Apr 302017
 

Il successo della ventilazione meccanica dipende in maniera decisiva anche dall’appropriatezza della sua impostazione. Se in un paziente con ARDS sbagliamo la scelta di volume corrente e PEEP, possiamo trasformare una tecnica molto efficace in un problema senza soluzione; se durante la ventilazione assistita utilizziamo costantemente un supporto inspiratorio eccessivo o insufficiente, possiamo perpetuare la dipendenza dalla ventilazione meccanica invece che avviarci verso lo svezzamento.

A volte ho la sensazione che ci si dimentichi questo concetto fondamentale quando si parla di ventilazione non-invasiva: si passa il tempo a discutere se sia efficace o meno, senza specificare i criteri di impostazione. E’ un approccio profondamente sbagliato: la ventilazione non-invasiva non è efficace perchè si applica una maschera sulla faccia, ma perchè si eroga una ventilazione meccanica

Oggi vediamo come impostare il supporto inspiratorio (cioè la pressione di supporto o la differenza IPAP-EPAP) in maniera efficace quando curiamo un paziente con insufficienza respiratoria acuta (anche in presenza di una componente cronica). Su questo argomento esistono diversi approcci ed opinioni autorevoli, quello che propongo è ciò che personalmente ritengo più logico.

Consideriamo il momento in cui si inizia la ventilazione non-invasiva. In questa fase la pressione di supporto dovrebbe essere la più elevata possibile. E’ opportuno iniziare con un basso livello di supporto inspiratorio (ad esempio 5 cmH2O) e rapidamente (in pochissimi minuti) raggiungere, per incrementi successivi, il massimo livello che il paziente tollera o ritiene confortevole e che si associa ad un livello gestibile di perdite aeree.

E’ importante raggiungere il massimo possibile perchè in questa fase la ventilazione non-invasiva viene sempre proposta a pazienti che hanno o 1) una insufficienza della pompa respiratoria o 2) un elevato lavoro dei muscoli respiratori.

Dovremmo intendere come insufficienza della pompa respiratoria quella condizione in cui si ha una acidemia (cioè un pH < 7.35) senza ipocapnia (PaCO2 > 35 mmHg) (vedi post del 29/01/2011). Rientrano in questa categoria, oltre alla classica acidosi respiratoria ipercapnica, anche quei casi di acidosi metabolica senza una ipocapnia. Durante acidosi metabolica, la normale risposta di una pompa respiratoria efficiente è qualla di iperventilare per ridurre la PaCO2 e quindi tendere alla correzione del pH. Se la pompa respiratoria è esaurita, la PaCO2 rimane attorno ai 40 mmHg senza alcun tentativo di correzione respiratoria del pH.

L’elevato lavoro dei muscoli inspiratori è una condizione di stress che può precedere la vera e propria insufficenza della pompa respiratoria, e clinicamente si manifesta con dispnea, tachipnea (aumento della frequenza respiratoria), polipnea (aumento della ventilazione/minuto), non di rado iperpnea (aumento della profondità dell’inspirazione),  e utilizzo dei muscoli accessori della respirazione (è ben esplorabile lo sternocleidomastoideo). In questa fase la PaCO2 può essere normale o ridotta ed il pH normale o alcalino. Quando i muscoli inspiratori iniziano a cedere sotto il peso di un prolungato periodo di elevato lavoro respiratorio, iniziamo a vedere il respiro rapido e superficiale ed infine il respiro paradosso (addome e torace si espandono in maniera alternata invece che sincrona durante gli atti respiratori).

In entrambe queste condizioni un obiettivo fondamentale della ventilazione non-invasiva è mettere a riposo il più possibile i muscoli inspiratori. E’ sbagliato pensare di ottenere questo obiettivo impostando una pressione di supporto sufficiente a raggiungere un volume corrente di 6-8 ml/kg (di peso ideale). Questo può essere un obiettivo necessario ma certamente non sufficiente. Infatti molti pazienti con elevato lavoro respiratorio sono già in grado di inspirare un volume corrente normale (o elevato) anche senza alcun supporto inspiratorio: sono cioè ancora in grado di combattere, seppur ad un elevato prezzo metabolico e di stress. In queste condizioni i muscoli respiratori possono utilizzare anche più del 25% dell’ossigeno consumato dall’intero l’organismo (in condizioni di normalità è circa il 1-2%), con sovraccarico della funzione cardiaca e sofferenza di altri tessuti.

Dobbiamo quindi affidarci a criteri diversi dal volume corrente. Possono aiutarci a scegliere il livello di supporto inspiratorio la valutazione della frequenza respiratoria, della dispnea, dell’utilizzo dei muscoli accessori della respirazione e, come sempre, il monitoraggio grafico della ventilazione.

Se durante ventilazione non-invasiva il volume corrente fosse compreso tra 420 e 470 ml potremmo essere soddisfatti nella maggior parte dei pazienti. Ma il monitoraggio grafico della ventilazione meccanica può fornirci informazioni decisive per una impostazione appropriata della pressione di supporto.

Nella figura 1 vediamo il flusso nelle vie aeree nello stesso paziente con 3 diversi livelli di pressione di supporto (da sinistra a destra: 5, 15 e 20 cmH2O sopra la PEEP di 5 cmH2O). Tra le 3 condizioni, il volume corrente varia effettivamente tra 420 e 470 ml.

Figura 1

Nel riquadro C abbiamo un flusso che, dopo il picco iniziale (porzione verticale viola), è (quasi) decrescente, tipico della ventilazione pressometrica passiva. Questo vuol dire che il paziente, dopo aver attivato il ventilatore, tende a mettere a riposo i muscoli inspiratori. Osserviamo la parte viola della curva di flusso nei riquadri A e B: dopo il picco iniziale, il flusso inspiratorio non decresce come nel riquadro C, segno di una persistente attività dei muscoli inspiratori, che è tanto più marcata tanto più ci si allontana dalla teorica decrescita passiva.

La figura 2 presenta le stesse curve della figura 1, con una retta che congiunge l’iniziale picco di flusso con il flusso quando inizia il ciclaggio tra inspirazione ed espirazione (istante in cui il flusso inizia a crollare verso lo zero).

Figura 2

Questa rappresentazione aiuta a capire cosa si intende per flusso decrescente e come valutare, seppur in maniera grossolana e qualitativa, quando e quanto un soggetto continua ad utilizzare i muscoli inspiratori durante il supporto inspiratorio. Nel riquadro A c’è un’area molto rilevante tra la traccia di flusso e la linea tratteggiata che dovrebbe descrivere l’ipotetico decadimento passivo del flusso; nel riquadro B c’è ancora una evidente area tra flusso e linea di decadimento passivo, però minore rispetto a quella vista in A e quindi segno di un minor contributo dei muscoli inspiratori; in C praticamente tutto il flusso è sulla liena di decadimento e ci fa pensare che resti solo eventualmente una minima attività dei muscoli inspiratori dopo il triggeraggio.

Ora possiamo capire bene perchè, quando iniziamo la ventilazione non-invasiva, dovremmo incrementare la pressione di supporto per avvicinarci il più possibile al profilo di flusso che vediamo in C. E’ importante fermarsi nell’incremento della pressione di supporto appena si nota questo pattern. Il livello di assistenza inspiratoria va rivalutato, con l’approccio appena visto, tutte le volte che si osservi un cambiamento del pattern respiratorio. Spesso vedremo che poco dopo l’inizio della ventilazione non-invasiva potremo ridurre il supporto inspiratorio mantenendo una bassa attività dei muscoli inspiratori.

Quando la condizione di insufficienza di pompa respiratoria o di elevato lavoro dei muscoli inspiratori tendono a risolversi, potremo tranquillamente abbassare il livello di pressione di supporto, senza più ricercare la passività del paziente. Viceversa, se non si dovesse arrivare a questo punto in tempi ragionevolmente brevi, dovremmo iniziare a pensare all’intubazione tracheale.

Se siamo d’accordo su quando detto finora, dobbiamo ammettere che la CPAP raramente può essere una tecnica ottimale di ventilazione non-invasiva.

Uno dei problemi a cui espone questo approccio è quello di avere qualche paziente che genera volumi correnti molto elevati, anche 10-12 ml/kg. Dobbiamo però essere lucidamente consapevoli che questo  volume corrente non è passivamente generato dal livello di supporto inspiratorio se abbiamo scelto il livello di pressione inspiratoria necessario e sufficiente a far riposare i muscoli respiratori. Infatti stiamo semplicemente aiutando il paziente a fare ciò che il suo cervello (=centri del respiro) comanda. Se dal cervello partono ordini potenzialmente dannosi (=generare un alto volume corrente), la soluzione non è mettere in difficoltà la pompa respiratoria per impedire che ciò accada. In questa situazione vale la pena valutare se il volume corrente tenderà a ridursi man mano che si metteno a riposo i muscoli respiratori. Se ciò non dovesse accadere, a noi la responsabilità di scegliere se accettare un volume corrente elevato o iniziare una ventilazione protettiva, che non potrà che essere invasiva e con sedazione/parlisi. Ma questo è un altro capitolo…

Per concludere, facciamo una breve sintesi dei punti principali:

  • all’inizio della della ventilazione non-invasiva il supporto inspiratorio dovrebbe essere regolato per rendere il più decrescente possibile il flusso inspiratorio; ne risulterà anche la riduzione della dispnea, della tachipnea e dell’utilizzo dei muscoli accessori della ventilazione;
  • dopo aver scaricato i muscoli respiratori da un eccessivo lavoro, si dovrebbe iniziare a ridurre il supporto, accettando un livello di attività respiratoria compatibile con le risorse muscolari;
  • qualora con questo approccio si ottenesse un volume corrente che si ritiene causa di possibile danno indotto dalla ventilazione, una soluzione normalmente ragionevole è passare alla ventilazione protettiva invasiva.

Un sorriso a tutti gli amici di ventilab.

 

Feb 252017
 

Sora Lella la  conosciamo tutti, resa famosa da innumerevoli film di successo e dalla sua passione culinaria.  Non conosco il Body Mass Index (BMI) della sora Lella: il Body Mass Index è quell’indicatore che ci permette di categorizzare le persone obese e si calcola dividendo il peso per il quadrato dell’altezza. Il CDC di Atlanta definisce obesa una persona con un BMI ≥ 30, distinguendo tre classi (30 – 35; 35 – 40; ≥40). Se sora Lella fosse alta 160 cm per 110 Kg di peso avrebbe un BMI di 42. Qualunque fosse il BMI di sora Lella era sicuramente direttamente proporzionale alla sua boccaccesca simpatia.

