Jan 132013
 

L’iperventilazione e l’ipocapnia spesso ci preoccupano nei pazienti con trauma cranico. Condivido con gli amici di ventilab un caso che alcune settimane fa si è presentato nella mia Terapia Intensiva.

Marino è un settantenne ricoverato in Terapia Intensiva per trauma cranico. Durante i primi 8-10 giorni ha ipertensione endocranica, è mantenuto sedato con ventilazione controllata. La frequenza respiratoria viene regolata per mantenere una PaCO2 di circa 35 mmHgAl termine di questo periodo, rimuove il monitoraggio della pressione intracranica ed inizia la ventilazione assistita (tramite tracheotomia) con pressione di supporto 8-12 cmH2O e PEEP 8 cmH2O.  Il GCS è 2+4+1(T), con la risposta motoria appena accennata. Fin qui tutto regolare, un paziente impegnativo ma che non pone dubbi rilevanti sulla scelta del miglior trattamento.

In pressione di supporto Marino ha un volume corrente di circa 550-650 ml (più alti di quelli che piacerebbero a me), indifferente alle variazioni di pressione di supporto e la frequenza respiratoria di 20-25/min. La PaO2 è di 100 mmHg con FIO2 0.4. Un caso come tanti, se non avessimo la PaCO2 a 25 mmHg con pH 7.53. Il dubbio che alcuni colleghi pongono è: in un trauma cranico recente, l’ipocapnia può determinare delle riduzioni della perfusione cerebrale e favorire l’insorgere di lesioni ischemiche?

Non possiamo dare risposte assolutamente certe a questa domanda (vedi post del 12/11/2010, 21/11/2010 e 12/01/2011), è possibile però farsi guidare da fisiologia e buon senso.

Se non costasse nulla mantenere un paziente normocapnico, lo faremmo volentieri. Il prezzo per mantenere Marino normocapnico invece è abbastanza pesante. La variazione del livello di pressione di supporto non modifica il volume corrente: ciò significa che il livello di ventilazione di Marino dipende dal suo drive respiratorio e non è indotto dalla nostra ventilazione. Alla riduzione della pressione di supporto si associa infatti un aumento dell’attività dei muscoli respiratori per mantenere proprio questo livello di ventilazione. L’unica misura efficace per ridurre la ventilazione in questi casi è la sedazione. Ma vogliamo sedare proprio ora un paziente che può avviarsi verso lo svezzamento dalla ventilazione meccanica?

La risposta può essere data se riusciamo a distinguere le cause dalle conseguenze.

L’aumento della concentrazione degli ioni idrogeno Hdetermina (con meccanismi tra loro indipendenti) sia iperventilazione che vasodilatazione cerebrale. Viceversa la riduzione della concentrazione degli  H+ causa bradipnea e vasocostrizione cerebrale (1-4).

Se l’iperventilazione viene imposta ad un paziente in ventilazione meccanica controllata, questa determinerà riduzione della PaCO2 e di conseguenza riduzione dalla PCO2 liquorale. A quest’ultima conseguirà una riduzione della concentrazione degli H+ e la conseguente vasocostrizione cerebrale.

Molto diverso è il caso dell’iperventilazione spontanea. In questa condizione dobbiamo quindi chiederci: perchè il paziente iperventila? Tra le cause più frequenti possono essere l’acidosi liquorale o l’ipossiemia (1). Marino non ha ipossiemia, quindi possiamo sospettare una elevata concentrazione liquorale di H+ (ricordiamo che ha avuto un recente trauma cranico). In questi casi il pericolo dell’iperventilazione non è la vasocostrizione ma le eventuali conseguenze sistemiche dell’alcalosi respiratoria (ad esempio sull’apparato cardiovascolare).

Marino è stato lasciato in ventilazione assistita senza sedazione, in circa due giorni si è portato stabilmente ad una PaCO2 di 35 mmHg. Dopo un altro paio di giorni è stato svezzato dalla ventilazione meccanica e nella settimana successiva è stato dimesso in riabilitazione con un GCS di 4+5+1(T) e senza la comparsa di lesioni ischemiche all’ultima  TC encefalo prima della dimissione dall’ospedale. Un caso? Fortuna? 

Guardiamo allora questa emogasanalisi arteriosa, appartiene ad una giovane donna con chetoacidosi diabetica accettata dal nostro Pronto Soccorso qualche tempo fa. Non ci sono dubbi che vi sia una acidosi metabolica grave. La paziente ha eseguito numerose emogasanalisi e nella prima ora ha sempre avuto una PaCO2 tra 9 e 12 mmHg.

