Sep 102016
 

TotoLa ventilazione con pressione di supporto (Pressure Support Ventilation) è una delle modalità di ventilazione assistita più frequentemente utilizzate in Europa. Il motivo del grande successo di questa modalità di ventilazione è dovuto sia alla sua efficacia che alla sua semplicità di impostazione. Tutte e due queste caratteristiche però nascondono dei tranelli. L’efficacia della ventilazione con pressione di supporto è infatti da verificare caso per caso e la semplicità di impostazione può divetare un tranello.

Spesso è suggerito di impostare il livello di pressione di supporto per ottenere un obiettivo di volume corrente (as esempio di 6-8 ml/kg di peso ideale) e di frequenza respiratoria (ad esempio < 25/min). E’ davvero sufficiente questo per impostare correttamente la pressione di supporto? (la pressione di supporto in alcuni ventilatori è denominata ΔASB, in altri ancora è la differenza tra IPAP ed EPAP)

Alcuni giorni fa avevamo in reparto un paziente il cui peso ideale era stimato in 70 kg. Abbiamo modificato il livello di pressione di supporto per scegliere quello a lui più appropriato. Con tre diversi livelli di pressione di supporto (5, 10 e 12 cmH2O), il volume corrente rimaneva sostanzialmente costante (tra i 450 ed i 500 ml), mentre la frequenza respiratoria si riduceva lievemente con l’incremento della pressione di supporto (23/min, 21/min e 18/min). Quale livello di pressione di supporto scegliere? Gli obiettivi di volume e di frequenza respiratoria sono raggiunti con tutte e tre le impostazioni… Lasciamo la scelta al caso e/o all’istinto?

Fortunatamente abbiamo un elemento preziosissimo per scegliere accuratamente il livello di pressione di supporto: il monitoraggio grafico della ventilazione meccanica. Nella scelta del livello di pressione di supporto, ritengo che la curva più importante da valutare sia quella flusso-tempo. Nella figura 1 vediamo l’onda di flusso con 12 cmH2O di pressione di supporto.

Figura 1

Figura 1

La ventilazione in pressione di supporto è una ventilazione pressometrica. Abbiamo ormai imparato che le ventilazioni pressometriche nei pazienti passivi (come ad esempio la ventilazione a pressione controllata) sono caratterizzate da un flusso inspiratorio decrescente (ad esempio vedi post del 27/11/2011). Nella figura 1 il flusso inspiratorio è indicato dalla parte di onda al di sopra dello zero. Nella parte iniziale dell’inspirazione il flusso raggiunge il picco, che successivamente decresce linearmente (linea gialla tratteggiata) fino al punto in cui il flusso inspiratorio “crolla” verso lo zero. [Questo punto coincide con il raggiungimento del trigger espiratorio, che come sappiamo è definito da una percentuale di flusso rispetto al picco iniziale. In questo caso abbiamo un picco di flusso di circa 50 L/min ed il trigger espiratorio si attiva a circa 15 L/min: possiamo quindi supporre che il trigger espiratorio sia stato impostato a circa il 33% (cioè 50 L/min / 15 L/min 100).] Il flusso non è mai superiore alla linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio: è una condizione simile a quella della pressione controllata con paziente passivo (trascuriamo il fatto che in questa condizione il flusso decreace esponenzialmente e non linearmente). Possiamo quindi dedurre che il paziente, dopo l’attivazione del trigger, è sostanzialmente passivo.

Nella figura 2 vediamo la curva di flusso con 10 cmH2O di pressione di supporto.

Figura 2

Figura 2

Rispetto al condizione precedente, la riduzione di pressione di supporto è minima. Frequenza respiratoria e volume corrente sono simili a quanto abbiamo ottenuto con 12 cmH2O. Ma la morfologia del flusso inspiratorio si modifica in maniera sostanziale: una parte del flusso inspiratorio si mantiene al di sopra della linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio. Un aspetto diverso da quello delle ventilazioni pressometriche a paziente passivo. Questa informazione è utile per indicare che i muscoli inspiratori continuano a “lavorare” anche dopo l’attivazione del trigger.

La figura 3 mostra la curva di flusso con 5 cmH2O di pressione di supporto.

