Jun 042013
 

Durante la ventilazione meccanica la sincronia tra l’eventuale attività spontanea del paziente e l’azione prodotta dal ventilatore rappresenta un fattore importante nel determinare il successo del trattamento. Nell’ambito della ventilazione non invasiva (NIV) ciò è particolarmente vero, dal momento che la sincronia può condizionare, oltre che l’efficacia, anche la tollerabilità della tecnica da parte del paziente[1].

Per di più nel trattamento dell’insufficienza respiratoria acuta mediante NIV dovremmo essere in grado di ottimizzare rapidamente la sincronia e sfruttare al massimo le potenzialità della metodica, perché sappiamo che in caso di inefficacia il ritardo nel passaggio alla ventilazione invasiva peggiora la mortalità (vedi post del 15/07/2011 e del 06/10/2012).

Rispetto alla ventilazione invasiva, l’interazione ventilatore-paziente in NIV è complicata da:

  1. tipo di interfaccia paziente;

  2. presenza di perdite aeree (intenzionali e non intenzionali) che si verificano a livello dell’interfaccia paziente.

a) A proposito del tipo di interfaccia, limitando il discorso alle soluzioni più utilizzate nei reparti intensivi e sub-intensivi (maschere e caschi), va detto che in generale l’utilizzo del casco in NIV è gravato rispetto alla maschera oro-nasale da un maggior tasso di asincronie, perchè la parete compliante e l’elevato volume interno di gas comprimibile attutiscono le variazioni di pressione e di flusso all’interno del circuito. Ne risultano prevalentemente ritardi nel triggering e fenomeni di auto-triggering dell’atto assistito dalla macchina[2].

b) Se il casco o la maschera non aderiscono bene alla superficie del collo o del viso, le perdite aeree non intenzionali possono determinare marcate asincronie. In particolare, le perdite aeree in fase espiratoria possono essere interpretate dal ventilatore come sforzi inspiratori da parte del paziente e causare auto-triggering dell’atto assistito; d’altra parte l’algoritmo di compensazione delle perdite può far sì che la macchina non riesca a differenziare gli sforzi inspiratori del paziente dalle perdite aeree e si producano quindi sforzi inspiratori inefficaci. In fase inspiratoria invece la perdita aerea può simulare una inspirazione protratta nel tempo e causare un ritardo nel ciclaggio dall’inspirazione all’espirazione[3].

La quantità di asincronia indotta dipende in tutti questi casi sia dall’entità delle perdite, sia dalla capacità del ventilatore di compensarle; di converso un elevato livello di supporto pressorio incrementa l’entità delle perdite[3].

Ricordiamoci poi che l’inadeguatezza delle impostazioni dei parametri ventilatori da parte di noi operatori può sia essere l’unico motivo dell’asincronia riscontrata (analogamente a quanto osservabile in ventilazione invasiva), sia sommarsi alle problematiche specifiche della NIV. In casi limite il paziente può ritrovarsi a respirare in totale controfase rispetto all’assistenza ventilatoria!

Le principali asincronie osservate durante NIV applicata mediante maschera facciale[4] sono:

  • sforzi inspiratori inefficaci (figura 1): come visto in precedenza sono associati all’entità delle perdite e, analogamente a quanto accade in ventilazione invasiva, sono stati riportati più frequentemente in pazienti affetti da patologia polmonare ostruttiva, probabilmente in relazione alla presenza di auto-PEEP (vedi post del 08/05/2012);

  • auto-triggering: associati anch’essi all’entità delle perdite ma certamente correlati anche alla sensibilità e al tipo di trigger oltre che alle caratteristiche specifiche del ventilatore in uso (vedi post del 27/01/2013);

  • doppio triggering (figura 2): fenomeno potenzialmente legato a un insufficiente livello di pressione di supporto associata o meno a una insufficiente durata del tempo inspiratorio, in presenza di uno sforzo inspiratorio vigoroso o sostenuto;

  • ciclaggi espiratori ritardati (figura 1 e 3): sono correlati, come detto, all’entità delle perdite aeree e forse favoriti dalla presenza di patologia polmonare ostruttiva.