Fig. 1

Se dovessimo sottoporre sora Lella a ventilazione meccanica la prima cosa di cui dobbiamo tenere conto è che, come mostrato nella Figura 1, la sua Capacità Funzionale Residua è nettamente ridotta a meno del 50% rispetto ad una persona con Body Mass Index di 20. Conseguentemente anche il Volume di Riserva Espiratorio (VRE) è gravemente ridotto. Come possiamo vedere nella figura 2 la Capacità Funzionale Residua è il volume che rimane nell’apparato respiratorio alla fine di una espirazione normale: se l’espirazione prosegue in modo massimale viene espirato il Volume di Riserva Espiratorio (VRE) portando l’apparato respiratorio al Volume Residuo (che è il volume che non possiamo in nessun caso espirare). L’apparato respiratorio dell’obeso è caratterizzato da una riduzione della Capacità Funzionale Residua. 

Fig. 2

Come si vede nella Figura 1 la Capacità Funzionale Residua ed il Volume di Riserva Espiratorio si riducono esponenzialmente al crescere del BMI[2].

 

 

 

Fig. 3

 

Fin dagli anni 60 sono stati pubblicati studi in cui veniva misurata la Compliance dell’apparato respiratorio (CRS) di soggetti obesi in respiro spontaneo: questi hanno riportato una ridotta Compliance del chest wall (Ccw) smentiti da altri su soggetti in respiro spontaneo e in anestesia. Ancora negli anni 90 Pelosi[3] riferisce, in soggetti obesi anestetizzati e dopo chirurgia addominale, una riduzione della Compliance del polmone (CL) e del chest wall.

 

 

Ho trovato perciò interessante un lavoro pubblicato qualche anno fa (2010) dal gruppo di Loring e Talmor che riporto in bibliografia[1]. La loro ipotesi è che i gravi obesi hanno una Pressione Pleurica (Ppl) più alta dei soggetti normali e che la Pressione esofagea è un utile indicatore della Pressione Pleurica. Studiano 50 soggetti con BMI > 38, confrontati con 10 soggetti normali, anestetizzati e paralizzati in posizione supina prima dell’inizio della chirurgia. Lo studio è piuttosto complesso (oltre ad utilizzare la misura diretta della Pressione esofagea utilizzano una misura dalla quale inferire la Pressione Pleurica) e non è mia intenzione analizzarlo in questa sede: voglio però condividere quello che, credo, di aver appreso dagli Autori. I ricercatori hanno anche misurato la Pressione Gastrica (PGa) in 30 soggetti obesi rinvenendo in 23 (= 76%) una PGa ≥ 10 cmH20. Pressione Gastrica e Pressione esofagea hanno tra loro una buona correlazione e la Pressione esofagea ha mostrato mediamente valori più alti: questo perché l’esofago, rispetto al fondo gastrico, è più vicino al piano del letto e subisce il peso del mediastino, inoltre la variabile tensione del diaframma rilasciato può modificare le pressioni in gioco. Inoltre dal BMI non è possibile predire il valore di Pressione esofagea. Il dato che ho fatto mio è che, in questi soggetti obesi, la CRS è ridotta per riduzione della CL mentre la Ccw è normale.

Tab. 1

Il fatto che la Ccw è normale nei soggetti obesi è argomentata dagli Autori con il “mass loading” (potremmo definirlo come il “peso che grava”) in alternativa allo “stiffening of the chest” tipico del lavoro elastico. Nell’obeso non c’è quindi un chest wall più rigido ma c’è semmai “più peso” sul (intorno al) polmone. E’ il grasso variamente ed imprevedibilmente disposto tra i visceri (nel mediastino dove pesa, letteralmente, sulla misura della Pressione esofagea e compete con il volume polmonare, tra i visceri sottodiaframmatici dove contribuisce al volume ed al peso che grava sul diaframma), sulla e nella parete toracica, dove pesa come colonna idrostatica rispetto all’esofago (dove misuriamo la Pressione esofagea) e sulle porzioni declivi del polmone. Utilizzando la Pressione esofagea come stima della Pressione Pleurica dobbiamo tenere conto che, in posizione supina, la Pressione esofagea è probabilmente più alta della Pressione Pleurica alla stessa altezza e che la Pressione Pleurica, in posizione supina, passa da negativa a meno negativa (o positiva) andando dalle regioni anteriori a quelle più prossime al piano del letto. L’assenza di correlazione tra BMI e Pes esprime la personale distribuzione del grasso corporeo (quindi anche nel mediastino, visceri addominali, strutture di parete e sottocute) e la variabile dislocazione del diaframma in torace. Nell’obeso supino la Pressione esofagea esprime quella pressione che circonda parte del polmone soprattutto a fine espirazione correlata ad un ridotto volume di fine espirazione (riduzione del volume aerato).

Questi sono i meccanismi che portano alla riduzione del volume polmonare, nel soggetto obeso anestetizzato, supino. La compliance esprime, come sempre, il volume aerato del polmone: nel caso della sora Lella il peso che grava intorno agli alveoli determina la chiusura delle porzioni più declivi e quelle più prossime al diaframma, porzioni teoricamente riapribili completamente.

Nel caso del paziente obeso da sottoporre ad anestesia le cose si complicano quando vengono ad aggiungersi fattori che possono modificare, in senso favorevole o sfavorevole, questa condizione: per esempio la possibilità della posizione seduta o la chirurgia open come condizioni favorevoli, di contro la necessità di Trendelenburg o lo pneumoperitoneo. Ma questo sarà oggetto di un prossimo post.

In pratica quale può essere un approccio ragionevole, se dovessimo anestetizzare sora Lella per un intervento chirurgico e sottoporla a ventilazione? Dobbiamo innanzitutto essere consapevoli, come emerso da studi epidemiologici, che i pazienti obesi sono particolarmente esposti all’utilizzo di volumi correnti maggiori di quelli fisiologici in rapporto alla loro altezza. L’impiego della PEEP resta il cardine del “trattamento”. Il valore di PEEP più indicato può essere individuato (se non possiamo fare l’occlusione di fine inspirazione) impostando una ventilazione a volume controllato con una pausa inspiratoria, frequenza fisiologica, verifica che il flusso espiratorio raggiunga il valore zero prima dell’inspirazione successiva, calcolando la Compliance dell’apparato respiratorio [ CRS  = volume inspiratorio / (Ppausa – PEEP impostata)], magari con PEEP incrementali (http://www.ventilab.org/2013/10/06/la-peep-nella-ards-tabelline-o-compliance/) compatibilmente con le condizioni cardiocircolatorie ed eventualmente la presenza di monitoraggio cruento della Pressione Arteriosa. Sceglieremo, a parità di Volume Corrente, il livello di PEEP associato alla minor differenza di pressione tra la pressione di plateau e la PEEP (cioè la driving pressure). In casi particolari potrebbe essere eventualmente utile la misurazione della pressione esofagea per stimare lo stress tidal e di fine espirazione.

 

In conclusione:

pazienti con Body Mass Index elevati, in posizione supina ed anestetizzati, sono caratterizzati da una riduzione esponenziale della Capacità Funzionale Residua, ovvero da un ridotto volume polmonare di fine espirazione.

Questa riduzione della Capacità Funzionale Residua può essere corretta utilizzando una PEEP appropriata valutandola attraverso la Driving Pressure; ovvero, per i diversi livelli di PEEP sperimentati a parità di volume corrente, utilizzando quella che comporta la migliore compliance dell’apparato respiratorio.

Un caro saluto a tutti i lettori di Ventilab.

 

Bibliografia

 

  1. Behazin N et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol 108: 212–218, 2010.
  2. Pelosi P et al.The Effects of Body Mass on lung Volumes, Respiratory Mechanics, and Gas Exchange During General Anesthesia. Anesth Analg 1998;87:654-60.
  3. Pelosi P et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol (1985). 1997 Mar;82(3):811-8.
  4. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes?  Am J Respir Crit Care Med 1998;153:3-11.
Sep 102016
 

TotoLa ventilazione con pressione di supporto (Pressure Support Ventilation) è una delle modalità di ventilazione assistita più frequentemente utilizzate in Europa. Il motivo del grande successo di questa modalità di ventilazione è dovuto sia alla sua efficacia che alla sua semplicità di impostazione. Tutte e due queste caratteristiche però nascondono dei tranelli. L’efficacia della ventilazione con pressione di supporto è infatti da verificare caso per caso e la semplicità di impostazione può divetare un tranello.

Spesso è suggerito di impostare il livello di pressione di supporto per ottenere un obiettivo di volume corrente (as esempio di 6-8 ml/kg di peso ideale) e di frequenza respiratoria (ad esempio < 25/min). E’ davvero sufficiente questo per impostare correttamente la pressione di supporto? (la pressione di supporto in alcuni ventilatori è denominata ΔASB, in altri ancora è la differenza tra IPAP ed EPAP)

Alcuni giorni fa avevamo in reparto un paziente il cui peso ideale era stimato in 70 kg. Abbiamo modificato il livello di pressione di supporto per scegliere quello a lui più appropriato. Con tre diversi livelli di pressione di supporto (5, 10 e 12 cmH2O), il volume corrente rimaneva sostanzialmente costante (tra i 450 ed i 500 ml), mentre la frequenza respiratoria si riduceva lievemente con l’incremento della pressione di supporto (23/min, 21/min e 18/min). Quale livello di pressione di supporto scegliere? Gli obiettivi di volume e di frequenza respiratoria sono raggiunti con tutte e tre le impostazioni… Lasciamo la scelta al caso e/o all’istinto?

Fortunatamente abbiamo un elemento preziosissimo per scegliere accuratamente il livello di pressione di supporto: il monitoraggio grafico della ventilazione meccanica. Nella scelta del livello di pressione di supporto, ritengo che la curva più importante da valutare sia quella flusso-tempo. Nella figura 1 vediamo l’onda di flusso con 12 cmH2O di pressione di supporto.

Figura 1

Figura 1

La ventilazione in pressione di supporto è una ventilazione pressometrica. Abbiamo ormai imparato che le ventilazioni pressometriche nei pazienti passivi (come ad esempio la ventilazione a pressione controllata) sono caratterizzate da un flusso inspiratorio decrescente (ad esempio vedi post del 27/11/2011). Nella figura 1 il flusso inspiratorio è indicato dalla parte di onda al di sopra dello zero. Nella parte iniziale dell’inspirazione il flusso raggiunge il picco, che successivamente decresce linearmente (linea gialla tratteggiata) fino al punto in cui il flusso inspiratorio “crolla” verso lo zero. [Questo punto coincide con il raggiungimento del trigger espiratorio, che come sappiamo è definito da una percentuale di flusso rispetto al picco iniziale. In questo caso abbiamo un picco di flusso di circa 50 L/min ed il trigger espiratorio si attiva a circa 15 L/min: possiamo quindi supporre che il trigger espiratorio sia stato impostato a circa il 33% (cioè 50 L/min / 15 L/min 100).] Il flusso non è mai superiore alla linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio: è una condizione simile a quella della pressione controllata con paziente passivo (trascuriamo il fatto che in questa condizione il flusso decreace esponenzialmente e non linearmente). Possiamo quindi dedurre che il paziente, dopo l’attivazione del trigger, è sostanzialmente passivo.

