dover fare la laringoscopia e si possono somministrare i miorilassanti solo dopo avere verificato la ventilabilità del paziente. Sicuramente per poter usare la maschera laringea in situazioni potenzialmente difficili, si deve prima acquisire una grande esperienza con lo strumento in condizioni elettive.

La maschera laringea ProSeal in particolare garantisce normalmente una tenuta anche a pressioni superiori ai 30 cmH2O (2) ed anche nei  pazienti obesi con PEEP consente una ventilazione ottimale senza perdite aeree (3). Inoltre la ProSeal consente di drenare lo stomaco, evitando così il rischio di aspirazione polmonare.

Gestione della ventilazione.

Chiediamoci perchè possiamo avere alte pressioni di picco. La risposta è sempre nell’equazione di moto dell’apparato respiratorio: pressione di picco = pressione elastica + pressione resistiva + PEEPtotale (vedi post del 24/006/2011). Se si capisce questa semplice equazione, si capisce tutta la ventilazione meccanica.

Due di queste tre pressioni distendono i polmoni (pressione elastica e PEEPtotale) e ci potrebbero preoccupare come possibile causa di danno polmonare da ventilazione (VILI, ventilato-induced ling injury), mentre la pressione resistiva si dissipa lungo le vie aeree e normalmente non deve essere considerata una possibile causa di VILI (vedi post del 5/12/2011).

La pressione elastica (prodotto di elastanza e volume corrente) potrebbe essere elevata per l’elevata elastanza dell’apparato respiratorio dovuta all’obesità (4). Ma in questo caso, essendo l’elevata elastanza dovuta ad una causa extrapolmonare, la pressione transpolmonare dovrebbere essere bassa, cioè senza rischio di VILI da sovradistensione. Non dimentichiamo poi che la paziente (purtroppo) non sta ventilando: no volume corrente, no pressione elastica. La PEEPtotale anch’essa è ragionevolmente bassa: non abbiamo PEEP e non abbiamo ventilazione.

L’alta pressione di picco è quindi spiegata dalla pressione resistiva, che ci serve solo a spingere l’aria nei polmoni: se serve tanta pressione quindi bisogna dare tanta pressione. Ecco perchè infischiarsene delle pressioni di picco e guardare invece il volume corrente. In anestesia penso questa dovrebbe essere una regola generale: abbiamo normalmente a che fare con polmoni senza ALI/ARDS, quindi concentriamoci sul volume corrente erogato. Se il volume corrente è basso o normale, non può esserci VILI (in assenza di elevati valori di autoPEEP). Questo è il motivo per il quale in anestesia per me esiste (quasi) sempre una sola ventilazione: il volume controllato. Nel nostro caso, se avessimo insistito con la pressione controllata avremmo avuto qualche chance in più di fare andare male le cose.

A questo punto chiediamoci perchè ci sono elevate resistenze. Abbiamo tre cause: obesità (4), maschera laringea e vie aeree. 

Per l’obesità non possiamo fare molto, se non eventualmente dare un po’ di antiTrendelemburg.

Le resistenze della maschera laringea dipendono in maniera rilevante dal corretto posizionamento (5), e quindi la posizione della ProSeal deve essere ottimizzata. Per fare questo è molto utile utilizzare una sonda gastrica inserita nel tubo gastrico della ProSeal. La sonda gastrica che arriva fino allo stomaco (oltre a consentirci di svuotare lo stomaco!!!) diventa una guida straordinaria al corretto posizionamento della ProSeal, se la si usa come mandrino facendo scorrere su di essa la ProSeal fino a fine corsa. A questo punto abbiamo la maschera contro lo sfintere esofageo superiore, la miglior posizione possibile per la maschera laringea.

Infine l’ultima causa di aumentata pressione resistiva: le vie aeree. Con la maschera laringea il punto veramente critico sono le corde vocali. Basta infatti che, per una riduzione del piano di anestesia e della miorisoluzione, queste si mettano in adduzione (cioè che si chiudano), che la ventilazione può diventare difficile o impossibile. L’unica soluzione è approfondire l’anestesia e la miorisoluzione.

Facendo tutto questo, la situazione è migliorata e ci siamo anche potuti permettere il lusso di una PEEP, raccomandabile negli obesi (6).

Se le cose non fossero andate a posto, avremmo sicuramente tentato l’intubazione e, in caso di fallimento, la scelta sarebbe stata tra il risveglio della paziente con assistenza in maschera e cricotiroidotomia d’urgenza. Ma per fortuna non abbiamo dovuto arrivare fino a questo punto nel nostro racconto…

Conclusioni.