Lo spazio disponibile per questo post è quasi esaurito. Per una descrizione più dettagliata e per il trattamento specifico di ciascun tipo di asincronia rimando gli amici di ventilab ai contributi precedentemente pubblicati e ai prossimi che certamente compariranno sul nostro sito.

Vengo dunque alle conclusioni.

1) Anche in corso di NIV poniamo grande attenzione all’interazione ventilatore-paziente:

  • guardiamo e tocchiamo il paziente: rivalutiamo di frequente i movimenti del torace e dell’addome, accertiamoci che si espandano entrambi in concomitanza con l’insufflazione meccanica, controlliamo che i segni di distress respiratorio si riducano rapidamente entro limiti accettabili (se indispensabile, una minima e temporanea sedazione può a mio giudizio essere considerata);
  • guardiamo e tocchiamo il ventilatore: controlliamo che non compaiano sul monitoraggio grafico i segni dell’asincronia descritti in precedenza né segni di elevate perdite aeree, ottimizziamo le impostazioni del ventilatore in modo da ottenere una adeguata riduzione del lavoro respiratorio del paziente e un adeguato ripristino dei volumi polmonari;
  • guardiamo e tocchiamo l’interfaccia: scegliamo il giusto tipo di presidio (può essere una buona regola di partenza riservare l’uso del casco alla CPAP e preferire la maschera per fare NIV e verifichiamone frequentemente il corretto posizionamento al fine di minimizzare le perdite aeree, pur cercando di limitare i possibili danni da decubito.

 

2) Consideriamo precocemente il passaggio alla ventilazione invasiva tutte le volte che non riusciamo a ottenere una sincronia soddisfacente e il miglioramento delle condizioni del paziente in termini di riduzione della fatica, di adeguatezza del pattern di ventilazione (frequenza respiratoria e volume corrente), di efficienza degli scambi gassosi.

Grazie per l’attenzione e a presto.

P.S. Il post su MIP e NIF promesso da Beppe è in corso di preparazione, per leggerlo dovremo pazientare ancora un paio di settimane.

Riferimenti bibliografici

  1. Carlucci A, Richard J, Wysocki M, Lepage E, Brochard L. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 2001; 163:874–880

  2. Pisani L, Carlucci A, Nava S. Interfaces for noninvasive mechanical ventilation: technical aspects and efficiency. Minerva Anestesiol 2012; 78:1154-61

  3. Schettino P, Tucci R, Sousa R, Barbas V, Amato P, Carvalho R. Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study. Intensive Care Med 2001; 27:1887-91

  4. Vignaux L, Vargas F, Roeseler J, Tassaux D, payday 2 hacks Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 2009; 35:840-6

May 222011
 

Oggi parliamo di trigger nella ventilazione meccanica.

Il trigger è genericamente un dispositivo che innesca qualcosa. Tipicamente nelle armi da fuoco è il grilletto. Nella ventilazione meccanica il trigger è qualcos’altro.

Utilizziamo ogni giorno due tipi di trigger: trigger inspiratorio e trigger espiratorio.

Trigger inspiratorio.

Il trigger inspiratorio è quel dispositivo che consente al ventilatore di iniziare la propria fase inspiratoria un sincronia con l’inizio dell’inspirazione del paziente.

Tipi di trigger.

Sono utilizzati nella pratica clinica tre tipi di trigger inspiratorio:

trigger a pressione: durante l’espirazione la valvola inspiratoria del ventilatore è chiusa. Quando il paziente inizia l’inspirazione successiva, si genera una pressione negativa nel circuito del ventilatore. Infatti, come descritto dalla legge di Boyle, il prodotto di pressione e volume è costante. Quindi se aumenta il volume dei polmoni (=inspirazione) ma non vi entra nuovo gas (valvola inspiratoria chiusa), la pressione diminuisce. Noi possiamo scegliere il livello critico di riduzione della pressione nel circuito respiratorio che il ventilatore identifica con l’inspirazione del paziente: questo è il nostro trigger. Il valore da scegliere dovrebbe essere sempre il più basso possibile, in modo tale da rendere il trigger molto sensibile: questo consentirà una tempestiva assistenza inspiratoria e la riduzione del lavoro del paziente sprecato per attivare l’inspirazione del ventilatore meccanico. Solitamente i valori che conviene impostare sono dell’ordine di -0.5/-1 cmH2O. Il rischio di un trigger troppo sensibile è l’autociclaggio della macchina, cioè l’innesco di atti inspiratori non richiesti dal paziente. Nel post del 8 maggio puoi leggere e vedere come riconoscere quando gli atti inspiratori sono effettivamente richiesti dal paziente