Nella figura 2 vediamo la curva di flusso con 10 cmH2O di pressione di supporto.

Figura 2

Figura 2

Rispetto al condizione precedente, la riduzione di pressione di supporto è minima. Frequenza respiratoria e volume corrente sono simili a quanto abbiamo ottenuto con 12 cmH2O. Ma la morfologia del flusso inspiratorio si modifica in maniera sostanziale: una parte del flusso inspiratorio si mantiene al di sopra della linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio. Un aspetto diverso da quello delle ventilazioni pressometriche a paziente passivo. Questa informazione è utile per indicare che i muscoli inspiratori continuano a “lavorare” anche dopo l’attivazione del trigger.

La figura 3 mostra la curva di flusso con 5 cmH2O di pressione di supporto.

Figura 3

Figura 3

A questo punto possiamo facilmente vedere come il flusso sia marcatamente aumentato rispetto alla linea ideale di decadimento passivo. E concludere che il soggetto in questo caso mette in gioco una rilevante attivazione dei muscoli inspiratori. Come si può vedere nella figura 3, è molto difficile (o impossibile) identificare il flusso a cui si attiva il trigger espiratorio quando il paziente è molto attivo ed il flusso inspiratorio diventa sinusoidale. Possiamo sfruttare questa condizione a nostro vantaggio: il paziente “lavora molto” se non si riconosce sulla onda di flusso il punto in cui si attiva il trigger espiratorio.

Rivediamo nella figura 4, messe insieme, le curve che abbiamo analizzato finora. A questo punto penso che un colpo d’occhio sia sufficiente per capire il differente livello di attività dei muscoli inspiratori nelle tre impostazioni della pressione di supporto. Uno sguardo a questo punto vale più di mille parole.

Figura 4

Figura 4

Ora la domanda è spontanea: quale livello di pressione di supporto scegliere? Questo dipende dagli obiettivi clinici che abbiamo nel momento in cui dobbiamo decidere. Se il nostro obiettivo è quello di far riposare un paziente affaticato (ad esempio dopo il fallimento di un trial di respiro spontaneo), meglio scegliere di mettere a riposo per un po’ di tempo i muscoli inspiratori. Viceversa, se il paziente non presenta dispnea o altri segni clinici che rendano opportuno il riposo, meglio scegliere un livello di pressione di supporto che assicuri una significativa attivazione dei muscoli inspiratori durante l’inspirazione. E magari procedere rapidamente al weaning…

Nel paziente che ho presentato, è stato scelta una pressione di supporto di 10 cmH2O, poiché con livelli più bassi lamentava dispnea. Abbiamo però evitato i 12 cmH2O, perche con questo livello tendeva ad essere inutilmente passivo durante la ventilazione assistita: 2 cmH2O sono un’inezia, ma in qualche caso potrebbero fare la differenza per accelerare il weaning…

In conclusione, riassumiamo brevemente i punti salienti del post di oggi:

1) durante pressione di supporto, la valutazione di frequenza respiratoria e volume corrente è insufficiente per una scelta appropriata dell’assistenza inspirtoria;

2) una semplice analisi della curva di flusso può aiutarci nella scelta: tanto meno il flusso è decrescente, tanto più attivo è il paziente;

3) si deve ricercare una bassa attività del paziente se l’obiettivo clinico è il riposo (quindi se si rilevano segni o sintomi di “fatica”), mentre in tutti gli altri casi è opportuno mantenere una significativa attività muscolare (fino al punto in cui può essere tollerata).

 

Un sorriso a tutti gli amici di ventilab.

Dec 162015
 

daisyAffrontiamo ora un tema rimasto aperto nella discussione al post precedente: è meglio una modalità volumetrica o pressometrica per la ventilazione meccanica nei pazienti con grave patologia ostruttiva acuta ed iperinflazione dinamica?

Per rispondere a questa domanda, vediamo cosa succede applicando una ventilazione a volume controllato o a pressione controllata allo stesso paziente ostruttivo. Per poter facilmente manipolare ventilazione e meccanica respiratoria, utilizzeremo i dati e le curve di pressione e flusso generati con un modello matematico a cui specifichiamo le caratteristiche del paziente e l’impostazione della ventilazione.(nota 1)

Dopo aver attribuito al paziente una elevata resistenza delle vie aeree ed una elastanza sostanzialmente normale (una situazione simile a quella del paziente protagonista del post precedente), cerchiamo di ventilarlo “bene” sia in volume controllato che in pressione controllata. Teniamo conto che il nostro paziente è in fase acuta, in ventilazione controllata ed ha una grave ipotensione. Date queste premesse, una buona ventilazione meccanica dovrebbe ridurre al minimo la PEEP totale, sia per migliorare il ritorno venoso e quindi la portata cardiaca, sia per ridurre la pressione di plateau, qualora ve ne fosse bisogno. Possiamo quindi condividere che, indipendentemente da volumetrica o pressometrica, dovremo erogare un volume corrente normale (ricordiamo che in fisiologia è normale un volume corrente di circa 6-7 ml/kg di peso ideale) lasciando un lungo tempo espiratorio. Quindi potremmo impostare una ventilazione iniziale con 450 ml di volume corrente senza PEEP, 12/min di frequenza respiratoria, 1” di tempo inspiratorio e 4” di tempo espiratorio, ed una rampa di 0.1”. Ovviamente questa impostazione dovrà essere rivalutata alla luce dei risultati ottenuti (ad esempio per decidere se e quanta PEEP applicare).

Impostiamo quindi una pressione controllata ed un volume controllato, scegliendo il livello di pressione controllata che consente di ottenere lo stesso volume corrente della ventilazione a volume controllato. Vediamo le curve di pressione e flusso nelle due modalità di ventilazione in figura 1.

Figura 1.

Figura 1.

In ventilazione a pressione controllata abbiamo dovuto applicare un livello di pressione di 35 cmH2O per erogare 450 ml di volume corrente (curva in alto a sinistra). In volume controllato abbiamo invece raggiunto una pressione di picco di 40 cmH2O per assicurarci lo stesso volume corrente (curva in alto a sinistra).

Possiamo considerare un vantaggio della pressione controllata la riduzione della pressione delle vie aeree rispetto al volume controllato? Ritengo di no, come forse avranno intuito i lettori più attenti di ventilab. Cerchiamo di capire il perché.

La pressione che leggiamo sul display e sulle curve del ventilatore meccanico è la pressione NEL VENTILATORE e NON NEI POLMONI del paziente.

Durante l’insufflazione, il flusso aereo si sposta dal ventilatore al paziente perché nel ventilatore c’è una pressione più alta rispetto a quella del parenchima polmonare. Al contrario, in espirazione l’aria esce dai polmoni perché questi hanno una pressione più alta rispetto a quella del ventilatore. E’ una legge molto semplice: il flusso si sposta dal punto in cui la pressione è più elevata a quello in cui è più bassa. In termini matematici si può esprimere questo concetto con la formula V’=dP/R, dove V’ è il flusso, dP la differenza di pressione tra il punto di partenza e quello di arrivo del flusso ed R la resistenza che si oppone al flusso. Quindi quando c’è flusso la pressione nel ventilatore è sempre diversa dalla pressione nei polmoni.

Ritorniamo al nostro caso: la ventilazione a pressione controllata consente di avere 5 cmH2O di pressione in meno rispetto al volume controllato nel VENTILATORE. Mantiene questo vantaggio anche nel PARENCHIMA POLMONARE?

Per rispondere a questa domanda dobbiamo necessariamente misurare la pressione intrapolmonare. Ricordando la relazione V’=dP/R, possiamo anche dire che ventilatore e polmoni hanno la stessa pressione quando non c’è flusso (e le vie aeree sono pervie). Con una pausa del flusso alla fine della inspirazione, consentiamo alla pressione nel ventilatore e nel parenchima polmonare di equilibrarsi: la pressione che leggiamo nel ventilatore sarà quindi simile a quella intrapolmonare.

Eseguiamo nel nostro paziente “modello” l’occlusione delle vie aeree a fine inspirazione durante la ventilazione a pressione controllata e durante quella in volume controllato e misuriamo le rispettive pressioni di plateau (figura 2).

Figura 2.

Figura 2.

Con entrambe le ventilazioni abbiamo 14 cmH2O di pressione di plateau (curve in alto). Un dato ampiamente prevedibile: la pressione di plateau è INDIPENDENTE dalla modalità di ventilazione, ed è determinata unicamente dal volume corrente erogato, dall’elastanza dell’apparato respiratorio e dalla PEEP totale. Le strutture alveolari sono esposte (in media) alla pressione di plateau ed è questo il motivo per cui si utilizza la pressione di plateau (e non quella di picco) per guidare la ventilazione protettiva.

Da quanto abbiamo detto ne consegue necessariamente che, a parità di volume erogato, ventilazione pressometrica e volumetrica devono essere considerate equivalenti in termini di protezione dal danno associato alla ventilazione meccanica.

Spesso nella pratica clinica la ventilazione pressometrica viene adottata per limitare la pressione di picco nelle vie aeree, senza però badare alla riduzione di volume corrente ad essa associata. Penso sia ora evidente che potremmo ottenere un risultato analogo (in termini di pressione alveolare) se scegliessimo una ventilazione a volume controllato con riduzione del volume corrente. La differenza è data dal volume corrente e non dalla modalità di ventilazione.

Durante la fase di ventilazione controllata (quindi con paziente prevalentemente passivo), a volte preferisco la ventilazione a volume controllato per alcuni piccoli vantaggiosi effetti “secondari” di questa scelta: 1) obbliga a prendere decisioni esplicite (e quindi consapevoli) sul volume corrente, senza affidarsi alla sua riduzione imprevedibile (e casuale!) legata alla riduzione della pressione applicata; 2) consente di avere sempre sott’occhio una breve pressione di pausa di fine inspirazione (se questa è introdotta nell’impostazione della ventilazione). Questa consente di avere in evidenza una stima approssimativa della pressione di plateau; 3) la valutazione qualitativa della curva di pressione offre informazioni anche su altri segni di possibile sovradistensione polmonare, come ad esempio lo stress index.

Le considerazioni che abbiamo fatto finora ci fanno concludere che anche nel paziente ostruttivo in fase acuta e sottoposto a ventilazione controllata:

1) la diatriba tra ventilazione volumetrica e pressometrica è fuorviante, quello che è veramente importante è scegliere il volume corrente appropriato da raggiungere;

2) il risultato di ogni ventilazione controllata nei pazienti con insufficienza respiratoria dovrebbe essere valutato anche alla luce della pressione di plateau e della PEEP totale.

Un sorriso a tutti gli amici di ventilab.

 

nota 1: Non entro nei dettagli del modello. I risultati sono affidabili, anche se le curve di pressione e flusso sono “squadrate”, per effetto dei cambi istantanei del segnale che il modello genera.