Questo caso ci insegna quattro cose sulla ventilazione in anestesia, da ricordare soprattutto quando ci sono difficoltà:

1) la ventilazione a volume controllato può essere l’unica modalità di ventilazione in anestesia (la pressione controllata in questo contesto è un’amica molto, molto falsa);

2) in anestesia il VILI da sovradistensione polmonare non esiste se non si generano volumi correnti superiori al normale (6-8 ml/kg) o autoPEEP (a meno che non si debba fare l’anestesia ad un paziente con ARDS)

3) i limiti di allarme delle pressioni delle vie aeree devono sempre essere aumentati (e non rispettati!) in caso di difficoltà di ventilazione

4) una breve pausa di fine inspirazione inserita nella ventilazione ci può confermare che non stiamo combinando guai se già nel breve accenno di plateau abbiamo una pressione non superiore a 30-35 cmH2O.

Un saluto a tutti.

Bibliografia
1) Accorsi A et al. Recommendations for airway control and difficult airway management. Minerva Anestesiol 2005;71:617-57
2) Keller C et al. Mucosal pressure and oropharyngeal leak pressure with the ProSeal versus laryngeal mask airway in anaesthetized paralysed patients
Br J Anaesth 2000; 85:262-6
3) Natalini G et al. Comparison of the standard laryngeal mask airway and the ProSeal laryngeal mask airway in obese patients. Br J Anaesth 2003; 90: 323-6
4) Pelosi P et al. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996;109:144-51
5) Natalini G et al.Resistive load of Laryngeal Mask Airway and ProSeal Laryngeal Mask airway in mechanically ventilated patients. Acta Anaesthesiol Scand 2003; 47:761-4
6) Pelosi P et al. Positive End-expiratory Pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 1999; 91:1221-31

Mar 222012
 

In anestesia vi è molta routine: una serie ripetuta, quasi rituale di procedure e farmaci con poche variazioni sul tema. A volte si può essere portati a pensare che, in fondo, la ventilazione meccanica non richieda una grande preparazione specifica: un semplice volume controllato, che spesso perdona anche impostazioni poco felici.
Oggi presento su ventilab un caso nel quale mi sono trovato coinvolto un po’ di tempo fa.

Una donna di 40 con obesità grave è sottoposta ad intervento chirurgico per una fistola perianale. La paziente presenta una difficoltà prevista di intubazione tracheale e nella visita anestesiologica preoperatoria ha dato il prorpio consenso per un’anestesia subaracnoidea. L’anestesia spinale, eseguita con difficoltà, non raggiunge un livello sufficiente per poter eseguire l’intervento e bisogna quindi procedere all’anestesia generale.

L’induzione dell’anestesia generale avviene senza farmaci miorilassanti e viene posizionata una maschera laringea ProSeal. Con la ventilazione manuale si apprezza una certa resistenza all’insufflazione e rumori di perdite aeree dalla maschera laringea. A questo punto si procede alla somministrazione di un miorilassante a breve durata d’azione (mivacurium) e dopo poco inizano un po’ a ridursi la resistenza all’insufflazione manuale e le perdite aeree. Inizia quindi l’intervento chirurgico con una ventilazione a volume controllato che un iniziale volume espirato sufficiente (seppur con evidenti perdite aeree dalla maschera laringea).

Ma nel volgere di alcuni minuti la pressione di picco delle vie aeree aumenta rapidamente fino a raggiungere il limite di pressione massima impostato sul ventilatore meccanico e contemporaneamente il volume corrente effettivamente erogato (cioè quello espirato) si riduce fino a quasi annullarsi. La saturazione arteriosa inizia scendere fino a circa 85 % ed il chirurgo comunica che gli servono ancora circa 20 minuti per completare l’intervento.

A questo punto l’anestesista di sala sceglie di iniziare la ventilazione a pressione controllata e di chiamare un collega per avere un aiuto…questo collega ero io ed eccomi qui a riflettere insieme su questa esperienza con gli amici di ventilab.

Prima di raccontare che cosa abbiamo fatto veramente e come è andata a finire, voglio proporre ai lettori di ventilab un sondaggio molto semplice (una sola domanda). Come procedere con la gestione della ventilazione meccanica? Spunta il quadratino che precede una delle due risposte qui sotto e poi clicca su “Submit”(il sondaggio è anonimo) : La prossima settimana discuteremo il caso partendo dalle risposte ottenute.

Ovviamente mi farà piacere se, oltre a rispondere al sondaggio, vuoi lasciare anche un commento, dove argomentare la risposta e magari discutere anche come procedere nella gestione delle vie aeree (altro topic fondamentale del caso).

Nel prossimo post ti racconterò il seguito della storia e si discuterà come approcciare a queste situazioni. Che speriamo ci capitino il più raramente possibile.

Per finire: siamo ancora sicuri che la ventilazione in anestesia sia un problema poco importante?

Un saluto a tutti. A presto.