trigger a flusso: le valvole inspiratoria ed espiratoria non si chiudono mai ed il ventilatore eroga un flusso continuo (bias flow o flusso di base). Il flusso di base in alcuni ventilatori è regolabile nel pannello delle impostazioni, in altri è fisso (ad esempio nei ventilatori Siemens/Maquet è di 2 l/min). Quando il paziente finisce l’espirazione, rimarrà nel circuito del ventilatore il flusso di base: esso esce dalla via inspiratoria e rientra inalterato nel ventilatore attraverso la via espiratoria. Se il paziente inizia l’inspirazione, una parte del flusso di base sarà sottratta dal paziente ed al ventilatore rientrerà un flusso minore di quello erogato. Questo è il segnale che il paziente inizia ad inspirare e così sarà innescata l’assistenza inspiratoria. Il trigger a flusso può essere reso più sensibile impostando un basso valore di sensibilità di flusso. La sensibilità di flusso è la differenza tra flusso di base che esce dalla branca inspiratoria ed il flusso che rientra nel ventilatore dalla branca espiratoria. In molti ventilatori è direttamente regolabile: una sensibilità di flusso di 1 l/min imposta un trigger più sensibile rispetto a una sensibilità di flusso di 5 l/min. Nel Servo 300 Siemens la sensibilità di flusso non si esprime in l/min, ma su una scala colorata: sul rosso il trigger è più sensibile e sul verde lo è meno. Nel Servoi Maquet ci sono anche dei numeri da 1 a 10: attenzione, non inidicano i l/min di sensibilità di flusso! 10 è il trigger più sensibile  mentre 1 è il meno sensibile.

trigger neurale: attualmente disponibile nella modalità di ventilazione NAVA (Neurally Adjusted Ventilatory Assist) della Maquet, consente di innescare l’insufflazione quando la inizia la depolarizzazione del diaframma. Richiede il posizionamento di un apposito sondino naso-gastrico dotato di elettrodi che vengono a posizionarsi a livello del diaframma. Prossimamente daremo spazio alla NAVA. Per ora ci basta anticipare che sincronizzare il ventilatore sull’inizio della contrazione diaframmatica (cioè della sua depolarizzazione) può dare la massima sensibilità al trigger, perchè le variazioni di flusso o pressione del circuito sono sicuramente più tardive e soggette a numerose variabili, come ad esempio PEEP intrinseca, resistenze delle vie aeree, compliance, forza muscolare, …

Trigger a pressione o a flusso?

Ventilazione assistita. Nella maggior parte dei pazienti non vi sono differenze clinicamente rilevanti tra un trigger a pressione o uno a flusso, se opportunamente impostati (1,2). Tuttavia, in alcuni pazienti con sforzi inefficaci, la maggior sensibilità del trigger a flusso può migliorare la sincronia ventilatore-paziente, riducendo la frequenza degli sforzi inefficaci. Riprendendo il caso commentato nel post del 8 maggio, vediamo come si modifica la sincronia paziente-ventilatore modificando il trigger. Nella figura 1 vediamo un trigger a pressione di -1 cnH2O e nella figura 2 un trigger a flusso alla minima sensibilità (livello 1 in un Servoi Maquet). Risultato: nessuna differenza tra le due modalità di trigger.

figura 1

figura 2

Ma se rendiamo massima la sensibilità del trigger a flusso (livello 10), la sincronia diventa perfetta (figura 3).

figura 3

figura 4

 Nella figura 4 vediamo invece cosa succede se si riduce un pochino la sensibilità del trigger a pressione rispetto alla figura 1 (da -1 a -2 cmH2O): un disastro, come discusso nel post precedente.

CPAP. Non ho dubbi: trigger a flusso ad elevata sensibilità. In CPAP non si triggera nessuna assistenza inspiratoria, quindi nessun problema di autociclaggio del ventilatore.

Trigger espiratorio.

