Mar 252018
 

Nel post del 17/02/2018 abbiamo accennato ai risultati di uno studio che ha recentemente documentato un’associazione tra ipercapnia e mortalità nella ARDS (1). Abbiamo considerato che il disegno di questo studio è molto debole e che quindi si deve ragionare bene su questa associazione prima di attribuirle un rapporto causa-effetto.

Si è anche evidenziato come l’ipercapnia sia la conseguenza (e non la causa) di un grave mismatch ventilazione-perfusione, che determina un aumento dello spazio morto alveolare, un ben noto fattore di rischio per la mortalità nei pazienti con ARDS (2).

L’acidosi respiratoria sembra avere effetti clinici e fisiologici più positivi che negativi, come puoi vedere in sintesi nel post del 03/08/2013.

Considerando però l’eventualità di un impatto negativo dell’ipercapnia sull’outcome, analizziamo oggi solo la ripercussione che generalmente le viene attribuita come più frequente e grave: il cuore polmonare acuto, cioè lo scompenso cardiaco acuto destro indotto dal rapido incremento delle resistenze vascolari polmonari.

L’acidosi respiratoria nella ARDS determinerebbe infatti l’aumento delle resistenze vascolari polmonari, alla base del cuore polmonare acuto. Ma siamo sicuri che sia proprio così?

Lo studio clinico probabilmente determinante per supportare il ruolo dell’ipercapnia nella genesi dello scompenso cardiaco destro ha arruolato 11 pazienti con ARDS ventilati per 1 ora, in successione, con due* diverse impostazioni del ventilatore (3). Al termine di un periodo con “bassa frequenza respiratoria ” (VT 8.5 ml/kg x 15/min) il pH era mediamente 7.30 e la PaCO2 52 mmHg, dopo 1 ora con “basso volume corrente” (VT 5.3 ml/kg x 26/min) il pH diminuiva a  7.17 e la PaCO2 aumentava a 71 mmHg. Nella condizione di acidosi respiratoria più grave si osservava una riduzione dell’indice cardiaco ed una dilatazione del ventricolo destro rispetto al ventricolo sinistro (aumento del rapporto tra le aree telediastoliche).

Questo studio presenta però un limite rilevante (del quale non sento normalmente parlare) che non consente di supportare che l’ipercapnia sia la causa del cuore polmonare acuto. Infatti durante la ventilazione “più ipercapnica” è stata anche raddoppiata la PEEP rispetto al ventilazione “meno ipercapnica”! E sappiamo bene che l’incremento della PEEP può dare di per sè un contributo decisivo all’aumento del postcarico del ventricolo destro e favorirne quindi la dilatazione.

Gli stessi autori dello studio sapevano bene come stavano le cose, tant’è che la loro conclusione dello studio è, piuttosto  incredibilmente, la seguente: “Increasing PEEP at constant Pplat during severe ARDS induces acute hypercapnia that may impair RV function and decrease cardiac index.” Affermano cioè che l’incremento della PEEP è la causa dell’ipercapnia (!!!), la quale a sua volta può peggiorare la funzione del ventricolo destro e ridurre la portata cardiaca… Se la causa dell’ipercapnia è stato l’aumento della PEEP, che bisogno c’era di modificare anche volume corrente e frequenza respiratoria per dimostrare gli effetti dell’ipercapnia? E perchè attribuire gli effetti sul cuore destro all’ipercapnia e non alla PEEP? Da notare peraltro che nello studio erano arruolati pazienti con già in atto scompenso cardiocircolatorio (stroke volume quasi la metà del normale) e dilatazione del cuore destro (mediamente il rapporto tra le aree telediastoliche del ventricolo destro e sinistro era 0.64). Mi viene il dubbio che non fosse stata ottimizzata l’emodinamica prima dell’arruolamento nel trial clinico, un problema non da poco nell’interpretazione dei dati… (i pazienti con ARDS non sono solitamente in bassa portata se si fa un appropriato supporto cardiovascolare).

IL MESSAGGIO E’ SEMPRE LO STESSO: LA LETTERATURA NON VA CITATA, MA DEVE ESSERE LETTA CON ATTENZIONE E CAPITA. Costa tempo e fatica, ma è l’unico modo per imparare qualcosa.

Peraltro lo stesso gruppo di ricercatori ha successivamente dimostrato che il cuore polmonare acuto (come definito nella reference 3) non si associa ad un incremento di mortalità (4). Non sembra quindi, comunque, un problema determinante.

Da considerare infine che non è l’ipercapnia che genera ipertensione polmonare ma l’acidosi ad essa associata (5,6). Ne consegue che, relativamente alla possibile ipertensione polmonare, l’ipercapnia non è un problema se il pH tende al compenso metabolico. E questo avviene spesso nella ARDS, condizione in cui l’ipercapnia si instaura in maniera gradualmente progressiva.