Figura 3

Figura 3

A questo punto possiamo facilmente vedere come il flusso sia marcatamente aumentato rispetto alla linea ideale di decadimento passivo. E concludere che il soggetto in questo caso mette in gioco una rilevante attivazione dei muscoli inspiratori. Come si può vedere nella figura 3, è molto difficile (o impossibile) identificare il flusso a cui si attiva il trigger espiratorio quando il paziente è molto attivo ed il flusso inspiratorio diventa sinusoidale. Possiamo sfruttare questa condizione a nostro vantaggio: il paziente “lavora molto” se non si riconosce sulla onda di flusso il punto in cui si attiva il trigger espiratorio.

Rivediamo nella figura 4, messe insieme, le curve che abbiamo analizzato finora. A questo punto penso che un colpo d’occhio sia sufficiente per capire il differente livello di attività dei muscoli inspiratori nelle tre impostazioni della pressione di supporto. Uno sguardo a questo punto vale più di mille parole.

Figura 4

Figura 4

Ora la domanda è spontanea: quale livello di pressione di supporto scegliere? Questo dipende dagli obiettivi clinici che abbiamo nel momento in cui dobbiamo decidere. Se il nostro obiettivo è quello di far riposare un paziente affaticato (ad esempio dopo il fallimento di un trial di respiro spontaneo), meglio scegliere di mettere a riposo per un po’ di tempo i muscoli inspiratori. Viceversa, se il paziente non presenta dispnea o altri segni clinici che rendano opportuno il riposo, meglio scegliere un livello di pressione di supporto che assicuri una significativa attivazione dei muscoli inspiratori durante l’inspirazione. E magari procedere rapidamente al weaning…

Nel paziente che ho presentato, è stato scelta una pressione di supporto di 10 cmH2O, poiché con livelli più bassi lamentava dispnea. Abbiamo però evitato i 12 cmH2O, perche con questo livello tendeva ad essere inutilmente passivo durante la ventilazione assistita: 2 cmH2O sono un’inezia, ma in qualche caso potrebbero fare la differenza per accelerare il weaning…

In conclusione, riassumiamo brevemente i punti salienti del post di oggi:

1) durante pressione di supporto, la valutazione di frequenza respiratoria e volume corrente è insufficiente per una scelta appropriata dell’assistenza inspirtoria;

2) una semplice analisi della curva di flusso può aiutarci nella scelta: tanto meno il flusso è decrescente, tanto più attivo è il paziente;

3) si deve ricercare una bassa attività del paziente se l’obiettivo clinico è il riposo (quindi se si rilevano segni o sintomi di “fatica”), mentre in tutti gli altri casi è opportuno mantenere una significativa attività muscolare (fino al punto in cui può essere tollerata).

 

Un sorriso a tutti gli amici di ventilab.

Sep 152013
 

Labyrinth-Security-LockQuale è il significato clinico della pressione venosa centrale? A cosa ci serve nella pratica clinica? Per molti le risposte a queste domande sono semplici: è una stima dello stato volemico e ci serve per guidare la somministrazione di fluidi. Questa visione è sostenuta anche da importanti linee guida (vedi ad esempio quella della Surviving Sepsis Campaign), peccato non sia supportata da alcuna evidenza scientifica…. La pressione venosa centrale è il punto di congiunzione tra circolazione venosa e pompa cardiaca destra. Nasconde informazioni utili nei suoi dettagli ed insidie nel suo valore numerico (soprattutto se cerchiamo dei valori soglia). Potremmo parlare a lungo del significato fisiologico e clinico della pressione venosa centrale, ma sarebbe un può fuori tema per ventilab, che è monotematico sull’insufficienza respiratoria e la ventilazione meccanica. Se però ti interessa che si vada “fuori tema” nei prossimi post parlando ancora di pressione venosa centrale, fammelo sapere.