Un aspetto spesso trascurato. Nella ventilazione a pressione di supporto il flusso inspiratorio è decrescente (se il paziente non ha una intensa attività dei propri muscoli inspiratori). L’inspirazione termina quando il flusso inspiratorio, riducendosi progressivamente, raggiunge un valore critico. Nei ventilatori più recenti il trigger espiratorio è regolabile ed il livello di flusso inspiratorio che triggera l’espirazione è espressa come % del massimo flusso inspiratorio. Nelle macchine più datate (es. Servo 300 Siemens) il trigger espirartorio è invece fisso e non compare tra le opzioni di impostazione.

Vediamo un esempio nella figura 5. Se scegliamo come trigger espiratorio il 50% del picco di flusso inspiratorio (parte sinistra della figura) vediamo che quando si dimezza il picco di flusso inspiratorio, l’inspirazione termina ed inizia l’espirazione. Quando  si sceglia un trigger espiratorio del 5% (parte destra della figura), l’effetto è quello di prolungare la durata dell’inspirazione: infatti ci vuole più tempo per raggiungere il valore critico di flusso che consente di passare all’espirazione. Quindi un trigger espiratorio basso aumenta la durata dell’inspirazione (esistono frequenti eccezioni che però meritano un post tutto per sè).

figura 5

 Come regolare il trigger espiratorio?

Nei pazienti con PEEP intrinseca un trigger espiratorio del 40-50% riduce l’iperinflazione dinamica e lavoro respiratorio e migliora l’interazione paziente ventilatore (3,4).  A mio parere, un trigger espiratorio ridotto (10-20%) è preferibile invece nei pazienti senza PEEPi se sono ipossiemici, se hanno inspirazioni brevi o se hanno bisogno di un pieno supporto dei muscoli inspiratori.

Anche oggi abbiamo messo parecchia carne al fuoco. Per necessità di sintesi non ho approfondito molti aspetti relativi al triggeraggio inspiratorio ed espiratorio: se hai qualche dubbio o suggerimento, non esitare a lasciare un commento nello spazio sottostante.

Un saluto a tutti gli amici di ventilab.

Bibliografia.

1) Tutuncu AS et al. Comparison of pressure- and flow-triggered pressure-support ventilation on weaning parameters in patients recovering from acute respiratory failure. Crit Care Med 1997; 25:756-60.

2) Goulet R et al. Pressure vs. flow triggering during pressure support ventilation. Chest 1997; 111:1649-53.

3) Chiumello D et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 2007; 35:2547-52

4) Tassuax D et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172:1283-9.

Feb 092011
 

In un commento al post del 31/12/2010 è stato chiesto di chiarire il perchè la PEEP non sia indicata nei pazienti affetti da crisi asmatica grave in ventilazione controllata, al contrario di quanto viene proposto nei pazienti affetti da BPCO. Perché due opposte strategie per malattie con basi fisiopatologiche così simili?

Poniamo il caso di un paziente maschio di 70 kg di peso ideale in grave insufficienza respiratoria per una crisi asmatica refrattaria ai broncodilatatori. Lo abbiamo appena sedato e intubato e abbiamo impostato una ventilazione a volume controllato con volume corrente 500 ml, frequenza respiratoria 12/min, Ti/Ttot 1:5, FiO2 100%, PEEP 0 cm H2O.

Con queste impostazioni la pressione di picco delle vie aeree (Ppeak) è 54 cm H2O, la pressione di plateau (Pplat) 30 cm H2O, la PEEP intrinseca (PEEPi) 15 cm H2O dopo l’occlusione di fine espirazione; il paziente ha SpO2 91%, pressione arteriosa 95/45 mm Hg, frequenza cardiaca 105/minuto.

E’ il caso di aggiungere una PEEP in questo momento?

Esistono in letteratura parecchi studi sugli effetti indotti dalla PEEP esterna (PEEPe) nei pazienti con ostruzione bronchiale ventilati in modalità controllata: i risultati sembrano non essere univoci tra loro, ma in realtà sono univoci nel suggerire che gli effetti della PEEP dipendono dallo specifico meccanismo con cui la PEEPi si instaura in ogni determinato paziente[1].

La chiave del problema è la presenza o meno di flow limitation, o meglio la diffusione di tale fenomeno all’interno dei polmoni.