In questo caso ti aspetteresti una grave vasocostrizione cerebrale? Se siamo coerenti con il ragionamento fatto fino ad ora, dovremmo dire di no: l’iperventilazione è secondaria alla stimolazione del chemocettore centrale del midollo allungato (e dei copri aortici) da parte di un eccesso di  H+.  La clinica ci conferma questa interpretazione: questa giovane signora aveva uno stato di coscienza quasi normale, mostrandosi solo un po’ confusa. Nell’arco di qualche ora è poi tornata ad essere anche ben orientata, un elemento che supporta tutto il ragionamento che abbiamo fatto fino ad ora.

Sicuramente le interazioni tra ventilazione e perfusione cerebrale non si esauriscono con queste considerazioni, ed ogni caso deve essere valutato con prudenza e considerando tutte le ipotesi plausibili. Bisogna però evitare di credere la sedazione sia sempre indispensabile in caso di iperventilazione con ipocapnia.

Possiamo concludere dicendo che, di norma, l’iperventilazione con ipocapnia:

– determina acutamente ipoperfusione cerebrale se è indotta dalla ventilazione controllata;

– può coesistere una sufficiente perfusione cerebrale quando il paziente è in respiro spontaneo o ventilazione assistita (correttamente impostata!).

Un saluto a tutti gli amici di ventilab.

Bibliografia. 

1) Williams K et al. Control of breathing during mechanical ventilation: who is the boss? Respir Care 2011; 2-127-36

2) Raichle ME, Stone HL. Cerebral blood flow autoregulation and graded hypercapnia. Eur Neurol 1971-1972; 6:1-5.

3) Lumb AB. Nunn’s Applied Respiratory Physiology. Chapter 5: Control of breathing, pp. 61-82. Churchill Livingstone, 7th edition (2010).

4) Froman C et al. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage. Lancet. 1966; 1(7441):780-2.

Jan 292011
 

Nel post del 7 gennaio abbiamo analizzato le variazioni di bicarbonati nei pazienti con acidosi metabolica. Oggi prendiamo in considerazione l’aspetto opposto del problema: nei pazienti con acidosi metabolica, come interpretiamo il valore di PaCO2?

Consideriamo il caso di un paziente diabetico di 75 anni che si presenta in Pronto Soccorso con 38.8 °C di temperatura. Da tre giorni, oltre alla febbre, sono presenti vomito e diarrea. Il paziente è sveglio, collaborante, ha una lieve dispnea, è ipoteso ed oligurico. La radiografia del torace mostra sfumati addensamenti su entrambi i campi polmonari. L’emogasanalisi arteriosa (eseguita con 5 l/min di O2 in maschera) è la seguente: pH 7.21, PaCO2 41 mmHg, HCO3- 16 mmol/l, PaO2 42 mmHg.

Le cose da fare sono molte: una di queste è il supporto della funzione respiratoria del paziente. Il medico del Pronto Soccorso decide di iniziare una CPAP noninvasiva per trattare la grave ipossiemia. Non ritiene necessario un supporto inspiratorio perchè l’acidosi è esclusivamente metabolica (la PaCO2 è nel range di normalità).

Sei d’accordo con questa scelta?

Certamente la PaCO2 è nel range di normalità (35-45 mmHg). E’ normale avere la PaCO2 entro i limiti fisiologici se ci si trova in una situazione non fisiologica? Sappiamo bene che l’incremento della concentrazione degli idrogenioni liquorali induce un aumento della ventilazione stimolando i centri bulbari (vedi post del 21/11/2010). Nell’acidosi metabolica il pH liquorale è ridotto perchè è in equilibrio con il pH arterioso. Quindi ci dobbiamo aspettare che un’acidosi metabolica determini un’iperventilazione. E infatti tutti abbiamo studiato ed osservato che i pazienti con acidosi metabolica iperventilano e che la riduzione della PaCO2 riavvicina il pH al valore normale.

Quanto iperventila un paziente con acidosi metabolica? Osservazioni empiriche su umani ci indicano che mediamente ad ogni riduzione di 1 mmol/l di bicarbonato si associa il calo di PaCO2 di circa 1.2 mmHg (1).