Jul 262015
 

bancoLa ventilazione meccanica disturba il sonno dei pazienti ventilati e oggi cercheremo di discutere come impostarla correttamente per favorire il più possibile il sonno fisiologico.

L’interferenza della ventilazione meccanica sul sonno è un fenomeno clinicamente rilevante. Infatti il 60% dei pazienti ventilati in Terapia Intensiva ha disturbi del sonno attribuibili alla ventilazione meccanica (1). Limitare le turbe del sonno (nei limiti del possibile) è importante sia per migliorare il comfort del paziente che per ridurre complicanze legate all’alterazione del sonno, come ad esempio il delirium. Infatti sappiamo bene che la privazione di sonno può essere causa di delirium (2,3) e che l’insorgenza di delirium è associata ad una incremento sia della mortalità che della disabilità a lungo termine (4,5).

La respirazione durante il sonno.

Normalmente la frequenza respiratoria è condizionata dalla soglia eupnoica di PaCO2, cioè dal livello di PaCO2 che in condizioni normali si associa all’innesco dell’inspirazione spontanea. Pochi mmHg al di sotto della soglia eupnoica, si ha la soglia apnoica di PaCO2, cioè il livello di PaCO2 al di sotto del quale l’attività respiratoria spontanea si arresta. Se per un qualsiasi motivo si ha una fase di iperventilazione (cioè di aumento di frequenza respiratoria e/o volume corrente), la PaCO2 può ridursi al di sotto della soglia apnoica: ne consegue una apnea che si prolungherà fintanto che la risalita della PaCO2 non ricomincerà a stimolare i centri respiratori.

Come si può vedere nelle figura 1, nelle prime fasi del sonno, la soglia apnoica aumenta (con una estrema variabilità individuale) e può superare la soglia eupnoica. Ne consegue una breve fase di apnea durante la quale la PaCO2 aumenta al di sopra della nuova soglia apneica e quindi la respirazione può ricominciare.

Figura 1

Figura 1

Il problema è che questa apnea può risvegliare il soggetto e che il processo ricomincia non appena si riaddormenta (6), generando quindi un respiro periodico con frequenti apnee e interruzioni del sonno evidenti all’elettroencefalogramma. Quando il sonno riesce ad approfondirsi, l’attività respiratoria diventa più regolare ed il respiro periodico scompare.

Durante la degenza in Terapia Intensiva aumenta la durata delle prime fasi del sonno e si riduce quella del sonno più profondo e quindi il paziente critico è maggiormente vulnerabile al respiro periodico ed ai frequenti risvegli che frammentano il sonno.

La ventilazione meccanica durante il sonno.

Quando impostiamo la ventilazione meccanica dobbiamo tenere conto di questi meccanismi se vogliamo favorire il sonno dei pazienti ventilati.

La ventilazione con pressione di supporto favorisce la frammentazione del sonno. Quando il livello di pressione di supporto supera un livello critico (che nei soggetti sani è tra i 7 e gli 11 cmH2O), si produce respiro periodico, che come abbiamo visto disturba il sonno. Ciò si verifica perché il volume corrente aumenta rispetto a quello spontaneo (cioè quello del periodo di veglia), non si ha un’immediata consensuale riduzione della frequenza respiratoria e quindi si sviluppa ipocapnia che si risolve con l’insorgenza di periodi di apnea (7). Dobbiamo essere consapevoli che il supporto inspiratorio che regoliamo appropriatamente durante la veglia può diventare eccessivo durante il sonno, quando diminuiscono le necessità metaboliche (e quindi la produzione di CO2) e quindi superare il livello critico che abbiamod erscritto sopra.

Il modo più semplice di risolvere questo problema è l’utilizzo della ventilazione assistita-controllata, cioè l’impostazione di una ventilazione con un volume corrente predeterminato, lasciando al paziente il compito di triggerare il ventilatore, cosa che otteniamo impostando una bassa frequenza respiratoria (ed un appropriato tempo inspiratorio!, vedi post del 15/03/2014). Personalmente preferisco, per questo scopo, la pressione controllata a target di volume rispetto alla ventilazione con volume controllato.

Figura 2

Figura 2

Durante il sonno la frequenza respiratoria si riduce sia con la pressione di supporto (PSV) che con la ventilazione assistita-controllata (ACV) (figura 2), ma con quest’ultima il volume corrente non aumenta (come invece accade con la pressione di supporto)(figura 3). La ventilazione assistita-controllata  (a target di volume) evita pertanto l’instaurarsi del respiro periodico, lasciando semplicemente guidare la frequenza respiratoria dalla soglia eupnoica di PaCO2 (8).

Figura 3

Figura 3

La soluzione di utilizzare una pressione di supporto bassa (6 cmH2O) durante il sonno non risolve il problema: la ventilazione assistita-controllata determina comunque un sonno di maggior qualità rispetto alla pressione di supporto (9).

La pressione di supporto garantisce la stessa qualità del sonno della ventilazione assistita-controllata solo ad una condizione: il supporto inspiratorio deve essere adeguato continuamente per ottenere un volume corrente stabilmente inferiore a 450 ml (vicino ai 6 ml/kg di peso ideale) ed una frequenza respiratoria tra i 20/min ed i 30/min (10). Questo può essere ottenuto con l’attivo impegno di medici ed infermieri (preziosissimi, se motivati ed addestrati, nel collaborare al monitoraggio intelligente della ventilazione meccanica) oppure con modalità di ventilazione con la regolazione automatica del supporto inspiratorio.

Potemmo sintetizzare in pochi punti operativi quello che abbiamo visto fino ad ora. Se vogliamo favorire il sonno dei nostri pazienti durante le fasi di ventilazione assistita, possiamo scegliere queste modalità di ventilazione:

1) durante il giorno:

indifferentemente pressione di supporto o ventilazione assistita-controllata;

– paradossalmente, nei pazienti che tendono a dormire di giorno, potremmo addirittura preferire la pressione di supporto, che concilia meno il sonno…

2) durante la notte:

ventilazione assistita-controllata: non richiede continui “aggiustamenti” durante la notte. Un’impostazione iniziale ragionevole potrebbe essere: 450 ml di volume corrente (da adeguare evidentemente alle caratteristiche del paziente), frequenza 6/min, tempo inspiratorio di circa 1 secondo (che a questa frequenza respiratoria impostata corrisponde ad un I:E di 1:9);

pressione di supporto: richiede continui “aggiustamenti” durante la notte. Il supporto inspiratorio deve essere variato attivamente per mantenere sempre un volume corrente tra i 350 ed i 450 ml ed una frequenza respiratoria attorno ai 20/min.

 

Come sempre, un sorriso agli amici di ventilab… e buone vacanze!

 

Bibliografia.

1) Bergbom-Engberg I et al. Assessment of patients’ experience of discomforts during respirator therapy. Crit Care Med 1989; 17:1068-72

2) Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222

3) J. Patel et al. The effect of a multicomponent multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia 2014; 69:540-9

4) Ely EW et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291:1753-62

5) Girard TD et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 2010; 38:1513-20

6) Ozsancak A. Sleep and mechanical ventilation. Crit Care Clin 2008; 24:517-31

7) Meza S et al. Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol 1998; 85:1929-40

8) Parthasarathy S et al. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med 2002; 166:1423-9

9) Toublanc B et al. Assist-control ventilation vs. low levels of pressure support ventilation on sleep quality in intubated ICU patients. Intensive Care Med 2007; 33:1148-54

10) Cabello B et al. Sleep quality in mechanically ventilated patients: Comparison of three ventilatory modes. Crit Care Med 2008; 36:1749-55

Feb 112015
 

punto di vistaLa Airway Pressure Release Ventilation (APRV) è una modalità di ventilazione un po’ strana, ma vale la pena conoscerla (ed imparare ad utilizzarla) perchè, a mio parere, in alcuni momenti può realmente cambiare la vita a qualche nostro paziente.

La APRV può essere molto utile in alcuni casi, ma come sempre non è la modalità di ventilazione in sè che “salva” il paziente, ma come la si utilizza.

Cosa è la APRV: come funziona, indicazioni e benefici clinici.

La APRV è un caso particolare di BIPAP (vedi post del 29/11/2014), in cui la pressione alta (Palta) viene mantenuta per un tempo superiore alla pressione bassa (Pbassa) (il tempo di Pbassa deve comunque essere inferiore a 1.5 secondi). Quindi la APRV è una CPAP su due livelli, ed il livello di pressione nettamente prevalente è quello alto (vedi figura 1).

Figura 1

Figura 1

La pressione alta.

Per capire la APRV, analizziamo per ora solamente la sua parte predominate, cioè i periodi a Palta, e dimentichiamo temporaneamente la presenza dei brevi periodi a Pbassa: da questa prospettiva ci troviamo di fronte ad una CPAP con una pressione elevata.

Sappiamo che una alta CPAP aumenta il volume di fine espirazione, lasciando il lavoro respiratorio a carico del paziente. A questo punto diventano chiare due condizioni che devono essere simultaneamente presenti per un’indicazione razionale della APRV:  1) la necessità di aumentare il volume polmonare a fine espirazione e 2) la volontà di far respirare spontaneamente il paziente. La APRV può essere applicata anche a pazienti passivi, ma in questo caso è inutile chiamarla APRV, il suo nome più corretto diventa pressione controllata a rapporti invertiti e perde tutti i vantaggi che descriveremo (che sono legati proprio alla presenza del respiro spontaneo): pertanto parleremo solo della “vera” APRV, cioè quella applicata in presenza di respiro spontaneo.

La necessità di aumentare il volume polmonare a fine espirazione ci fa venire subito in mente la Acute Respiratory Distress Syndrome (ARDS), condizione in cui spesso la capacità funzionale residua diventa inferiore ad 1 litro. Per questo motivo la principale applicazione della APRV è proprio la ARDS, mentre la APRV può essere vista come un controsenso in chi già soffre un elevato volume di fine espirazione, come i pazienti con iperinflazione dinamica associata a broncopneumopatia cronica ostruttiva.

Solo la presenza di attività respiratoria spontanea consente di sfruttare appieno i vantaggi della APRV. Per questo motivo la APRV non offre vantaggi rispetto alla ventilazione protettiva convenzionale (anzi, potrebbe anche essere peggiore) nelle fasi più gravi di ARDS, quando è necessario sedare e paralizzare i nostri pazienti. La APRV può diventare però un’arma decisiva quando si vogliano sospendere paralisi e sedazione nei casi di ARDS grave-moderata: spesso in questi pazienti l’inizio della ventilazione assistita è tempestoso, con tachipnea associata ad elevati volumi correnti, il tutto in un mare di asincronie. La CPAP della APRV lascia libero il paziente di respirare senza necessità di sincronia, e le inspirazioni su Palta, prive di supporto inspiratorio, normalmente si associano a volumi correnti accettabili. Ovviamente non si chiede al paziente di garantire da solo tutta la ventilazione/minuto, è sufficiente un contributo del paziente pari al 10-30% della ventilazione minuto (il resto lo faranno i passaggi in Pbassa, come vedremo in seguito). Il ripristino del respiro spontaneo favorisce l’aumento della portata cardiaca e la perfusione splancnica (per aumento del ritorno venoso associato a sedazione ridotta o abolita), il miglioramento dell’ossigenazione (si privilegia la ventilazione delle zone basali del polmone e la ridistribuzione dei gas alveolari) e la prevenzione della disfunzione dei muscoli respiratori indotta dalla ventilazione.