Premesso questo, la prima difficoltà nell’uso della pressione venosa centrale è la corretta rilevazione. Quale punto di riferimento? Angolo sternale o linea ascellare media? La pressione venosa centrale è un’onda complessa. In quale punto leggere il valore? Il valore medio dell’onda, o in qualche punto tra le onde “a”, “c”, “v”? Quando la traccia della pressione venosa centrale oscilla durante la ventilazione, dove rilevarne il valore? Purtroppo il numero che vediamo sui monitor è spesso acritico ed ha bisogno di un’interpretazione competente. Teniamo conto che gli errori di lettura della pressione venosa centrale possono avere una notevole rilevanza: la pressione venosa centrale ha un range di presunti valori “normali” molto ristretto (tra 1 e 7 mmHg), ed un errore di pochi mmHg nella lettura può portare a conclusioni completamente sbagliate.

Oggi ci occuperemo esclusivamente dell’impatto della attività respiratoria sulla rilevazione della pressione venosa centrale.

La misurazione della pressione venosa centrale durante l’attività respiratoria.

Sappiamo che la rilevazione delle pressioni vascolari intratoraciche, e quindi  anche della pressione venosa centrale, dovrebbe essere eseguita a fine espirazione. In alcuni casi è molto semplice, perchè non esistono rilevanti variazioni di pressione venosa centrale durante la respirazione, come ad esempio nella figura 1.

Figura 1.

Figura 1.

Ma in altri casi l’effetto della respirazione può indurre il monitoraggio a fornirci il numero “sbagliato”: in questo caso siamo noi a dovere correggere con intelligenza la lettura del monitor, come nell’esempio in figura 2.

cvp_2

Figura 2

Il monitor ci dice che il paziente ha 7 mmHg di pressione venosa centrale, ma in effetti questo non è vero. Vediamo l’onda della pressione venosa centrale che oscilla tra plateau di 12-13 mmHg e valli di 0-2 mmHg. Quali sono i valori di fine espirazione? In questo caso sono i plateau di 12-13 mmHg perchè il paziente è in respiro spontaneo: le pressioni all’interno del torace (anche quelle vascolari!) si riducono durante l’inspirazione e ritornano al loro livello basale (più elevato) durante l’espirazione. Quindi in questo caso specifico dovremo leggere 12-13 mmHg di pressione venosa centrale e non 7 mmHg come ci dice il monitor. Dobbiamo precisare che possiamo aiutare alcuni monitor a fare una lettura migliore andando a specificare nel menu se il paziente è in respiro spontaneo o in ventilazione controllata. Purtroppo questo non risolve i problemi in caso di ventilazione assistita (come quasi tutti i pazienti in Terapia Intensiva) o di espirazione attiva.

Quali implicazioni pratiche? Notevoli per gli amanti di linee guida e bundles: ad esempio la già citata Surviving Sepsis Campaign ci dice di somministrare fluidi per ottenere una pressione venosa centrale di 8-12 mmHg. Quindi se crediamo al valore che ci dà il monitor dovremmo somministrare ancora fluidi, se invece leggiamo accuratamente la pressione venosa centrale  dovremmo iniziare l’infusione di norepinefrina in caso di ipotensione .

E’ diverso il caso nei pazienti in ventilazione meccanica controllata, come nell’esempio che possiamo vedere di seguito.

cvp_3

Figura 3

In questo caso l’onda della pressione venosa centrale raggiunge il proprio massimo durante l’inspirazione, quando tutte le pressioni intratoraciche aumentano per effetto dell’insufflazione meccanica in assenza di depressione pleurica secondaria all’utilizzo dei muscoli inspiratori. Quindi, al contrario del caso precedente, la pressione venosa centrale a fine espirazione coincide con il valore più basso. In questo caso sarebbe 6-7 mmHg, il monitor ci ha azzeccato (anche perchè era stato correttamente aiutato inserendo l’informazione che il paziente è in ventilazione controllata).