Il paziente che abbiamo descritto ha una PaCO2 normale in presenza di acidosi metabolica: questo è un dato patologico. E possiamo anche stimare di quanto dovrebbe essere la PaCO2 se avesse messo in atto un normale compenso respiratorio dell’acidosi metabolica. I bicarbonati sono diminuiti di circa 8 mmol/l rispetto al normale (24 mmol/l). Ne consegue che dovremmo aspettarci una PaCO2 di circa 30 mmHg (dal valore normale di 40 mmHg togliamo 8 x 1.2 mmHg). Il paziente ha in realtà 11 mmHg di PaCO2 più del valore appropriato nella condizione in cui si trova. In realtà la sua acidosi deve essere considerata mista perchè sia i bicarbonati che la PaCO2 non sono normali. E se la PaCO2 è più alta di quello che dovrebbe essere, la spiegazione è semplice: una insufficienza della pompa respiratoria. E quando c’è una insufficienza di pompa respiratoria bisogna fornire al paziente un supporto inspiratorio e non una CPAP. Quindi, a mio parere, l’ideale sarebbe stato fare una ventilazione assistita (pressione di supporto, bipap, controllata/assistita).

Per riassumere possiamo concludere che:

1) quando c’è acidosi metabolica, la PaCO2 deve essere inferiore al valore normale nella misura di 1.2 mmHg per ogni riduzione di 1 mmol/l di bicarbonato;

2) se la PaCO2 misurata è significativamente superiore al valore atteso, è presente un’insufficienza conclamata della pompa respiratoria;

3) se è presente insufficienza della pompa respiratoria, è necessario il supporto inspiratorio (che la CPAP non può dare) con una ventilazione assistita.

Un caro saluto a tutti gli amici di ventilab.

Reference:

1) Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York 2004, 5th ed. Cap. 17: Introduction to simple and mixed acid-base balance disorders. Pagg. 535-550.

Jan 122011
 

A completamento dei post del 12 e 21 novembre, ho chiesto il parere ad un esperto di neurorianimazione sugli effetti acuti e cronici delle variazioni di pH/PaCO2 sul flusso ematico cerebrale. E’ quindi con piacere che pubblico il commento del prof. Nicola Latronico dell’Università degli Studi di Brescia. Come sua abitudine, Nicola Latronico non si è limitato a rispondere alla domandina, ma ci offre una prospettiva originale sul tema, ricca di molti spunti di riflessione. Il commento è stato tempestivamente scritto ed inviato a ventilab, ma si è subito perso nei meandri delle spam e viene pubblicato con un mese di ritardo. Mi scuso per l’incoveniente con il prof. Latronico e gli amici di ventilab.org.

“Concordo circa il fatto che l’iperventilazione acuta, spontanea o meno, determini variazioni del flusso ematico cerebrale (FEC) limitati nel tempo. Il FEC si riduce, mentre aumentano l’estrazione cerebrale di ossigeno ed il volume di tessuto cerebrale ischemico. Il consumo di ossigeno cerebrale dovrebbe ridursi, ma ciò accade solo in una piccola percentuale di casi, aumentando ulteriormente il rischio di eventi ischemici (1). La sequenza di eventi descritta é vera sia per l’iperventilazione indotta che spontanea (2). Il paziente con trauma cranico grave o moderato che iperventila va quindi sedato, cosa che é stata opportunamente sottolineata nella discussione.

Il FEC non é l’unica variabile in gioco; un’importante conseguenza dell’iperventilazione é la deplezione di bicarbonato nel liquido cerebro-spinale (LCS), che riduce la capacità buffer del sistema. In termini generali, l’iperventilazione cronica va vista come uno stimolo persistente alla deplezione delle riserve fisiologiche cerebrali (ma anche sistemiche). Ciò potrebbe spiegare l’aumento di mortalità e morbilità nei pazienti iperventilati in modo profilattico (in assenza cioé di ipertensione intracranica) rispetto ai pazienti con ventilazione normale o iperventilazione più THAM (quest’ultimo per controbilanciare la diminuzione della capacità buffer del  LCS) (3). Non vi é indicazione all’iperventilazione profilattica; questa va usata solo in caso di ipertensione intracranica, misurata (meglio) o documentata clinicamente (per es. dilatazione pupillare improvvisa).

L’iperventilazione spontanea di nuova insorgenza nel paziente con trauma cranico o nel paziente con altre patologie encefaliche acute é un segno clinico importante.  Devono essere escluse complicanze emorragiche, ischemiche ed infettive. Le meningiti e le ventriculiti associate all’uso di cateteri intra-ventricolari sono una complicanza temibile, che spesso si manifesta con iperventilazione spontanea.