La pressione bassa.

La APRV deve anche supportare il paziente nell’eminazione di CO2 e questo risultato è ottenuto con i brevi periodi di Pbassa: nel passaggio a Pbassa (definito “rilascio di pressione“) i polmoni esalano un volume di gas che contiene CO2 ed il ritorno a Palta si ottiente con un volume di gas fresco che non contiene CO2. Si capisce bene a questo punto perchè si chiama “ventilazione a rilascio di pressione nelle vie aeree“: grazie ai rilasci di pressione si concretizza il supporto della ventilazione (=eliminazione di CO2), che sarà tanto maggiore quanto più frequenti saranno le fasi di Pbassa e quanto più grande il volume esalato nel passaggio a Pbassa.

In sintesi: il paziente rimane prevalentemente in CPAP (Palta) e non riceve alcun supporto inspiratorio ed i brevi rilasci di pressione consentono di eliminare “aria sporca” (=con CO2) e sostituirla con “aria pulita” (=senza CO2).

Al termine del periodo di Pbassa è comunque necessario che rimanga nei polmoni una pressione positiva (concettualmente simile alla PEEP totale) in linea con i valori di PEEP che riteniamo appropriati  per evitare l’atelectrauma. Grazie alla breve durata della Pbassa, questo risultato sarà ottenuto per merito dell’auto-PEEP (che, come abbiamo visto nel post del 18/08/2014, non è necessariamente un veleno…). 

A rigor di termine può essere improprio parlare di PEEP ed auto-PEEP (PEEP= positve end-expiratory pressure) nella APRV, visto che il periodo di Pbassa non è “l’espirazione” ma “una delle espirazioni” del paziente, una parte delle quali si può verificare anche a Palta. La figura 3 riportata di seguito potrà chiarire meglio il concetto. Impropriamente, solo per comodità continueremo a chiamare PEEP la pressione al termine del periodo di Pbassa.

Come impostare la APRV.

La gestione della APRV potrebbe non essere semplice ed immediata perchè richiede scienza, arte ed esperienza. Pertanto finchè non si diventa familiari con le sue dinamiche, suggerisco di applicare la APRV in casi abbastanza semplici (anche se la ARDS semplice non è mai) e progressivamente cercare di dominare anche le situazioni più complesse.

L’utilizzo della APRV si fonda su due fasi che devono essere continuamente ripercorse: 1) l’impostazione dei parametri e 2) l’adeguamento dell’impostazione in base ai risultati ottenuti.

Impostazione dei parametri.

La APRV richiede l’impostazione di 4 variabili: Palta, Pbassa, la durata di Palta (T-Palta) e la durata di Pbassa (T-Pbassa). Vediamo quale può essere una loro iniziale impostazione ragionata.

Palta: inizialmente si può impostare una Palta tra i 20 ed i 25 cmH2O. E’ mia opinione che sarebbe bene stare sempre almeno 5 cmH2O al di sotto della pressione di plateau di sicurezza (che spesso viene identificata a 30 cmH2O). Non propongo calcoli che potrebbero risultare complessi, ma penso che questa scelta possa con buona sicurezza assorbire anche gli aumenti di pressione transpolmonare dovuti all’attività respiratoria del spontanea del paziente durante Palta;

Pbassa: come impostazione iniziale preferisco scegliere 0 cmH2O associata ad un T-Pbassa molto breve (vedi sotto). In questo modo il flusso espiratorio passivo che inizia con il passaggio a Pbassa si interrompe precocemente, lasciano nel paziente una certa quota di “auto-PEEP“, che noi sfrutteremo per evitare il ciclico collasso alveolare in espirazione. (esiste anche la corrente di pensiero che preferisce valori di Pbassa sopra lo zero e un T-Pbassa più lungo. Ritengo che questo approccio condizioni inevitabilmente un T-Palta troppo breve, tuttavia in alcuni pazienti anche questa scelta potrebbe essere efficace);

T-Pbassa: può essere opportuno iniziare con 0.5″-0.6″.

T-Palta: la somma T-Pbassa + TPalta descrive la durata di un ciclo completo di APRV. Se scegliessimo 0.5″ di T-Pbassa e 4.5″ di T-Palta, avremmo un ciclo di 5″. Questo significa che ogni 5″ (e quindi 12 volte al minuto) c’è un rilascio di pressione e quindi un contributo meccanico alla ventilazione. Se il T-Palta fosse ridotto a 2.5″, il ciclo sarebbe di 3″ e quindi 20 volte al minuto ci sarebbe il rilascio di pressione. Quest’ultima scelta garantisce un maggior contributo del ventilatore all’eliminazione della CO2. Quindi il T-Palta deve essere accorciato quando si vuole supportare maggiormente l’eliminazione di CO2, mentre dovrebbe essere allungato quando il paziente è in grado di mantenere una adeguata PaCO2 con la propria attività respiratoria o quando è più importante supportare l’ossigenazione.

Adeguamento dell’impostazione in base ai risultati ottenuti.

PEEP totale: la PEEP totale si può misurare con l’occlusione di fine espirazione anche in APRV e dovrebbe essere simile alla PEEP che riteniamo appropriata. Nella figura vediamo un esempio: il plateau dell’occlusione a fine espirazione è indicato dalla doppia freccia rossa e si vede la lettura della PEEP totale che compare sul display numerico durante il periodo di occlusione.

Figura 2.

Figura 2.

Se la PEEP totale fosse eccessiva, possiamo o ridurre i volumi correnti se sono elevati (vedi sotto) e/o aumentare T-Pbassa. Se la PEEP totale fosse invece insufficiente, possiamo ridurre il T-Pbassa e/o aumentare Pbassa.

Quando non è possibile stimare la PEEP totale, viene suggerito di modulare il T-Pbassa per interrompere l’espirazione quando il flusso espiratorio raggiunte il 50-75% rispetto al picco (vedi figura 3.)

Figura 3.

Figura 3.

Volume corrente: le variazioni di passive di volume nel passaggio da Palta a Pbassa devono essere nei limiti accettabili della ventilazione protettiva, così come le variazioni totali di volume durante una fase di Palta devono essere ragionevoli.

Le variazioni di volume devono essere capite ed interpretate correttamente, per abituarci a farlo analizziamo il caso presentato in figura 4. Con i numeri da 1 a 4 sono indicate le diverse fasi di flusso (curva verde) durante Palta. Il numero 1 indica un flusso inspiratorio che inizia al passaggio da Pbassa a Palta. Al termine di questo flusso si completa un primo aumento nella traccia di volume corrente (la curva azzurra). Possiamo stimare (proiettando la fine del flusso sulla curva di volume) che a questo punto siano entrati circa 100 ml nei polmoni del paziente. Appena finito questo flusso inspiratorio, ne inizia un altro (il numero 2), questa volta completamente spontaneo (quindi un atto in CPAP a Palta). Al termine di questo flusso, il volume corrente è aumentato a circa 600 ml. Quindi segue un flusso espiratorio indicato con il numero 3 (un‘espirazione a Palta), al termine del quale il volume si è ridotto a circa 250 ml. L’ultima inspirazione (la numero 4) che avviene a Palta è ancora spontanea e riporta nuovamente il volume corrente a poco più di 600 ml. Il risultato finale è che durante il ciclo di Palta il volume polmonare non è mai aumentato oltre 600-650 ml (la somma algebrica di tre espirazioni ed 1 espirazione) : questo dato potrebbe essere accettabile in un paziente in cui il peso ideale fosse intorno agli 80 kg (saremmo entro gli 8 ml/kg), ma non in un soggetto il cui peso ideale fosse di 50 kg (aumento di volume di circa a 12 ml/kg). (Ovviamente si possono accettare sporadici volumi “eccessivi”).

Figura 4.

Figura 4.

Se il volume fosse troppo piccolo possiamo aumentare la differenza tra Palta e la PEEP totale, viceversa quensta va ridotta se il volume corrente fosse eccessivo.

PaCO2: se la PaCO2 fosse troppo elevata, la soluzione è ridurre T-Palta, con l’effetto di aumentare il numero di rilasci al minuto. Ovviamente possiamo aumentare il volume associato al rilascio di pressione (vedi sopra) qualora questo fosse inferiore al raccomandato.

PaO2: l’ossigenazione può essere migliorata aumentando la pressione media delle vie aeree, cosa possibile aumentando Palta e/o T-Palta.

In questo post ho cercato di sintetizzare quanto ho appreso sulla APRV dagli studi clinici e dalla mia esperienza pratica. Certamente l’argomento si presterebbe a molte ulteriori considerazioni ed approfondimenti, che eventualmente affronteremo nello spazio per i commenti.

Conclusioni. 

Riassumendo gli aspetti principali della APRV:

  • la principale indicazione alla APRV è il paziente con ARDS moderata/grave con attività respiratoria spontanea; può essere quindi particolarmente utile nella transizione dalla ventilazione controllata con sedazione/paralisi alla ventilazione assistita;
  • la APRV consente di ridurre i sedativi, ripristinare l’attività dei muscoli respiratori e migliorare l‘ossigenazione, la portata cardiaca e la perfusione renale;
  • il valore di pressione alta dovrebbe essere sempre più basso della pressione di plateau che si considera come limite superiore da non superare; un valore abituale è tra i 20 ed i 25 cmH2O;
  • la pressione bassa può essere 0 cmH2con una breve durata (0.5″-0.6″)
  • la durata della pressione alta dipende dalla capacità di respiro spontaneo del paziente; più si vuole supportare la ventilazione del paziente, più breve deve essere la durata della pressione alta, più si vuole autonomizzare il paziente, più si deve allungare il tempo di pressione alta;
  • il volume corrente passivo deve essere nei limiti della ventilazione protettiva;
  • è opportuno valutare la PEEP totale e fare in modo che essa coincida con il valore di PEEP ottimale per il paziente.

Prima di alcuni suggerimenti bibliografici sulla APRV, come sempre un sorriso a tutti gli amici di ventilab.

 

Bibliografia.