Per flow limitation intendiamo il collasso in fase espiratoria delle piccole vie aeree povere di sostegno cartilagineo; se queste collabiscono durante l’espirazione passiva siamo di fronte a un livello di ostruzione molto grave. In questo caso si verifica un vero intrappolamento di aria indipendente dallo sforzo espiratorio: con lo sforzo, infatti, aumenta sia la pressione alveolare (che si trasmette alla pressione interna ai bronchioli collassabili), sia in eguale misura la pressione pleurica (che si trasmette all’esterno di essi), sicchè resta inalterato il gradiente transmurale di pressione (Ptm) da cui dipende la pervietà del lume. Il punto di collasso è il punto a livello del quale la pressione extraluminale supera quella intraluminale (un po’ come succede durante le prove spirometriche, anche nel soggetto sano, quando si raggiunge il volume residuo).

L’aggiunta di PEEPe a pazienti con iperinflazione dinamica in assenza di significativa flow limitation rappresenta un aumento della pressione a valle del flusso espiratorio, che quindi riduce il gradiente pressorio tra alveoli e bocca* (ΔPalv-ao): il flusso espiratorio si riduce, si produce ulteriore iperinflazione e la PEEPi aumenta (modello 1 della figura, alta PEEP), col rischio di ulteriore compromissione emodinamica, formazione di spazio morto, danno traumatico alveolare fino allo pneumotorace. In questo caso PEEPe e PEEPi si sommano algebricamente nel determinare la PEEP totale del paziente (PEEPtot).

In presenza di diffusa flow limitation, invece, l’aggiunta di bassi livelli di PEEPe agisce dilatando alcuni dei passaggi aerei collabiti o gravemente ristretti, permettendo un migliore svuotamento delle unità alveolari da essi servite. Allo stesso tempo, se il livello di PEEPe non eccede unvalore critico, corrispondente alla pressione extramurale a livello del punto di collasso, la PEEPe non riduce in maniera sensibile il gradiente pressorio utile all’espirazione, in quanto in presenza di flow limitation esso è rappresentato dalla differenza tra la pressione alveolare e la pressione al punto di collasso, e non da ΔPalv-ao. In questa condizione non si sviluppa ulteriore iperinflazione (modello 2 della figura), né gli effetti negativi ad essa correlati, e dunque la PEEPtot non corrisponde alla somma algebrica di PEEPe e PEEPi. Se il livello di PEEPe supera il valore critico, invece, si sviluppa progressivamente il peggioramento dell’iperinflazione, con il meccanismo visto in precedenza (modello 2, alta PEEP).

Benchè le due differenti condizioni possano coesistere nello stesso paziente [2] (modello 3 della figura), occorre tenere presente che nel paziente asmatico la flow limitation può essere assente o poco diffusa [3,4], al contrario essa è tipicamente presente nei pazienti BPCO [4].

Pertanto, nel caso del nostro paziente l’aggiunta della PEEPe non è indicata, almeno fino a quando il paziente è ventilato in modalità controllata, in quanto potrebbe causare ulteriore iperinflazione con possibile trauma alveolare (la Pplat è già al limite di sicurezza) e compromissione emodinamica (il paziente ha già una lieve ipotensione). Inoltre, nei pazienti già iperinflati per una patologia di tipo ostruttivo è poco probabile che una ulteriore distensione polmonare indotta dalla PEEPe possa comportare benefici in termini di ossigenazione [3].

In un prossimo post esamineremo gli effetti della PEEPe nei pazienti ostruttivi in ventilazione spontanea o assistita e impareremo a trasferire nella pratica clinica i concetti che abbiamo esposto oggi.

* Più correttamente il gradiente pressorio tra alveoli e apertura delle vie aeree.

Bibliografia

 

  1. Marini JJ. Should PEEP be used in airflow obstruction? Am Rev Respir Dis 1989; 140: 1-3
  2. Smith TC et al. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 1988; 65: 1488-1499
  3. Oddo M et al. Management of mechanical ventilation in acute severe asthma: practical aspects. Intensive Care Med 2006; 32: 501-10
  4. Blanch L et al. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care 2005; 50: 110-23
Jan 292011
 

Nel post del 7 gennaio abbiamo analizzato le variazioni di bicarbonati nei pazienti con acidosi metabolica. Oggi prendiamo in considerazione l’aspetto opposto del problema: nei pazienti con acidosi metabolica, come interpretiamo il valore di PaCO2?