Un altra possibile causa é lo stato di male epilettico non convulsivo, che, per il fatto di essere non convulsivo, è difficile da diagnosticare. Bisogna considerare tale possibilità, perché evidenze recenti suggeriscono che possa essere un fattore di danno cerebrale secondario (4, 5). Dato poi che il diavolo é nei dettagli, la febbre, una causa importante di iperventilazione, va accertata e trattata in modo prioritario.

Infine l’iperventilazione neurogena centrale può essere documentata anche in pazienti coscienti. In tali casi l’iperventilazione, che tipicamente persiste anche durante il sonno, molto spesso si associa a tumori cerebrali (linfomi, astrocitomi, medulloblastomi, carcinoma della laringe) con localizzazioni a livello soprattutto del ponte. I casi descritti sono importanti soprattutto per il fatto che consentono la diagnosi eziologica; inoltre, la localizzazione pontina o più raramente bulbare indica l’area del tronco cerebrale che dovrebbe essere oggetto d’indagini neuroradiologiche accurate.

Spero che le mie osservazioni aiutino ulteriormente una discussione veramente interessante.

Buon Natale a tutti.

Nicola

1) Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, Aigbirhio F, Chatfield DA, Williams GB, Boniface S, Carpenter TA, Clark JC, Pickard JD, Menon DK. Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007 Feb;35(2):568-78.

2) Carrera E, Schmidt JM, Fernandez L, Kurtz P, Merkow M, Stuart M, Lee K, Claassen J, Sander Connolly E, Mayer SA, Badjatia N. Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury. J Neurol Neurosurg Psychiatry. 2010 Jul;81(7):793-7

3) Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF.  Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991; 75:731-739

4) Vespa PM, McArthur DL, Xu Y, Eliseo M, Etchepare M, Dinov I, Alger J, Glenn TP, Hovda D. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology 2010; 75:792–798

5) Latronico N.  Evaluation of: Vespa PM et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010 Aug 31; 75(9):792-8; doi: 10.1212/WNL.0b013e3181f07334. Faculty of 1000, 09 Sep 2010. F1000.com/5034965 http://f1000.com/5034965

6) Plum F, Swanson AG. Central neurogenic hyperventilation in man. AMA Arch Neurol Psychiatry 1959;81:535-549.”

Ancora un vivo ringraziamento a Nicola da parte mia e di tutti gli amici di ventilab.org.

Jan 072011
 

Nel commento ad un precedente post mi è stato chiesto: “Quale valore è meglio guardare tra bicarbonati standard e attuali?”.

Cerco di rispondere a questa domanda con un esempio pratico: un paziente ha pH 7.21, PaCO2 70 mmHg, HCO3 27 mmol/l. Che diagnosi facciamo?

Un approccio razionale all’equilibrio acido-base (EAB) ci richiede:

  1. valutazione del pH per diagnosticare acidosi o alcalosi
  2. analisi di PaCO2 e bicarbonati per decidere se il disturbo è respiratorio o metabolico

Nel nostro esempio abbiamo certamente una acidosi (ed anche una acidemia, dato che il pH è inferiore a 7.35). La PaCO2 è molto aumentata e quindi diagnostichiamo un’acidosi respiratoria.

Ed il versante metabolico? I bicarbonati attuali (quelli calcolati da pH e PaCO2 ed indicati come HCO3sul referto dell’EAB) sono superiori al valore normale (circa 24 mmol/l).

Dobbiamo ora rispondere ad un’altra domanda: l’aumento dei bicarbonati è la semplice conseguenza dell’aumento della PaCO2? Infatti sappiamo tutti che la CO2, reagendo con l’acqua, determina la formazione di nuovo bicarbonato: CO2 H2O → H2CO3 → H+ + HCO3.

Se l’aumento dei bicarbonati è spiegato dal solo aumento della PaCO2, allora il disturbo dell’EAB è puramente respiratorio. Viceversa bisogna considerare anche la componente metabolica.