Hering R et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology 2003; 99:1137-44

Kaplan LJ et al. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care 2001; 5:221-6

Putensen C et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 159:1241–8

Putensen C et al. Long term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164:43-9

Richard JC et al. Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 2013; 39:2003–10

Rose L et al. Airway pressure release ventilation and biphasic positive airway pressure: a systemic review of definitional criteria. Intensive Care Med 2008; 34:1766-73

Yoshida T et al.  The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg 2009; 109:1892-900

Review free:

Daoud EG et al. Airway Pressure Release Ventilation: what do we know? Respir Care 2012;57:282-92

 

Nov 292014
 

201262091524_ventilatoreSpesso mi vengono poste domande sulle “modalità di ventilazione non invasiva“. A mio parere non esistono “modalità di ventilazione non invasiva” ma solo “modalità di ventilazione meccanica“. Quando si dice “ventilazione non invasiva” deve essere chiaro che il termine “non invasiva” è solo un attributo del sostantivo “ventilazione”. “Non invasiva” vuol dire semplicemente che si collega il ventilatore all’apparato respiratorio con strumenti esterni alle vie aeree (maschere, caschi) invece che con strumenti interni alle vie aeree (tubi tracheali).

Se ci si limita a collegare l’apparato respiratorio al ventilatore (in maniera invasiva o non invasiva) non si è ancora fatto nulla: si tratta l’insufficienza respiratoria solo quando si comincia a VENTILARE. E le modalità di ventilazione sono uguali nella ventilazione invasiva ed in quella non invasiva. In entrambi i casi possiamo utilizzare (teoricamente) volume controllato, pressione controllata, pressione di supporto, SIMV, NAVA, BIPAP, CPAP, PRVC, PAV…

L’interfaccia non invasiva è utile solo se consente di erogare una buona ventilazione, altrimenti può diventare una trappola mortale. E’ indispensabile ricordare che l’obiettivo (nostro e, soprattutto, del paziente) è la VENTILAZIONE: ogni volta che la ventilazione con un’interfaccia non invasiva non è appropriata, la ventilazione non invasiva deve rapidamente essere abbandonata per l’intubazione tracheale. Meglio una buona VENTILAZIONE invasiva di una brutta VENTILAZIONE non invasiva.

Il vantaggio della non invasività è principalmente quello di VENTILARE quei soggetti in cui le complicazioni dell’invasività superano i benefici della VENTILAZIONE. Questi soggetti sono in primo luogo quelli con insufficienza respiratoria lieve-moderata, una condizione che in cui le complicanze dell’intubazione possono essere superiori ai benefici della ventilazione.

Da queste premesse deriva che bisogna conoscere come funzionano le modalità di VENTILAZIONE sia che si utilizzi la VENTILAZIONE invasiva sia che si utilizzi quella non invasiva.

Un primo problema quando si utilizzano i ventilatori meccanici può essere quello di districarsi nella giungla di sigle che a sproposito designano le modalità di ventilazione: spesso denominazioni diverse indicano la medesima ventilazione, altre volte la stessa definizione è applicata a ventilazioni diverse tra loro.

Oggi cerchiamo di fare chiarezza su una modalità di ventilazione che volte genera ambiguità: la ventilazione BIPAP.

La Biphasic Positive Airway Pressure (BIPAP) è una modalità di ventilazione che nasce nella seconda metà degli anni ’80 (1) ed è caratterizzata dall’applicazione bifasica (cioè su due differenti livelli) della pressione positiva continua delle vie aeree. La confusione sulla BIPAP inizia nei primi anni ’90, quando la Respironics negli Stati Uniti brevetta il marchio BiPAP® (con la “i” minuscola) e lo utilizza come nome per il proprio ventilatore monotubo da ventilazione non invasiva. La BiPAP® ottiene (meritatamente) un grande successo e diventa il pioniere della moderna ventilazione non invasiva nella pratica clinica. Da quel momento BiPAP® diventa simbolo e (purtroppo) sinonimo di ventilazione non invasiva, e trascina nel caos anche la ventilazione BIPAP che spesso viene confusa con la BiPAP®. Ancora più beffardo il fatto che il ventilatore BiPAP® non abbia tra le sue modalità di ventilazione la BIPAP (cioè la Biphasic Positive Airway Pressure): infatti la modalità di ventilazione BiPAP® S è semplicemente una pressione di supporto, mentre la BiPAP® S/T è una pressione di supporto con una pressione controlata di sottofondo che si attiva se la frequenza respiratoria del paziente diventa inferiore di quella impostata (in pratica funziona come una pressione controllata/assistita con gli atti spontanei ciclati a flusso e quelli temporizzati ciclati a tempo)

Oggi ci dedichiamo a chiarire come funziona la BIPAP, che può essere applicata sia attraverso un’interfaccia invasiva che una non invasiva (come tutte le modalità di ventilazione convenzionali). I ventilatori meccanici chiamano la BIPAP in modi diversi (BIPAP, Bi-Vent, BiLevel, BiPhasic, DuoPAP), ma fanno tutti la stessa cosa.

Nella BIPAP si impostano due differenti livelli di pressione che funzionano come due differenti livelli di CPAP. La CPAP è una modalità in cui il paziente respira spontaneamente con una pressione positiva continua nelle vie aeree. Ciò significa che il flusso inspiratorio non si associa all’aumento della pressione delle vie aeree, come avviene quando l’atto inspiratorio è supportato dal ventilatore. Nella BIPAP quindi il paziente respira spontaneamente come nella CPAP, ma ha due livelli, e non uno solo come nella CPAP, di pressione positiva continua ne che si alternano ritmicamente (vedi figura 1, pressione delle vie aeree in giallo, flusso in verde). Per poter impostare una BIPAP sono quindi indispensabili 4 comandi: un livello di pressione “bassa” (Pbassa), un livello di pressione “alta” (Palta), una durata della Pbassa (T-Pbassa) ed una durata della Palta (T-Palta).

Figura 1.

Figura 1.

La BIPAP non è solamente una ventilazione spontanea poichè il paziente riceve, inevitabilmente, un’insufflazione quando la pressione passa da Pbassa a Palta (figura 2, inspirazione nel respiro 3), come avviene tutte le volte che aumenta la pressione delle vie aeree durante la ventilazione meccanica. Ed altrettanto inevitabilmente il paziente espira una parte del proprio volume polmonare nel passaggio da Palta a Pbassa (figura 2, espirazione del respiro 4: come si vede il flusso espiratorio è maggiore rispetto a quello delle altre espirazioni).

Figura 2.

Figura 2.

Quindi la BIPAP è una combinazione tra una ventilazione controllata pressometrica (legata all’alternarsi di Pbassa e Palta) ed una ventilazione spontanea, con atti respiratori spontanei liberamente eseguibili sia durante Pbassa che durante Palta. Nella figura 2 vediamo che le inspirazioni spontanee durante Pbassa sono la 1, 2, 5 e 6, mentre l’inspirazione spontanea 4 avviene durante Palta. L’inspirazione 3 invece è l’unica assistita dal ventilatore, come si evince dal chiaro aumento della pressione delle vie aeree che si associa ad essa.

Se il paziente diventa passivo, ha assicurata una ventilazione che è a tutti gli effetti una ventilazione a pressione controllata: la Pbassa diventa la PEEP e la differenza tra Palta e Pbassa costituisce il livello di pressione controllata. Il tempo T-Palta diventa il tempo inspiratorio, mentre il tempo T-Pbassa rappresenta il tempo espiratorio. Un ciclo respiratorio completo ha quindi come durata la somma di T-Palta e T-Pbassa e la frequenza respiratoria diventa uguale a 60/(T-Palta+T-Pbassa). Se imposto T-Palta di 1,5″ e T-Pbassa di 2,5″, quale sarà la frequenza respiratoria?

Se il paziente diventa attivo, la BIPAP diventa ben diversa dalla pressione controllata. In pressione controllata ogni tentativo (efficace) di inspirazione del paziente attiva un nuovo atto controllato (quindi l’aumento della pressione delle vie aeree al livello impostato per la durata del tempo inspiratorio) (figura 3). Qui si vede chiaramente che l’attivazione del trigger (ben identificata dal cerchio bianco) innesca ogni volta un atto con assistenza inspiratoria (=con aumento della pressione nelle vie aeree).

Figura 3.

Figura 3.

Durante la BIPAP invece l’inspirazione spontanea durante Pbassa, non triggera alcun atto controllato, ma diventa solamente un atto respiratorio spontaneo aggiuntivo che inframmezza il ritmo dei cambi di pressione (come già visto in figura 2). Questa è una caratteristica condivisa con la SIMV: respiri controllati alternati a respiri spontanei. Bisogna comunque sapere che molti ventilatori lasciano una finestra di sincronizzazione tra attività respiratoria del paziente e cicli della BIPAP: se un paziente inspira in prossimità del passaggio da Pbassa a Palta, il ventilatore anticipa e sincronizza questo passaggio con la attività inspiratoria spontanea, di fatto riproducendo quanto normalmente avviene durante la ventilazione a pressione controllata.

La vera peculiarità della BIPAP si manifesta quando si ha attività inspiratoria o espiratoria spontanea durante la Palta: per la BIPAP questa non è un’asincronia, ma semplicemete un respiro del paziente ad uno dei livelli di CPAP. Vediamo cosa significa in pratica osservando la figura 4.

Figura 4.

Figura 4.

In questa figura vediamo un aumento di pressione in PCV ed uno in BIPAP (entrambi da 5 a 18 cmH2O). In entrambi i casi questo aumento di pressione viene mantenuto per il tempo impostato (in PCV è il tempo inspiratorio, in BIPAP il T-Palta). In entrambi i respiri il flusso inspiratorio generato (principalmente) dall’aumento di pressione ad un certo punto finisce (in corrispondenza della linea tratteggiata bianca). Qui si vede bene la differenza: durante il tempo inspiratorio in PCV il paziente non può espirare facilmente (il flusso resta bloccato sulla linea dello zero) e la pressione delle vie aeree in questa fase tende ad aumentare, un segno compatibile con un tentativo di espirazione del paziente che non va a buon fine. In BIPAP invece il paziente fa quello che vuole: dopo il termine dell’insufflazione, riesce prima ad espirare (flusso al di sotto dello zero) e poi ad inspirare mentre il ventilatore mantiene la Palta. (Questo comportamento è tipico della BIPAP, anche se qualche ventilatore è diventato capace di “ascoltare” meglio il paziente anche durante la ventilazione a pressione controllata e quindi, entro certi limiti, di accettare le asincronie inspiratorie)

Questo è tutto sul meccanismo di funzionamento della BIPAP. Quando e come usarla? Il post è già molto lungo, avremo modo di riparlarne in futuro.

Per concludere, come sempre ecco i messaggi-chiave:

1) la BIPAP è una modalità di ventilazione nata a cresciuta per la ventilazione invasiva. Può (come tutte le modalità di ventilazione) essere applicata anche durante ventilazione non invasiva, ma i ventilatori da ventilazione non invasiva normalmente non ce l’hanno tra le modalità di ventilazione (anche se si chiamano BiPAP®);

2) la BIPAP è caratterizzata dall’alternarsi di due livelli di CPAP;

3) quando il paziente è passivo la BIPAP è identica alla ventilazione a pressione controllata;

4) quando il paziente è attivo, può aggiungere liberamente la propria attività respiratoria spontanea su entrambi i livelli di pressione: si ha quindi la fusione degli atti respiratori spontanei gli atti respiratori imposti dal ventilatore.