Ora vediamo un altro esempio un po’ più complesso di un paziente con ventilazione assistita:

Figura 4

Figura 4

In questo caso abbiamo un’ampia oscillazione della pressione venosa centrale, da valori negativi ad olte 30 mmHg, con la lettura automatica che ci dà il valore di 13 mmHg. Durante ventilazione assistita l’attività respiratoria del paziente è complessa: c’è una iniziale fase inspiratoria che porta al triggeraggio dell’inspirazione meccanica, quindi una fase di assistenza a pressione positiva, in cui la pressione pleurica può sia continua a diminuire che ad aumentare, ed infine l’espirazione. Un bel labirinto in cui doversi orientare. Ci può essere d’aiuto un semplice accorgimento: mantenere una mano sull’addome del paziente durante l’osservazione della curva di pressione venosa centrale sul monitor. Seguendo con la mano i movimenti dell’addome durante la ventilazione, potremo facilmente individuare inizio e fine di inspirazione ed espirazione senza staccare gli occhi dal monitor e capire in tempo reale quando ci troviamo a fine espirazione. Con la mano sull’addome possiamo facilmente percepire anche un espirio forzato attraverso la rilevazione della contrazione dei muscoli addominali durante l’espirazione (prova, vedrai che è molto semplice). E’ importante, perchè la fine espirazione che dobbiamo trovare è evidentemente una fine espirazione passiva e non attiva.

Rivediamo la figura  4 mentre tocchiamo l’addome del paziente e contemporaneamente guardiamo il monitor:

Figura 4 bis

Figura 4 bis

In questo caso ci rendiamo conto che i picchi di pressione venosa centrale corrispondono alla fase espiratoria, ma che questa è molto forzata e che quindi la pressione intratoracica aumenta per effetto della contrazione attiva ed intensa dei muscoli espiratori. Ci rendiamo conto che l’espirazione forzata è preceduta da un breve plateau, che è allo stesso livello dell’inizio dell’inspirazione. Questo può essere il livello di pressione venosa centrale in assenza di attività muscolare respiratoria (sia inspiratoria che espiratoria) e lo abbiamo identificato con la linea tratteggiata rossa a circa 5 mmHg, un valore ben diverso (e con potenziali implicazioni pratiche antitetiche) rispetto ai 13 mmHg rilevati dal monitor.

Prima di arrivare alle conclusioni, prova a decidere tu quale è il valore di pressione venosa centrale (approssimativamente) corretto in questo paziente (le linee bianche tratteggiate orizzontali sono a 7.5 mmHg di distanza tra loro):

Figura 5

Figura 5

Trascurando ogni considerazione sull’utilizzo clinico della pressione venosa centrale, possiamo riassumere quando abbiamo visto in 3 punti:

1) il valore della pressione venosa centrale non sempre coincide con quello rilevato dal monitoraggio;

2) il valore corretto di pressione venosa centrale dovrebbe essere rilevato a fine espirazione passiva (o comunque in assenza di attività dei muscoli inspiratori ed espiratori)

3) possiamo facilmente identificare il punto giusto di rilevazione della pressione venosa centrale guardando la traccia sul monitor e contemporaneamente seguendo la respirazione del paziente con una mano sul suo addome.

Un sorriso a tutti.

Jun 282013
 

Come promesso ad alcuni amici di ventilab, ecco il post sulla Maximun Inspiratory Pressure (MIP) (o Negative Inspiratory Force, NIF). Cosa sono, a cosa servono? Per rispondere a queste domande, commentiamo insieme il caso di Piero.

Piero è un uomo di 78 ricoverato per una riacutizzazione postoperatoria di BPCO. E’ trachetomizzato ed ha difficoltà di svezzamento dalla ventilazione meccanica. Quando è deconnesso dal ventilatore, nel volgere di poche ore manifesta dispnea e respiro rapido e superficiale. Un quadro clinico che siamo abituati a vedere relativamente spesso nei nostri pazienti. Perchè Piero non riesce a conquistare il weaning dalla ventilazione meccanica?

Sappiamo che la dipendenza dalla ventilazione meccanica può essere ricondotta principalmente a due cause: un elevato carico o una ridotta forza dei muscoli respiratori.

Se riusciremo a capire quale, tra questi due, sia il problema principale per Piero, potremo indirizzare i nostri sforzi verso la vera cura del problema.