I bicarbonati standard ci aiutano a rispondere a questa domanda: rappresentano infatti il valore dei bicarbonati quando il nostro campione di sangue viene portato a 40 mmHg di PaCO2 (ed a 37°C di temperatura). Nel nostro paziente i bicarbonati standard sono 24.2 mmmol/l. Possiamo quindi concludere che l’acidosi è puramente respiratoria poiché i bicarbonati sarebbero stati normali se la PaCO2 fosse stata normale. Se invece i bicarbonati standard fossero stati inferiori alla norma, avremmo dovuto diagnosticare un’acidosi mista: cioè a PaCO2 normale, i bicarbonati sarebbero stati patologicamente bassi.

Quindi l’uso dei bicarbonati standard è meglio dei bicarbonati attuali nelle diagnosi dell’EAB. Ma…

ma non mi piace usare i bicarbonati standard perchè in alcuni casi possono essere gravemente fuorvianti. I bicarbonati standard infatti non considerano quale era il valore basale dei bicarbonati del paziente prima della variazione di PaCO2. E’ noto che se l’acidosi respiratoria diventa cronica (cioè si è instaurata da un paio di giorni), il valore dei bicarbonati aumenta per il compenso renale ed il pH tende a riportarsi verso la normalità. Di quanto aumentano i bicarbonati durante l’acidosi respiratoria cronica? Osservazioni su umani hanno documentato che mediamente i bicarbonati aumentano di 3.5 mmol/l per ogni 10 mmHg di incremento cronico della PaCO2. Se l’aumento di PaCO2 è invece acuto, i bicarbonati aumentano di 1 mmol/l per ogni 10 mmHg di incremento di PaCO2 (1).

Riprendiamo l’EAB del nostro paziente: pH 7.21, PaCO2 70 mmHg, HCO3 27 mmol/l. Se questo paziente fosse ipercapnico da almeno un paio di giorni, ad esempio come conseguenza di una ventilazione protettiva, quale valore di bicarbonati dovrebbe avere? Se calcoliamo l’incremento di 3.5 mmol/l per ogni 10 mmHg di aumento di PaCO2, dobbiamo aspettraci che questo paziente abbia circa 34 mmol/l di bicarbonati. Se ha invece una bicarbonatenia di 27 mmol/l, possiamo concludere che ci sono circa 7 mmol/l di bicarbonati in meno rispetto all’atteso. Quindi esiste anche una componente metabolica dell’acidosi. Le cui cause dovranno opportunamente essere indagate e trattate.

Se avessimo guardato i bicarbonati standard, in questo caso, ci saremmo fatti sfuggire una corretta diagnosi e quindi un corretto trattamento.

Abbiamo quindi visto che lo stesso EAB (pH 7.21, PaCO2 70 mmHg, HCO327 mmol/l) può portare a differenti diagnosi cliniche (e trattamenti!) in funzione della durata dell’ipercapnia. Leggere un EAB non è solo guardare un foglietto di carta ma anche la storia del paziente.

Ora posso rispondere alla domanda iniziale.

  1. I bicarbonati devono essere valutati diversamente negli aumenti di PaCO2 acuti e cronici.
  2. Aumenti acuti di PaCO2: i bicarbonati standard vanno benissimo per una corretta diagnosi dell’EAB. In alternativa si possono confrontare i bicarbonati attuali con quelli attesi (cioè 24 mmol/l più 1 mmol/l per ogni 10 mmHg di incremento di PaCO2).
  3. Aumenti cronici di PaCO2: non usare i bicarbonati standard. Si devono confrontare i bicarbonati attuali con quelli attesi (cioè 24 mmol/l più 3.5 mmol/l per ogni 10 mmHg di incremento di PaCO2).

In questo post abbiamo parlato esclusivamente di bicarbonati ed acidosi respiratoria. Diverse sono le regole durante l’alcalosi respiratoria. Altrettanto interessanti sono le variazioni di PaCO2 durante gli squilibri metabolici dell’EAB. E di questo avremo modo di parlare nelle prossime settimane.

Un cordiale saluto a tutti gli amici di ventilab.

Reference:

1) Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York 2004, 5th ed. Cap. 17: Introduction to simple and mixed acid-base balance disorders. Pagg. 535-550.

PS: Consiglio vivamente il testo citato a tutti gli appassionati di equilibrio acido-base e soprattutto di squilibri idro-elettrolitici. Agli inizi della mia carriera acquistai la terza edizione in italiano, che ho letto, riletto ed amato. Qualche hanno fa non ho saputo resistere ad un’edizione più recente ed ho acquistato anche quella. Ora spero che la “vecchia” terza edizione abbia trovato lo stesso amore tra le mani del collega e amico a cui l’ho regalata…