Consideriamo il caso di un paziente diabetico di 75 anni che si presenta in Pronto Soccorso con 38.8 °C di temperatura. Da tre giorni, oltre alla febbre, sono presenti vomito e diarrea. Il paziente è sveglio, collaborante, ha una lieve dispnea, è ipoteso ed oligurico. La radiografia del torace mostra sfumati addensamenti su entrambi i campi polmonari. L’emogasanalisi arteriosa (eseguita con 5 l/min di O2 in maschera) è la seguente: pH 7.21, PaCO2 41 mmHg, HCO3- 16 mmol/l, PaO2 42 mmHg.

Le cose da fare sono molte: una di queste è il supporto della funzione respiratoria del paziente. Il medico del Pronto Soccorso decide di iniziare una CPAP noninvasiva per trattare la grave ipossiemia. Non ritiene necessario un supporto inspiratorio perchè l’acidosi è esclusivamente metabolica (la PaCO2 è nel range di normalità).

Sei d’accordo con questa scelta?

Certamente la PaCO2 è nel range di normalità (35-45 mmHg). E’ normale avere la PaCO2 entro i limiti fisiologici se ci si trova in una situazione non fisiologica? Sappiamo bene che l’incremento della concentrazione degli idrogenioni liquorali induce un aumento della ventilazione stimolando i centri bulbari (vedi post del 21/11/2010). Nell’acidosi metabolica il pH liquorale è ridotto perchè è in equilibrio con il pH arterioso. Quindi ci dobbiamo aspettare che un’acidosi metabolica determini un’iperventilazione. E infatti tutti abbiamo studiato ed osservato che i pazienti con acidosi metabolica iperventilano e che la riduzione della PaCO2 riavvicina il pH al valore normale.

Quanto iperventila un paziente con acidosi metabolica? Osservazioni empiriche su umani ci indicano che mediamente ad ogni riduzione di 1 mmol/l di bicarbonato si associa il calo di PaCO2 di circa 1.2 mmHg (1).

Il paziente che abbiamo descritto ha una PaCO2 normale in presenza di acidosi metabolica: questo è un dato patologico. E possiamo anche stimare di quanto dovrebbe essere la PaCO2 se avesse messo in atto un normale compenso respiratorio dell’acidosi metabolica. I bicarbonati sono diminuiti di circa 8 mmol/l rispetto al normale (24 mmol/l). Ne consegue che dovremmo aspettarci una PaCO2 di circa 30 mmHg (dal valore normale di 40 mmHg togliamo 8 x 1.2 mmHg). Il paziente ha in realtà 11 mmHg di PaCO2 più del valore appropriato nella condizione in cui si trova. In realtà la sua acidosi deve essere considerata mista perchè sia i bicarbonati che la PaCO2 non sono normali. E se la PaCO2 è più alta di quello che dovrebbe essere, la spiegazione è semplice: una insufficienza della pompa respiratoria. E quando c’è una insufficienza di pompa respiratoria bisogna fornire al paziente un supporto inspiratorio e non una CPAP. Quindi, a mio parere, l’ideale sarebbe stato fare una ventilazione assistita (pressione di supporto, bipap, controllata/assistita).

Per riassumere possiamo concludere che:

1) quando c’è acidosi metabolica, la PaCO2 deve essere inferiore al valore normale nella misura di 1.2 mmHg per ogni riduzione di 1 mmol/l di bicarbonato;

2) se la PaCO2 misurata è significativamente superiore al valore atteso, è presente un’insufficienza conclamata della pompa respiratoria;

3) se è presente insufficienza della pompa respiratoria, è necessario il supporto inspiratorio (che la CPAP non può dare) con una ventilazione assistita.

Un caro saluto a tutti gli amici di ventilab.

Reference:

1) Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York 2004, 5th ed. Cap. 17: Introduction to simple and mixed acid-base balance disorders. Pagg. 535-550.

Aug 292010
 

Oggi vi propongo la mia analisi del monitoraggio grafico del paziente in ventilazione meccanica proposto nel post del 13 agosto. La figura qui a lato è la stessa, con l’aggiunta di colorazioni, linee e frecce solo per facilitare il commento.