Per esaminare la forza dei muscoli respiratori possiamo misurare la MIP. La MIP è la misurazione della variazione di pressione generata dai muscoli respiratori durante un’inspirazione massimale contro una via aerea chiusa. Nei pazienti intubati o tracheotomizzati (come Piero) si deve occludere la via aerea a fine espirazione e far eseguire al paziente l’inspirazione più profonda possibile che è in grado di fare. La variazione della pressione nelle vie aeree è la nostra MIP. Alcuni ventilatori meccanici hanno ormai l’opzione per farlo automaticamente, altrimenti è possibile eseguire un’occlusione delle vie aeree un attimo prima dell’inizio dell’inspirazione massimale, congelare la traccia di pressione delle vie aeree durante la manovra e successivamente analizzarla. Il paziente deve essere istruito su ciò che deve fare e mentre esegue la manovra deve essere guidato ed incentivato a farla bene. E’ raccomandabile eseguire 3-5 manovre ed utilizzare la più grande variazione di pressione come valore di MIP. Nei pazienti non collaboranti è stato suggerito di occludere le vie aeree (con una valvola unidirezionale) per 20-25 secondi consecutivi e rilevare la massima variazione di pressione nelle vie aeree.

Noi abbiamo misurato la MIP a Piero, come facciamo spesso nei pazienti con weaning dalla ventilazione meccanica particolarmente impegnativo. Gli abbiamo spiegato la manovra e gliela abbiamo fatta eseguire tre volte. Abbiamo messo Piero in CPAP a 0 cmH2O (cioè l’abbiamo lasciato collegato al ventilatore senza alcuna pressione positiva) ed abbiamo eseguito l’occlusione delle vie aeree a fine espirazione. Contemporaneamente abbiamo registrato la pressione delle vie aeree. Ecco il risultato:

Piero è stato capace di ridurre la propria pressione nelle vie aeree al massimo di 30 cmH2O durante l’occlusione delle vie aeree. Che significato ha una MIP di 30 cmH2O? Piero appare essere un paziente relativamente debole, ma questa non sembra essere l’unica causa del fallimento del weaning. Infatti  la MIP “normale” per Piero dovrebbe essere nettamente superiore (tra 50 e 95 cmH2O, vedi nota), ma la debolezza muscolare diventa di per sè causa di fallimento dello svezzamento dalla ventilazione meccanica se la MIP è inferiore a 20 cmH2O.

La MIP quindi ci ha dato un’informazione utile ma, in questo caso, insufficiente per inquadrare il problema. Adesso dobbiamo capire quanto è il carico dei suoi muscoli respiratori, in altre parole quanto “costa” fare un respiro. Quindi abbiamo misurato la pressione esofagea ed ecco la risposta:

Durante un normale ciclo respiratorio la pressione esofagea si riduce mediamente di circa 16 cmH2O per ogni inspirazione. Nella figura qui sopra vediamo riprodotta la traccia durante tre inspirazioni consecutive: ogni riduzione della pressione corrisponde all’entità della pressione generata dai muscoli respiratori durante la normale respirazione.

Adesso conosciamo i due fattori in gioco: carico e forza dei muscoli respiratori di Piero. Il carico è di circa 16 cmH2Oe la forza di 30 cmH2O. In ogni inspirazione Piero deve utilizzare più della metà della forza massima che è capace di sviluppare: uno sforzo insostenibile. Si ritiene infatti che uno la respirazione spontanea non possa essere mantenuta a lungo quando il rapporto tra carico (=variazione di pressione esofagea durante la normale respirazione) e forza (=MIP) è superiore a 0.2, cioè quando si utilizza per ogni respiro più del 20% della propria forza massima.

Possiamo quindi affermare che Piero, pur non avendo una debolezza estrema (la MIP è > 20 cmH2O ), deve sostenere un lavoro troppo elevato per le sue forze. Abbiamo misurato la PEEP intrinseca di Piero ed abbiamo visto che è di 8 cmH2: in ogni respiro, metà dello sforzo è speso per annullare la PEEP intrinseca.

Ora abbiamo tutti gli elementi per orientare consapevolmente i nostri sforzi per  svezzare Piero dalla ventilazione meccanica. In primis cercare di ridurre la PEEP intrinseca che si genera durante la respirazione spontanea (in questo caso non ci interessa combattere la PEEPi durante ventilazione meccanica): 1) massimizzare la broncodilatazione; 2) ridurre frequenza respiratoria e ventilazione minuto spontanea: ridurre la produzione di CO2 (corretto apporto nutrizionale e controllo della ipertermia), eventuale saltuario utilizzo di oppioidi durante episodi di tachipnea che non si risolvono rapidamente; 3) ridurre la flow limitation: mantenimento della posizione seduta.