A questo punto torniamo ad interpretare i risultati della reference 1 con una maggior consapevolezza.  Lo studio supporta effettivamente l’ipotesi che i pazienti ipercapnici avessero un maggior spazio morto, stimato con la ventilazione minuto necessaria per ottenere 40 mmHg di PaCO2 (VEcorr). Ne consegue, dal punto di vista fisiopatologico, che l’ipercapnia è la conseguenza dello spazio morto ed è quindi ovvio che i pazienti ipercapnici (PaCO2 ≥ 50 mmHg) abbiano una mortalità maggiore rispetto ai non ipercapnici. Un approccio forse più appropriato all’analisi avrebbe potuto essere la ricerca di associazione tra mortalità e spazio morto stimato (con il VEcorr) (cioè la variabile causale dal punto di vista fisiopatologico) e quindi l’aggiustamento per le altre variabili.

Nello studio di Nin e coll., la fuorviante ricerca dell’associazione diretta tra mortalità e ipercapnia porta a conclusioni paradossali ed irragionevoli: i pazienti ipercapnici, rispetto ai non ipercapnici, sono ventilati meno spesso con una ventilazione protettiva (30% vs 70%) (?), hanno mediamente una pressione di plateau di 3 cmH2O superiore (?), un PaO2/FIO2 peggiore (141 vs 185 mmHg) (?) ed hanno più frequentemente barotrauma (11% vs 6%) (?). Pensiamo che l’ipercapnia possa spiegare tutte queste differenze? Sono risultati chiaramente incomprensibili, a meno che non ci si apra all’interpretazione più logica: gli ipercapnici sono tali perchè hanno una malattia polmonare più grave, con maggior shunt e maggior spazio morto. In altre parole: non è l’ipercapnia che determina un aumento di mortalità, ma è la gravità della malattia che aumenta sia la probabilità di morte che la PaCO2. Da questa prospettiva tutto quadra: ben si capisce perchè i pazienti con ARDS più grave abbiano pressioni di plateau più elevate, PaO2/FIO2 inferiori, più frequente barotrauma, ipercapnia più grave e mortalità maggiore.

La risposta alla domanda del titolo “Ipercapnia e ARDS, cambia qualcosa?” direi possa essere tranquillamente: “no”. Anche i nuovi studi non supportano ragionevolmente un nesso casuale tra ipercania e mortalità.

Possiamo ora ragionevolmente concludere che:

  • l’ipercapnia (come del resto l’ipossiemia) è la conseguenza è non la causa di una maggior gravità del danno polmonare; non stupisce pertanto che ipercapnia ed ipossiemia si associno ad un incremento di mortalità;
  • l’ipercapnia non è “velenosa”, non produce cioè effetti tossici clinicamente rilevanti;
  • anche il cuore polmonare acuto, il più pubblicizzato presunto effetto negativo dell’ipercapnia, è ampiamente discutibile che sia indotto dall’ipercapnia (è mediato dall’acidosi) e, quando questo è presente, non si associa ad incremento della mortalità.

Riprendiamo a questo punto il caso di Giorgio, con cui inizia il post del 17/02/2018: non mi preoccupo della sua PaCO2 di 68 mmHg (con pH 7.36), ma sono ahimè consapevole che questo può essere per lui un fattore prognostico sfavorevole. Giorgio è certamente grave, ma non è l’abbasamento della PaCO2 che potrà migliorarne la possibilità di sopravvivenza. Anzi, potrei non fare il suo bene se mettessi in atto manovre che potrebbero esporlo a rischi aggiuntivi con il solo scopo di ridurre la PaCO2.

Un sorriso a tutti gli amici di ventilab.

* I pazienti sono anche sottoposti ad un terzo approccio ventilatorio (basso VT, bassa frequenza respiratoria e riduzione dello spazio morto strumentale) che per semplcità non prendiamo in considerazione in questo post.

Bibliografia

1) Nin N et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017;43:200-8

2) Nuckton TJ et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002;346:1281-6

3) Mekontso Dessap A et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 2009; 35:1850-8

4) Mekontso Dessap A et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 2016; 42:862-70

5) Enson Y et al. The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J Clin Invest 1964;43:1146-62

6) Weber T et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2000; 162:1361–5

Oct 222011
 

In questi giorni sto esaminando la letteratura recente sull’uso dell’ossido nitrico inalatorio (NO) in terapia intensiva. Colgo l’occasione per coinvolgere gli amici di www.ventilab.org su questo argomento, già incontrato in post precedenti pubblicati sul nostro sito.