Un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Baum M, Benzer H, Putensen C, Koller W: Biphasic positive airway pressure (BIPAP):  a new form of augmented ventilation. Anaesthesist 1989; 38:452-458.

Nov 072014
 

pets-3_1718379cQuando siamo chiamati a valutare un paziente affetto da una patologia oncologica o onco-ematologica in insufficienza respiratoria acuta ci troviamo davanti ad alcune decisioni difficili e al tempo stesso cruciali. In sintesi dobbiamo stabilire se:

a) il supporto delle funzioni vitali possa procurare al paziente un reale beneficio o piuttosto comporti solo un prolungamento delle sue sofferenze;

b) nei casi di dubbio sull’indicazione al supporto vitale, sia opportuno trasferire il paziente in terapia intensiva (TI) o gestirlo finché possibile in reparto a minore intensità di cure;

c) nei casi in cui vi è indicazione al supporto vitale, l’insufficienza respiratoria sia da trattare con ventilazione non invasiva (NIV) oppure invasiva.

La mortalità dei pazienti neoplastici ricoverati in terapia intensiva si è rivelata in passato elevatissima (oltre l’80-90% nei pazienti ematologici1), per cui l’ammissione in TI e la ventilazione meccanica sono state a lungo considerate interventi discutibili in quanto futili.

Dati più recenti indicano tuttavia che la sopravvivenza dei pazienti neoplastici ricoverati in TI e/o sottoposti a ventilazione meccanica è significativamente migliorata nell’ultimo decennio (27-58%2), tanto che ultimamente essi rappresentano il 15-20% di tutte le ammissioni nei reparti intensivi2,3. La riduzione della mortalità è ascrivibile certamente ai progressi compiuti in campo onco/ematologico e intensivistico, ma probabilmente anche a un più efficace triage dei pazienti e allo sviluppo di nuove politiche di ammissione in TI, frutto di una migliore cooperazione tra onco/ematologi e intensivisti4.

Sebbene l’incertezza prognostica sia quasi sempre la regola, per l’eterogeneità delle condizioni generali dei pazienti, dei margini di curabilità del tumore e della gravità della malattia critica, considerare i predittori di successo e di fallimento del trattamento intensivo può aiutare a orientarci sulla questione di cui al punto a del post. In generale sono considerati predittori di esito favorevole lo scompenso cardiaco acuto come causa di insufficienza respiratoria, la batteriemia recente, l’efficacia precoce della ventilazione non invasiva, la chemioterapia di prima linea o lo status di remissione completa, le buone condizioni generali; predittori di esito sfavorevole sono invece l’elevato (>2) numero di insufficienze d’organo, il fallimento della ventilazione non invasiva o la necessità iniziale di ventilazione invasiva, l’assenza di diagnosi eziologica di insufficienza respiratoria, la micosi invasiva, l’età avanzata. Tali fattori non hanno un valore prognostico assoluto, ma dovrebbero integrare il giudizio clinico sulle condizioni attuali del paziente, possibilmente in accordo con l’onco/ematologo curante: eventuali decisioni sul fine vita non andrebbero rimandate, perché ciò non fa che aumentare il carico di sofferenza fisica e emotiva sul paziente e sui suoi familiari5.

Nei casi dubbi (punto b del post), diverse evidenze suggeriscono una più larga politica di ammissione in TI4 dei pazienti oncologici, sebbene sia da evitare ogni irragionevole ostinazione terapeutica e siano da rispettare valori e desideri del paziente, così come la sua spettanza di vita. Per i pazienti candidabili a TI distinguiamo tre opzioni4 (figura 1):

1) trattamento pieno senza limitazioni: sono di solito i pazienti in trattamento di prima linea o quelli con malattia a evoluzione cronica; nel caso di trapianto di midollo osseo bisogna includere in questa opzione i pazienti che si trovano nelle prime 4 settimane dal trapianto, quelli con malattia da rigetto controllata e quelli con epilessia o encefalopatia reversibile;

2) trattamento pieno senza limitazioni di intensità per un tempo limitato (il cosiddetto ICU trial12): alternativa possibile per i pazienti in remissione, con malattia stabile e possibilità di ulteriori opzioni chemioterapiche o con prognosi dubbia o indefinita; consiste nel trattamento pieno per 3-6 gg, quindi nella rivalutazione giornaliera delle disfunzioni d’organo: in assenza di miglioramenti non si incrementano ulteriormente le terapie e si valuta l’avvio di palliazione;

3) ammissione per sola palliazione (pazienti da non intubare): è comunque controverso se la TI sia il posto migliore per offrire una NIV palliativa o per morire.

Immagine1

Il piano terapeutico deve essere precocemente ed esplicitamente chiarito con il paziente o i suoi parenti e gli onco/ematologi. La precocità della eventuale ammissione in TI così come del trattamento della insufficienza respiratoria sembra comportare un vantaggio in termini di sopravvivenza4,13: onco/ematologi e intensivisti dovrebbero probabilmente collaborare prima che le insufficienze d’organo divengano conclamate.

Veniamo al punto c). L’efficacia della ventilazione non invasiva nei pazienti neoplastici, segnalata da alcuni studi, non è confermata da altri e potrebbe essere sovrastimata4. L’intubazione e la ventilazione invasiva sono associati ad aggravamento della prognosi, ma anche la non invasiva, che se applicata precocemente è risultata efficace nel migliorare gli scambi gassosi, ridurre il tasso di intubazione e migliorare l’outcome, è associata ad elevata mortalità in caso di fallimento6,7. Per quanto ne sappiamo oggi, quindi, in assenza di controindicazioni e di predittori di fallimento della NIV, quest’ultima andrebbe applicata precocemente e il paziente dovrebbe essere attentamente monitorizzato e intubato in caso di mancato miglioramento in tempi rapidi (anche 1-2 ore)4,8. I predittori di fallimento della NIV sono in sostanza elevati indici di gravità generale del paziente, elevata gravità della insufficienza respiratoria, assenza di diagnosi eziologica di insufficienza respiratoria, scarsa tolleranza del paziente alla metodica.

In figura 2 una schematica sintesi sulla gestione dell’insufficienza respiratoria nel paziente onco/ematologico9.

Immagine2

Quale sia il luogo più idoneo in cui iniziare il trattamento con NIV (reparto onco/ematologico o TI) resta una questione in sospeso4, essendo disponibili in letteratura pochissime evidenze che forniscono indicazioni di segno opposto10,11. Verosimilmente la disponibilità immediata di sistemi di monitoraggio, di personale infermieristico e di intensivisti in grado di prendere decisioni adeguate e tempestive gioca un ruolo determinante.

In sintesi, possiamo concludere che:

  1. nel decidere che tipo di assistenza offrire al paziente oncologico possiamo affiancare al giudizio clinico la conoscenza dei principali predittori di esito;

  2. l’ammissione in TI dovrebbe essere allargata a tutti i pazienti che possano trarne un realistico beneficio, ricorrendo nei casi dubbi a un trial di alcuni giorni di TI;
  3. se il paziente non è in condizioni troppo gravi il trattamento dell’insufficienza respiratoria può essere la NIV, purché iniziata precocemente e precocemente convertita in invasiva in caso di mancato miglioramento in tempi rapidi.

Con un simile approccio potremo evitare di negare ad alcuni pazienti il supporto vitale potenzialmente utile, minimizzando al tempo stesso il numero e la durata di trattamenti inefficaci, eccessivi e penosi. In contesti caratterizzati da limitazione della spesa sanitaria e da scarsità di posti letto in TI tale strategia dovrebbe consentire una razionale allocazione delle risorse. Una sia pur grossolana verifica della correttezza del metodo proposto potrebbe esserci fornita dal confronto tra percentuali di ricovero, indici di gravità e mortalità dei pazienti onco/ematologici delle nostre terapie intensive con i dati recenti della letteratura.

Un cordiale saluto agli amici e ai lettori di ventilab.

Bibliografia

  1. Ewig S et al. Pulmonary complications in patients with haematological malignancies treated at a respiratory ICU. Eur Respir J 1998;12:116-22

  2. Taccone FS et al. Characteristics and outcomes of cancer patients in European ICUs. Crit Care 2009; 12(1):R15

  3. Soares M et al. Characteristics and outcomes of patients with cancer requiring admission to intensive care units: a prospective multicenter study. Crit Care Med 2010; 38(1):9-15

  4. Saillard C et al. Mechanical ventilation in cancer patients. Minerva Anestesiol 2014;80:712-25

  5. Benoit D et al. Has survival increased in cancer patients admitted to the ICU? We are not sure. Intensive Care Med 2014; 40:1576-9

  6. Depuydt P et al.The impact of the initial ventilatory strategy on survival inhematological patients with acute hypoxemic respiratory failure. J Crit Care 2010; 25:30-6

  7. Molina R et al.Ventilatory support in critically ill hematology patients with respiratory failure. Crit Care 2012; 16:R133

  8. Kostakou E et al. Critically ill cancer patient in intensive care unit: Issues that arise. J Crit Care 2014; 29:817-22

  9. Soares M et al. Noninvasive ventilation in patients with malignancies and hypoxemic acute respiratory failure: A still pending question. J Crit Care 2010; 25:37-8
  10. Squadrone V et al.Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancies. Intensive Care Med 2010; 36:1666-74

  11. Wermke M et al.Respiratory failure in patients undergoing allogeneic hematopoietic SCT-a randomized trial on early non-invasive ventilation based on standard care hematologic wards. Bone Marrow Transplant 2012; 47:574-80

  12. Lecuyer L et al. The ICU Trial: A new admission policy for cancer patients requiring mechanical ventilationCrit Care Med 2007; 35:808–814

  13. Mokart D, et al. Delayed ICU admission is associated with increased mortality in cancer patients with acute respiratory failure. Leuk Lymphoma 2013;54:1724-9

Oct 182014
 

snoopy_erroriNell’ultimo post abbiamo iniziato a parlare di asincronie paziente-ventilatore. Ho concluso il post con un breve quiz a cui hanno risposto 129 tra i più attenti ed intraprendenti lettori di ventilab. Ecco le mie risposte commentate alle domande.