Sarà poi anche importante comunque aumentare la forza dei muscoli respiratori di Piero. Per fare questo, a mio modo di vedere, il fattore più importante è il corretta modulazione della assistenza ventilatoria, con l’obiettivo di evitare sia l’affaticamento costante che il ridotto utilizzo dei muscoli respiratori (eccessiva assistenza e, peggio, autociclaggio). Quindi un corretto apporto nutrizionale (calorie, proteine, calcio, fosforo). E probabilmente anche esercizi quotidiani di respirazione contro un carico soglia. Ed il mantenimento della posizione seduta: anche il diaframma ha bisogno di punti di appoggio.

Non abbiamo certamente già risolto i problemi del nostro Piero, ma sicuramente sappiamo molto di più di della semplice constatazione del fallimento del weaning ed abbiamo creato una prospettiva di cura personalizzata.

Per concludere:

1) la MIP/NIF può esserci utile nella pratica clinica nei casi di svezzamento difficile;

2) se rileviamo un valore di MIP inferiore  a 20 cmH2O, il problema principale è la debolezza dei muscoli respiratori: bisogna agire principalmente su questo (per quanto possibile);

3) se la MIP è, come spesso accade, tra 20 e 50 cmH2O, diventa utile valutare il carico, cioè la variazione di pressione esofagea durante la normale ventilazione. Un rapporto (variazione normale pressione esofagea)/MIP superiore a 0.2 significa carico troppo elevato per le risorse del paziente.

Un sorriso a tutti gli amici di ventilab (sperando che torni il bel tempo…)

Nota. Il range di MIP normale può essere così calcolato: nei maschi 126 – 1.028*età + 0.343*peso in kg+ 22.4; nelle femmine 171 – 0.694*età+ 0.861*peso in kg- 0.743*altezza in cm + 18.5

Bibliografia

– ATS/ERS Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med 2002; 166: 518-624
– Cader SA et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. J Physiother 2010; 56:171-7
– Harik-Khan RI et al. Determinants of maximal inspiratory pressure: the Baltimore Longitudinal Study of Aging. Am J Respir Crit Care Med 1998; 158:1459-64
– Martin AD et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011; 15:R84
– Moxham J et al. Assessment of respiratory muscle strength in the Intensive Care Unit. Eur Respir J 1994; 7: 2057-61
– Truwit JD at al. Validation of a technique to assess maximal inspiratory pressure in poorly cooperative patients. Chest 1992; 102;1216-9

Jun 232010
 

Riparliamo della signora Maria e della riacutizzazione della BPCO descritta nel post del 10 giugno.

Ricapitoliamo: ci ritroviamo una paziente che ad ogni tentativo di sospensione della ventilazione meccanica ha dispnea e respiro rapido e superficiale. Tutto il resto va bene: buona funzione cardiovascolare, nessun segno di infezione, normale alimentazione per os, nessun disturbo cognitivo e comportamentale, nemmeno un elettrolita fuori posto.

A questo punto abbiamo avanzato due ipotesi: o la paziente ha una forza dei muscoli respiratori molto ridotta o il lavoro che deve svolgere per respirare è molto alto. Anzi, ci facciamo l’idea che le due condizioni coesistano.

Il carico di lavoro che Maria deve svolgere per respirare è attribuibile a tre diverse componenti: carico elastico, carico resistivo e carico soglia.

La componente elastica del lavoro respiratorio può essere ricondotta alla pressione richiesta per aumentare il volume dell’apparato respiratorio durante l’inspirazione. Maria si porta con se la diagnosi di fibrosi polmonare…forse potrebbe avere un carico elastico un po’ più elevato del normale.

La pressione che serve per fare scorrere l’aria nelle vie aeree quantifica il carico resistivo. Maria è una donna con BPCO, possiamo pensare alle vie aeree distali con diametro ridotto da edema e secrezioni…dovrebbe avere un carico resistivo più elevato del normale.