Utilizziamo il nostro metodo ABC proposto negli ultimi due post. Dopo aver selezionato le curve di pressione e flusso (A), identifichiamo l’inspirazione guardando le fasi in cui il flusso è positivo (B). La fase inspiratoria è identificata dalle aree grigie e dalle curve colorate in giallo. Passiamo all’ultima tappa: come varia la pressione nelle vie aeree durante l’inspirazione (C)? Vediamo che è costante per quasi tutto il tempo inspiratorio, con un piccolo incremento verso la fine dell’inspirazione. Se la pressione non aumenta durante l’inspirazione ciò significa che non c’è insufflazione, cioè non c’è introduzione di gas a pressione durante l’inspirazione. L’unica modalità di ventilazione in cui questo accade è la CPAP, che è un respiro spontaneo su una “base” di pressione positiva continua.

Aumentiamo ora il livello di analisi del monitoraggio grafico. Aggiungiamo quindi al “ABC” il “DEF”.

Perchè alla fine dell’inspirazione la pressione nelle vie aeree aumenta? Nel punto in cui la pressione inizia ad aumentare ho tracciato una freccia lilla che si proietta sulla curva di flusso. In quel punto si ha una brusca riduzione del flusso inspiratorio che in una frazione di secondo si azzera e diventa espiratorio. In quel momento il paziente smette di inspirare ed inizia l’attivazione dei muscoli espiratori, “soffiando” gas nel circuito. E’ questo il motivo del piccolo aumento di pressione che inizia alla fine dell’inspirazione e si mantiene per l’espirazione: il paziente aggiunge al circuito l’aria che espira. Il ventilatore cerca di mantenere la pressione di CPAP ma non è perfetto nello “smaltimento” completo dell’aria che il paziente espira e la pressione un pochino aumenta. Un peccato veniale, visto che l’aumento di pressione è molto piccolo, dell’ordine di circa un cmH2O. Definiamo con la lettera “D” l’inizio dell’attivazione dei muscoli espiratori del paziente.

Continuiamo con la lettera “E” come espirazione. La curva di flusso ti sembra uguale a quella passiva vista nel post del 20 agosto? Certamente no! In quella passiva il flusso espiratorio, dopo il picco iniziale, si riduceva progressivamente con un andamento curvilineo con la concavità verso il basso. Qui dopo il picco iniziale, il flusso espiratorio si mantiene o addirittura aumenta descrivendo un profilo a forma di “U”. Vai a vedere il post del 25 marzo, troverai un immagine che ti aiuterà a capire la differenza tra flusso espiratorio attivo e passivo. Se il flusso è attivo, il paziente continua ad utilizzare i muscoli espiratori per tutta l’espirazione, continuando ad immetere a forza gas nel circuito. L’espirazione comunque non  è ostruita perchè il flusso espiratorio si mantiene elevato per tutta l’espirazione. La “gobba” che vedi sulla curva di pressione durante l’espirazione è dovuta al picco nella quantità di gas che passa dai polmoni al circuito del ventilatore.

Le linee rosse verticali disegnate durante le fasi espiratorie coincidono con la riduzione della pressione nelle vie aeree al di sotto del valore osservato durante l’inspirazione. Se guardiamo dove cadono queste linee sulla curva di flusso, notiamo che coincidono con il punto in cui il flusso espiratorio inizia a diventare verticale per raggiungere in una frazione di secondo lo zero. I muscoli espiratori si sono fermati, ed hanno iniziato ad attivarsi i muscoli inspiratori. L’aria che stava uscendo dai polmoni smette bruscamente di uscire perchè il torace ricomincia ad espandersi per effetto della ripresa dell’attività dei muscoli inspiratori. Identifichiamo con la lettera “F” l’inizio dell’attività dei muscoli inspiratori, cioè il momento in cui, verso la fine dell’espirazione, pressione nelle vie aeree e flusso espiratorio iniziano a ridursi bruscamente. Il flusso inspiratorio non inizia subito perchè il ventilatore meccanico deve capire che sta cambiando fase del ciclo respiratorio (trigger) e modificare l’apertura delle valvole inspiratorie ed espiratorie. Tutto questo processo ha una latenza temporale (identificata dalla distanza tra la linea tratteggiata rossa e l’inizio dell’inspirazione identificata dall’area grigia) durante la quale la pressione nelle vie aeree si riduce. La riduzione in questo caso è di circa 1-2 cmH2O, segno di una moderata attivazione del drive respiratorio. La piccola indentatura nella curva di flusso che precede l’inspirazione è legata al triggeraggio che non è immediatamente efficace.

