Jun 302019
 

Nel post del 31 maggio abbiamo riflettuto sulla PEEP in un paziente obeso sottoposto ad anestesia generale. Pochi giorni dopo (il 3 giugno) è stato pubblicato online su JAMA “Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients” (1), un trial controllato e randomizzato, multicentrico che ha arruolato circa 2000 pazienti. Procediamo quindi ad una lettura critica dello studio per comprenderlo ed interpretarne correttamente i risultati.

Partiamo dalla conclusione dello studio: “Tra i pazienti obesi sottoposti a chirurgia in anestesia generale, una strategia di ventilazione meccanica intraoperatoria con un più alto livello di PEEP e manovre di reclutamento alveolare, rispetto a una strategia con un basso livello di PEEP, non ha ridotto le complicanze polmonari postoperatorie.”

Prima di guardare i risultati, analizziamo con attenzione che tipo di pazienti sono stati studiati, in quali interventi, e quali erano le strategie ventilatorie a confronto: un risultato acquisisce un senso solo ed esclusivamente alla luce dei metodi con il quale è stato ottenuto.
Tipo di pazienti ed intervento: Sono stati arruolati nello studio i pazienti obesi (body mass index > 35 kg/m2) sottoposti a chirurgia addominale di almeno 2 ore di durata, a rischio medio-elevato di complicanze polmonari postoperatorie. La maggior parte dei pazienti (82%) ha eseguito un intervento laparoscopico. Oltre la metà dei pazienti (54%) ha eseguito l’intervento in posizione di anti-Trendelenburg o seduta (“a testa in su“, cioè con il torace più alto dell’addome), mentre solo il 8% dei pazienti era in posizione di Trendelenburg (“a testa in giù“, cioè con il torace più in basso dell’addome). Questi dati non li trovi nell’articolo, ma nella tabella e6 del supplemento 4 (clicca qui per scaricarlo). Nonostante questo dato sia difficile da trovare, è decisivo per interpretare i risultati: in Trendelenburg il peso dell’addome grava sul diaframma e quindi sui polmoni, aumentando la pressione intratoracica e riducendo la capacità funzionale residua (figura 1, a sinistra). Al contrario, in anti-Trendelenburg il peso dell’addome viene allontanato dai polmoni riducendo la pressione intratoracica (figura 1, a destra) (4-6).

Figura 1

L’effetto della PEEP è opposto nelle due posizioni. Nella posizione di Trendelenburg (figura 2, a sinistra), ancor più se con pneumoperitoneo, la PEEP agisce controbilanciando la pressione sul diaframma dei visceri addominali, facendo quindi riguadagnare ai polmoni la capacità funzionale residua persa con il Trendelenburg. Nella posizione di anti-Trendelenburg (figura 2, a destra), la PEEP agisce abbassando un diaframma già sgravato dal peso dei visceri addominali. Quindi in Trendelenburg la stessa quantità di PEEP dovrebbe avere un effetto sui polmoni e sulla meccanica respiratoria ben diverso dalla posizione di anti-Trendelenburg.

Figura 2

Per questi motivi, dato l’esiguo numero di pazienti in Trendelenburg arruolati nel trial, dobbiamo avere chiaro che i risultati non si possono estendere ai pazienti in Trendelenburg. Che, ahimè, sono proprio i pazienti più difficili da ventilare…
Modalità di ventilazione meccanica a confronto: tutti i pazienti sono stati ventilati con un volume corrente di 7 ml/kg di peso ideale. Il gruppo “bassa PEEP” (987 pazienti) riceveva 4 cmH2O di PEEP, uguale per tutti i pazienti. Il gruppo “alta PEEP+reclutamento” (989 pazienti) invece aveva 12 cmH2O di PEEP associati a manovre di reclutamento. Queste erano ottenute con l’incremento del volume corrente di 4 ml/kg di peso ideale alla volta (mantenendo i 12 cmH2O di PEEP) fino a raggiungere una pressione di plateau tra i 40 e 50 cmH2O. Dopo aver erogato 3 respiri a 40-50 cmH2O di pressione di plateau, il volume corrente era riportato agli iniziali 7 ml/kg di peso ideale. Le manovre di reclutamento erano eseguite dopo l’induzione, quindi ogni ora, dopo ogni deconeconnessione dal ventilatore meccanico e prima dell’estubazione. E’ fondamentale capire che lo studio confronta solo ed esclusivamente queste due strategie di ventilazione meccanica: 4 cmH2O di PEEP (non 2 o 6, ma proprio 4), applicati sempre e comunque a tutti i pazienti obesi, oppure 12 di PEEP (non 10 o 14, ma proprio 12) sempre associati a quel tipo di reclutamento, applicati sempre e comunque a tutti i pazienti obesi.