L’ossido nitrico è un potente vasodilatatore che agisce attraverso l’aumento della concentrazione di cGMP all’interno delle fibrocellule muscolari lisce delle pareti vascolari[1]. Farmaci che agiscono come donatori di NO, come nitroglicerina e sodio nitroprussiato, vengono correntemente somministrati per via endovenosa, transdermica o transmucosa allo scopo di ridurre la pressione arteriosa e indurre vasodilatazione sistemica, in particolare coronarica. La somministrazione per via inalatoria di NO determina invece riduzione delle resistenze vascolari polmonari e della pressione arteriosa polmonare con minimi effetti sul circolo sistemico. Per questa caratteristica NO è utilizzato in ambito pediatrico/neonatale in svariate patologie cardiopolmonari associate a ipertensione polmonare, e anche nell’adulto in situazioni di disfunzione ventricolare destra da ipertensione polmonare, prevalentemente a seguito di interventi cardiochirurgici[2].

L’utilizzo di NO nell’ARDS è un argomento a oggi ancora controverso. Indubbiamente esiste un valido razionale a favore del suo utilizzo: come schematizzato in figura 1, NO determina vasodilatazione polmonare prevalentemente a livello delle unità alveolari maggiormente areate, mentre non raggiungerebbe in quantità significative i capillari polmonari nelle zone atelettasiche o ingombre di essudato, dove peraltro interviene una reazione di vasocostrizione ipossica. Con questo meccanismo, l’aggiunta di NO alla miscela respiratoria aumenterebbe il flusso ematico attraverso le aree di polmone ventilato e ridurrebbe la quota di shunt destro-sinistro mediante un fenomeno di furto, migliorando l’ossigenazione[1,3].

Figura 1.

Effettivamente diverse metanalisi[4,5,6] hanno confermato che l’uso di NO può determinare un transitorio miglioramento dell’ossigenazione (espresso come PaO2/FiO2 a 24 ore dall’inizio del trattamento) in pazienti affetti da insufficienza respiratoria ipossiemica e ARDS. Tuttavia le evidenze fino a oggi disponibili indicano che NO non ha effetti sulla mortalità dei pazienti, né su altri esiti clinici rilevanti come la durata della ventilazione o la durata della degenza, e anzi potrebbe essere addirittura associato a maggiore incidenza di danno renale.

Come si spiega questa discrepanza di risultati? Sono stati ipotizzati fattori farmacocinetici (azione nel circolo sistemico di cataboliti stabili di NO che conservano proprietà vasodilatanti; accumulo locale dose-dipendente di NO, v. figura 2), possibili effetti tossici tempo-dipendenti da NO, e ancora fattori patogenetici tipici della malattia di base (dismissione in circolo di citochine ad azione vasodilatante, come in corso di sepsi o ARDS)[3]. Vi sono poi anche problematiche metodologiche intrinseche alle metanalisi, in quanto gli studi esaminati non sono del tutto confrontabili, per possibili disomogeneità nella stratificazione della gravità dei pazienti, o disomogeneità nella correttezza della ventilazione protettiva. Dobbiamo inoltre ricordare che i pazienti con ARDS muoiono quasi sempre per insufficienza multiorganica, non per grave ipossiemia refrattaria[3] e questo già basterebbe a spiegare lo scarso impatto dell’uso di NO sulla mortalità.

Figura 2.

Dunque è opportuno, sulla base dell’evidenza riportata, respingere tout court l’utilizzo di NO nell’ARDS? Secondo molti esperti [1,3,5,7] no: NO resta un’arma terapeutica importante nel trattamento non di routine ma di salvataggio dell’ipossiemia refrattaria con o senza ipertensione polmonare, purchè

  • sia somministrata per un periodo limitato di tempo (24-72 ore);
  • se somministrata in modo discontinuo si evitino brusche interruzioni nell’erogazione (possibile effetto rebound);
  • si utilizzino le dosi inferiori sufficienti a produrre una risposta clinica accettabile (range 0.1- 80 ppm, meglio < 40 ppm);
  • siano monitorizzati i livelli di NO2 e di metemoglobinemia;
  • il paziente non sia portatore di deficit congenito o acquisito di metemoglobina reduttasi.


Un saluto a tutti gli amici di ventilab.

Bibliografia

  1. Griffiths MJD, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med 2005;353:2683-95
  2. Bloch KD et al. Inhaled NO as a therapeutic agent. payday loans direct lender Cardiovascular Research 2007;75:339–48
  3. Creagh-Brown BC et al. Bench-to-bedside review: Inhaled nitric oxide therapy in adults. Critical Care 2009;13:212-9
  4. Adhikari NK et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis BMJ 2007; 334:779-86
  5. Sokol J et al. Inhaled nitric oxide for acute hypoxemic respiratory failure in children and adults. Cochrane Database of Systematic Reviews 2003, Issue 1. Art No.: CD002787. DOI: 10.1002/14651858.CD002787
  6. Afshari A et al. Inhaled Nitric Oxide for Acute Respiratory Distress Syndrome and Acute Lung Injury in Adults and Children: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Anesth Analg
    2011;112:1411–21
  7. Germann P et al. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med 2005; 31: 1029-41