L’identificazione dei di “D” e “F” richiederebbe l’utilizzo della pressione esofagea, ma anche con il solo attento esame delle curve di flusso e pressione delle vie aeree si possono avere ottime informazioni.

Concludendo l’analisi: è un paziente con una CPAP di circa 8 cmH2O (livello a cui si assesta la pressione durante la fase stabile dell’inspirazione), tachipnoico (6 respiri in 10 secondi sono 36 respiri al minuto), con un’attività inspiratoria non particolarmente intensa (la pressione durante l’inspirazione non scende sotto il livello di CPAP) e bassi volumi correnti, con un’espirazione forzata che si mantiene per tutta l’espirazione.

A questo punto il nostro obiettivo dovrebbe essere non tanto quello di aumentare il supporto inspiratorio ma di migliorare l’interazione ventilatore/paziente e consentire un’espirazione passiva completa (o quasi). Ma oggi penso di avere messo tantissima carne al fuoco (forse troppa), e quindi mi fermo e saluto augurando una buona domenica a tutti gli amici di ventilab.org.

May 062010
 

Alcuni giorni fa è stata richiesta una mia consulenza nella Divisione di Chirurgia Generale. Un paziente settantenne, sottoposto tre giorni prima a gastrectomia totale, “faceva fatica a respirare”. Ho visto una persona moderatamente dispnoica, con una frequenza respiratoria di 42 atti al minuto, il respiro era superficiale, la saturazione (con ossigenoterapia in maschera) era 85 %. L’emogasanalisi arteriosa che confermava l’ipossiemia (PaO2 48 mmHg) con una PaCO2 di 42 mmHg ed un pH di 7.37. Non erano presenti altre disfunzioni d’organo rilevanti. Era presente leucocitosi (WBC 22000/mm3) e la radiografia del torace mostrava addensamenti e versamenti basali bilaterali.

Abbiamo ricoverato il paziente in Terapia Intensiva per insufficienza respiratoria postoperatoria secondaria a polmonite. Adesso è intubato e ventilato. Nei prossimi giorni è probabile la tracheotomia.

Un caso come molti. Ma davvero inevitabile?

In alcuni casi abbiamo armi efficaci per ridurre la probabilità di avere complicanze respiratorie postoperatorie nei pazienti sottoposti a chirurgia addominale maggiore. Una di queste è l’utilizzo della CPAP nel periodo postoperatorio nei pazienti che mostrano una moderata ipossiemia.

Un trial clinico italiano ha confrontato CPAP noninvasiva (7.5 cmH2O) vs. ossigenoterapia nei pazienti che avevano un PaO2/FIO2 < 300 mmHg ad un’ora dall’estubazione. L’intubazione postoperatoria è stata necessaria nel 1% dei pazienti sottoposti a CPAP e nel 10 % dei pazienti con ossigenoterapia. Anche le polmoniti postoperatorie erano ridotte dall’utilizzo della CPAP (3% con CPAP vs. 10% con ossigenoterapia).

L’efficacia della CPAP postoperatoria nel ridurre le complicanze respiratorie postoperatorie  nei pazienti sottoposti a chirugia addmoninale è confermata anche da una meta-analisi (2). Il rischio di sviluppare complicanze respiratorie postoperatorie è ridotto utilizzando la CPAP (0.34, 95% CI 9.9-32.4), evitando una complicanza ogni 14 pazienti trattati.

Fare anestesia non significa solamente intubare ed estubare i pazienti. Bisogna sapere utilizzare correttamente i supporti ventilatori ed estendere la propria opera anche nel periodo postoperatorio.

Bibliografia:

1) Squadrone  V et al. JAMA 2005; 293:589-595

2) Ferreyra GP et al. Ann Surg 2008; 247:617-626.