Ed ultimo, ma non meno importante, il carico soglia. Maria ha una ostruzione al flusso espiratorio, requisito indispensabile per guadagnarsi la diagnosi di BPCO. E’ quindi probabile che abbia la necessità di aumentare il volume polmonare di fine espirazione per poter avere sufficiente energia elastica per espirare il volume corrente. Questo meccanismo genera PEEP intriseca. E la PEEP intriseca è il carico soglia. Questo significa che l’aria inizierà ad entrare negli alveoli solo dopo che l’espansione dell’apparato respiratorio (determinata dall’attivazione dei muscoli inspiratori, quindi un lavoro) avrà abbassato la pressione negli alveoli al valore della pressione atmosferica (o della PEEP esterna). Ad esempio 5 cmH2O di PEEP intriseca necessitano di 5 cmH2O di riduzione della pressione pleurica prima che possa iniziare l’inspirazione. E solo a questo punto iniziano ad entrare in gioco carico elastico e carico resistivo. Ricorda che, mentre stai leggendo queste righe, probabilmente ti sono sufficienti 3-4 cmH2O di depressione pleurica per ogni inspirazione. Maria potrebbe avere bisogno di fare uno sforzo 2 o 3 volte superiore al tuo solo per poter iniziare ad inspirare: e poi probabilmente farà anche più fatica di te per fare passare l’aria nelle vie aeree (carico resistivo) e distendere l’apparato respiratorio (carico elastico).

E’ evidente che avremmo molte difficoltà a svezzare Maria dalla ventilazione meccanica se un elevato lavoro respiratorio fosse associato ad una marcata riduzione della forza dei muscoli respiratori, come si osserva in pazienti BPCO o durante il ricovero in Terapia Intensiva.

Ora il nostro obiettivo è trasformare queste speculazioni teoriche in misurazioni che abbiano un valore clinico e ci orientino verso il miglior approccio per lo svezzamento di Maria dalla ventilazione meccanica.

Al prossimo appuntamento vedremo tutto questo applicato alla nostra paziente e quelle che sono state le implicazioni.

PS: invito tutti a rileggere il commento di Francesco al post del 10 giugno. Insieme a quello che ho scritto oggi, può aiutare a capire meglio quanto vedremo la prossima volta.

Jun 102010
 

Oggi faccio una domanda a tutti gli amici di ventilab.org: come vi sareste comportati con la signora Maria?

Maria è una donna di 77 anni con fibrosi polmonare e broncopneumopatia cronica ostruttiva (BPCO) stadio GOLD IV. Ricordo che GOLD sta per “Global Initiative for Chronic Obstructive Lung Disease”. GOLD è un programma per la prevenzione ed il trattamento della BPCO promosso dai principali esperti della malattia e supportato da National Heart, Lung, and Blood Institute, National Institutes of Health e dall’Organizzazione Mondiale della Sanità.

Per definizione la BPCO è una malattia caratterizzata da limitazione al flusso espiratorio non completamente reversibile. Per la diagnosi è quindi necessaria una spirometria che evidenzi un FEV1/FVC < 0.70 dopo l’utilizzo del broncodilatatore. Lo stadio IV è il livello più grave e identifica pazienti con FEV1<30% del valore predetto oppure < 50% con PaO2 < 60 mmHg durante la respirazione di aria (vedi linee guida).

Torniamo a Maria, che si era meritata GOLD IV ed ossigenoterapia domiciliare 24 ore al giorno. Viene ricoverata in Terapia Subintensiva Geriatrica per una riacutizzazione della BPCO. All’ingresso ha febbricola e 17.000 globuli bianchi/mm3 e la radiografia del torace è quella che vedi in alto a sinistra. Sempre la GOLD definisce come riacutizzazione un evento caratterizzato da una modificazione di dispnea, tosse o espettorato. Le cause più frequenti sono infezioni tracheobronchiali  ed inquinamento, ma la causa di un terzo delle riacutizzazioni gravi non è identificata.