pcv-vg_detail

Figura 1

Modalità di ventilazione meccanica. Nella figura 1 propongo il dettaglio di una inspirazione, la traccia superiore (gialla) è la pressione delle vie aeree, quella inferiore (verde) il flusso delle vie aeree. L’inspirazione si riconosce facilmente perchè il flusso è positivo (cioè sopra la linea tratteggiata): la forma del flusso inspiratorio è decrescente e la pressione nelle vie aeree durante l’inspirazione è costante, due caratteristiche tipiche delle ventilazioni pressometriche. Qualsiasi ventilazione pressometrica infatti per definizione deve (o, meglio, dovrebbe) mantenere costante la pressione delle vie aeree durante l’inspirazione, ed il flusso inspiratorio decrescente è la conseguenza dell’inspirazione a pressione costante. Possiamo quindi escludere che si tratti di una ventilazione volumetrica (di norma caratterizzata da un flusso inspiratorio costante ed una pressione delle vie aeree che aumenta durante l’inspirazione) (vedi post del 27/11/2011). Il 73% dei lettori ha risposto correttamente a questa domanda. La ventilazione pressometrica che stiamo vedendo è assistita perchè si vede una piccola riduzione della pressione delle vie aeree prima dell’insufflazione, segno di attivazione del trigger inspiratorio. Potremmo quindi avere impostato una pressione controllata, una pressione controllata a target di volume (che è una ventilazione  pressometrica, anche se imposta un volume!), o una pressione di supporto. Dalle immagini a disposizione non si può stabilire con certezza quale di queste tre ventilazioni sia quella realmente utilizzata (nella realtà era una pressione controllata a target di volume).

peepi_ineffective_effort

Figura 2

Iperinflazione dinamica. La presenza di iperinflazione dinamica si può rilevare con l’interruzione del flusso espiratorio al momento dell’inizio dell’insufflazione successiva. Nella figura 2 persiste ancora il flusso espiratorio quando inizia l’inspirazione? Il caso è subdolo e la risposta è “sì”. Infatti se vediamo il flusso espiratorio alla fine della traccia è quasi a zero, ma non proprio zero (si riesce a vedere la linea bianca punteggiata che rappresenta il flusso zero). Abbiamo visto nel post del 18/08/2014 che in questi casi spesso c’è flow limitation e quindi si possono sviluppare anche autoPEEP elevate. Quindi in questo paziente ci possiamo aspettare iperinflazione dinamica e PEEP intrinseca (come ha risposto correttamente il 67% dei lettori), probabilmente di entità non trascurabile.

Sforzi inefficaci. Le curve di flusso e pressione ci fanno vedere uno sforzo inefficace (34% di risposte corrette). Lo vediamo a metà della traccia di flusso in figura 2, quando per un istante il paziente annulla l’espirazione (il flusso espiratorio arriva a toccare la linea dello zero) ma poi ricomincia ad espirare. La traccia bianca della figura (generata dalla rilevazione dell’attività elettrica diaframmatica rilevata dal monitoraggio con catetere per NAVA®, Neurally Adjusted Ventilatory Assisst, Maquet) identifica nello stesso istante una contrazione del diaframma. Lo sforzo inefficace si verifica quando il paziente tenta di inspirare (=contrae i muscoli inspiratori) ma non attiva il trigger. La diagnosi di sforzo inefficace si fa sulla curva di flusso espiratorio, dove si nota è la transitoria riduzione (o addirittura l’annullamento) del flusso espiratorio che subito dopo ricomincia ad una velocità simile a quella che aveva prima del rallentamento. La spiegazione è semplice: il flusso esprime la velocità del volume di gas che si muove nelle vie aeree, è negativo quando l’aria esce dalle vie aeree, è positivo quando l’aria entra nelle vie aeree del paziente.  Un flusso molto negativo vuol dire che l’aria esce velocemente dalle vie aeree, uno poco negativo vuol dire che l’aria esce lentamente. Se iniziamo un’inspirazione mentre c’è ancora un flusso espiratorio, significa che richiamiamo nelle vie aeree il flusso che sta uscendo, si riduce (o si annulla) quindi la velocità del gas che stiamo espirando: in questo caso il flusso espiratorio si avvicina alla (o tocca la) linea dello zero. Se questa attività inspiratoria è insufficiente per iniziare una nuova inspirazione (=non attiva il trigger inspiratorio), quando si rilassa la muscolatura inspiratoria, il flusso espiratorio riprende la propria velocità di uscita (si riallontana dalla linea dello zero).

double_trigger

Figura 3

Doppio trigger. Questa asincronia paziente-ventilatore identifica due inspirazioni separate da un tempo espiratorio molto breve e la prima inspirazione è triggerata dal paziente. Il tempo espiratorio è spesso arbitrariamente definito “breve” quando è meno della metà del tempo inspiratorio medio. Nella figura proposta nell’ultimo post vediamo chiaramente due doppi trigger (79% di risposte corrette). Nella figura tre vediamo il dettaglio di uno di questi doppi trigger: i due flussi inspiratori sono separati da un brevissimo tempo inspiratorio, nettamente più corto della metà dei tempi inspiratori. Da notare che il monitoraggio con catetere NAVA ci consente di affermare che la seconda inspirazione è autociclata perchè si verifica in assenza di attività diaframmatica. In assenza del monitoraggio dell’attività elettrica del diaframma questo autociclaggio sarebbe assolutamente impossibile da identificare, perchè la pressione delle vie aeree, prima della seconda inspirazione, cala al di sotto del valore di PEEP, come quando il trigger viene realmente attivato dal paziente. La spiegazione per questo fenomeno esiste, ma è piuttosto complessa da spiegare: la affronteremo in qualche commento se dovesse interessare.

trigger

Figura 4

Autociclaggio. Nella figura 4 ripropongo l’immagine del questionario con l’aggiunta di qualche dettaglio. Il livello della PEEP è stato continuato con la linea tratteggiata rossa durante i periodi inspiratori. Inoltre è stata evidenziata con un cerchio la deflessione della pressione inspiratoria che precede ogni insufflazione, di norma segno di attivazione del trigger inspiratorio da parte del paziente. Da questi dati emergerebbe che tutti le inspirazioni sono triggerate e quindi non ci sono autociclaggi (50% di risposte corrette). Per una trattazione più approfondita del fenomeno rimando al post del 27/01/213. Come accennato nel paragrafo precedente, però disponendo del segnale generato dal catetere NAVA possiamo vedere che nei due doppi trigger la seconda inspirazione è autociclata. Se scegliamo questo approccio per valutare gli autociclaggi, le risposte corrette scenderebbero al 31%.

Fino a qui abbiamo discusso come e perchè diagnosticare sforzo inefficace, doppio trigger ed autociclaggio. Riassumendo:

1) sforzo inefficace: il flusso espiratorio si avvicina alla (o raggiunge) la linea dello zero per poi riallontanarsi dallo zero;

2) doppio trigger: dopo un’inspirazione triggerata, l’inspirazione successiva avviene dopo un’espirazione molto più breve dell’inspirazione;

3) autociclaggio: manca la piccola riduzione della pressione delle vie aeree prima dell’insufflazione (abbiamo visto che possono esserci dei falsi negativi: sembra che ci sia il triggeraggio, ma invece non c’è)

Non abbiamo però detto cosa fare quando si vedono queste asincronie paziente-ventilatorese dobbiamo considerarle sempre tutte “cattive” (la risposta all’ultima domanda del questionario). Mi sembra però che per oggi possa bastare, affronteremo prossimamente questi argomenti (prima ci sarà un post di Daniele su un argomento veramente interessante…).

Un sorriso a tutti gli amici di ventilab.

Sep 222014
 

PENAUTsLe asincronie durante la ventilazione meccanica sono un argomento di moda in ambito scientifico che mi piacerebbe riuscire a tradurre in alcuni semplici concetti utili nella pratica clinica.

Per asincronia possiamo intendere l’imperfetta sincronizzazione tra i tempi inspiratorio ed espiratorio del paziente e quelli del ventilatore. Tutti noi, anche quando respiriamo spontaneamente, abbiamo un periodo di inspirazione ed uno di espirazione che sono determinati dall’attività dei centri del respiro. Anche il ventilatore meccanico ha un periodo inspiratorio ed uno espiratorio che sono condizionati (nelle principali ventilazioni) dall’impostazione del ventilatore. L’asincronia paziente-ventilatore si manifesta quando i tempi del paziente e quelli del ventilatore non coincidono.

(Qualcuno classifica tra le asincronie anche l’inadeguata assistenza inspiratoria ma, indipendentemente dal fatto che ciò sia o meno corretto, non affronteremo questo capitolo.)

Per comprendere bene le asincronie paziente-ventilatore è necessario affidarsi alla valutazione del monitoraggio delle forme d’onda del monitoraggio respiratorio. A questo scopo è sufficiente la valutazione simultanea delle curve di flusso e pressione. Oggi (e nel prossimo post) affronteremo tre tipi di asincronie:

– l’autociclaggio, cioè l’inizio di una inspirazione meccanica in assenza di attività inspiratoria del paziente o dell’insufflazione programmata del ventilatore. In altre parole, il ventilatore “si sbaglia” e crede di percepire l’inizio dell’attività inspiratoria del paziente che in realtà non è presente;

– lo sforzo inefficace, l’esatto contrario dell’autociclaggio: il paziente inizia l’inspirazione ma il ventilatore non lo percepisce e quindi non inizia ad erogare flusso inspiratorio. Il paziente quindi cerca di inspirare (inutilmente) durante la fase espiratoria del ventilatore;

– il doppio trigger, cioè l’attivazione consecutiva di due inspirazioni non separate da un significativo periodo espiratorio: appena termina un’inspirazione ne inizia immediatamente un’altra.

Esistono anche altri tipi di asincronie che riguardano la fine dell’inspirazione, di queste avremo modo di parlerne in altre occasioni.

Le asincronie paziente-ventilatore non sempre sono ben chiare nell’attività clinica quotidiana. Quando si dice che il paziente è “disadattato”  o che “contrasta”, in realtà si dovrebbe definire meglio quale è il problema: che tipo di asincronia abbiamo di fronte? Ciacuna asincronia ha il proprio specifico trattamento, i propri peculiari accorgimenti nell’impostazione del ventilatore. Abbiamo quindi la necessità di capirle meglio per riuscire a risolverle. Dire che un paziente “contrasta” o è “disadattatonon ci fornisce alcuna indicazione su come migliorare l’interazione paziente-ventilatore.

Prima di discutere insieme le asincronie e le loro implicazioni cliniche, penso sia utile che tutti gli amici di ventilab mi diano una mano per capire che livello di approfondimento dare all’argomento. Pertanto invito caldamente tutti a rispondere al questionario che segue. Chi legge il post dalla propria email, dovrebbe accedere alla pagina web di ventilab (www.ventilab.org o cliccare sul titolo del post che è arrivato nella posta elettronica) per poter partecipare.  Le risposte mi consentiranno per capire meglio cosa dire e come dirlo.

Per adesso quindi ringrazio in anticipo tutti coloro che risponderanno, e fra un paio di settimane ci ritroveremo a discutere parlando di asincronie paziente-ventilatore.

Come sempre, un sorriso a tutti gli amici di ventilab.

PS: se vuoi puoi anche lasciare un commento.