Dopo due giorni di ventilazione noninvasiva (NIV), Maria è dispnoica con acidosi respiratoria (pH 7.21, PaCO2 76 mmHg). Viene quindi richiesta la valutazione rianimatoria che pone indicazione al ricovero in Terapia Intensiva.

Dopo quattro giorni di ventilazione invasiva, Maria viene estubata dopo aver superato un trial di respiro spontaneo al termine del quale lamenta una lieve dispnea, la PaCO2 è 65 mmHg con 7.44 di pH e la PaO2 55 mmHg con FIO2 0.35. Nonostante dopo l’estubazione la paziente sia stata sottoposta a periodi di NIV, il giorno successivo è reintubata per insufficienza respiratoria.

E così arriviamo alla tracheotomia dopo una settimana di ventilazione invasiva. Anche con la tracheotomia, Maria è sempre tachipnoica (40 atti/min) con bassi volumi correnti (circa 230 ml) e riferisce dispnea quando si riduce il PSV. La frequenza respiratoria diminuisce solo per livelli di PSV di circa 18 cmH2O. La PEEP è mantenuta a 5 cmH2O. Il pH è compensato (pH 7.43, PaCO2 62 mmHg) e la PaO2 è 101 mmHg con FIO2 0.45. Le condizioni generali sono buone, nessun segno di infezione, nessun esame fuori posto, Maria ha uno stato di coscienza ottimale (è una delle persone più squisite che io abbia mai curato), passa in poltrona buona parte della giornata, si alimenta benissimo da sola per os. Ma ogni volta che riduci il PSV o provi un trial di respiro spontaneo arriva sempre la dispnea e la tachipnea con bassi volumi correnti. Quindi nell’arco della giornata cerchiamo di alternare frequentemente periodi di respiro spontaneo/basso PSV con periodi di PSV elevato per fare riposare i mm. respiratori.

Il problema ora è questo: siamo convinti di aver risolto il problema acuto, le condizioni generali sono molto buone, ma non facciamo nessun passo avanti nel weaning dalla ventilazione.

Che fare? Ne riparliamo al prossimo appuntamento su ventilab.org. Nel frattempo prova a pensarci: mi farebbe molto piacere se mi mandassi i tuoi commenti in proposito.

A presto.

Feb 092010
 

A chi non è mai capitato di vedere per settimane un paziente dipendente dalla ventilazione artificiale? Una situazione penosa per il malato, frustrante per i curanti, onerosa per il sistema sanitario.

La dipendenza dalla ventilazione meccanica è dovuta o ad un elevato carico di lavoro per i muscoli respiratori, o ad una loro debolezza, o ad entrambe le condizioni associate. Quando un paziente resta a lungo dipendente dalla ventilazione artificiale, cosa non funziona? Prevale un elevato carico respiratorio o invece la debolezza dei muscoli respiratori?

Un elegante studio italiano su pazienti con weaning prolungato (1) ci mostra che i pazienti che alla fine riescono ad essere svezzati non hanno carichi di lavoro respiratorio diversi da quelli che invece non riescono ad essere svezzati. La persistente debolezza dei muscoli respiratori, ed in particolare del diaframma, rappresenta la vera differenza tra chi ce la fa e chi non ce la fa. I pazienti svezzati riescono ad aumentare la forza dei muscoli respiratori mentre chi non riesce ad essere svezzato mantiene una persistente debolezza.

L’implicazione clinica di questa osservazione è rilevante: il nostro primo obiettivo durante il weaning deve essere quello di lavorare sui muscoli respiratori per aumentarne la capacità di generare pressione.

Sappiamo che i muscoli si indeboliscono sia quando sono affaticati sia quando vengono utilizzati poco.

Come facciamo a riconoscere fatica e riposo dei muscoli respiratori durante il periodo dello svezzamento dalla ventilazione artificiale? Uno strumento semplice ed efficace è il monitoraggio grafico della ventilazione, che quindi ha una valenza clinica rilevante. Prossimamente vedremo nella pratica come riconoscere un paziente troppo assistito dal ventilatore da un paziente troppo caricato di lavoro durante le ventilazioni assistite.

Reference.

1) Carlucci A et al. Determinants of weaning success in patients with prolonged mechanical ventilation. Critical Care 2009, 13:R97