Entrambi questi approcci sono profondamenti diversi da quello proposto nel post del 31 maggio 2019, in cui si propone una PEEP variabile da paziente a paziente (basata sulla riduzione della driving pressure) in assenza di manovre di reclutamento. Nella mia pratica clinica riservo le manovre di reclutamento a quelle condizioni di ipossiemia intraoperatoria in cui ritengo esse possano essere appropriate.
Obiettivo principale dello studio: rilevare il numero di complicanze polmonari postoperatorie nei primi 5 giorni dopo l’intervento. E’ stata definita come complicanza polmonare postoperatoria la comparsa di almeno una di queste condizioni: insufficienza respiratoria (anche lieve, cioè con PaO2 < 60 mmHg o SpO2 < 90% senza ossigenoterapia per almeno 10 minuti), ARDS, broncospasmo, nuovi infiltrati polmonari, infezioni polmonari, polmoniti da aspirazione, versamento pleurico, atelectasia, edema cardiopolmonare, pneumotorace.
Risultati: Le complicanze polmonari postoperatorie hanno avuto una incidenza simile nei pazienti “alta PEEP+reclutamento” ed in quelli “bassa PEEP” (21.3 % vs. 23.6 %, p=0.23). (Cosa significa esattamente p=0.23? Se vuoi approndire, vedi la nota dopo la bibligrafia). Quindi non ci sono elementi per ritenere che una delle due strategie sia migliore dell’altra. Questo risultato di parità è stato ottenuto nonostante una driving pressure più bassa ed una ossigenazione migliore nel gruppo “alta PEEP+reclutamento“. Questo gruppo ha però ha avuto una maggior incidenza di bradicardia ed ipotensione, quest’ultima sempre più chiaramente associata all’aumento di complicanze postoperatorie (7-9). L’ipotensione nei pazienti in anti-Trendelenburg con alta PEEP è facile da prevedere, se si ragiona in termini di ritorno venoso: aumento della pressione intratoracica associato alla riduzione della pressione sistemica media (vedi post del 30/09/2018).
Conclusioni: le conclusioni proposte nello studio le abbiamo viste all’inizio. Qui dò spazio ad alcune mie personali considerazioni. Dopo aver letto questo studio, ho la sensazione di saperne come prima… Il dato più importante è forse l’ulteriore conferma che le manovre di reclutamento eseguite di routine non hanno il supporto della letteratura.

Oggi si ritiene erroneamente che i trial randomizzati, controllati, multicentrici siano il miglior modo per darci le risposte utili alla cura dei pazienti. Ma la qualità della risposta dipende dalla qualità della domanda, più che dal rigore formale. Sono convinto che nell’articolo analizzato oggi ci sia una carenza nella qualità della domanda: cercare un numero magico di PEEP valido per tutti mi sembra davvero semplicistico e contario alle conoscenze finora accumulate.

Un merito di questo trial è quello di rafforzare la convinzione che la strada migliore per scegliere la PEEP sia quella di individualizzarla. A mio parere per farlo è necessario tener conto della meccanica respiratoria del paziente e dell’impatto su di essa della posizione, della tecnica chirurgica (pneumoperitoneo in laparoscopia e divaricatori autostatici nella chirurgia open) e degli effetti emodinamici. Ad oggi non possiamo dire con certezza quale sia la modalità “giusta” di scelta individualizzata della PEEP: la scelta di minimizzare la driving pressure è per ora la migliore, avendo un razionale fisiologico e studi clinici a favore o neutrali.

Il tempo ed una ricerca clinica di qualità (più che di quantità) ci aiuteranno a trovare strade sempre migliori.

Come sempre, un sorriso agli amici di ventilab.

Bibliografia.

1. Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, et al.: Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA 2019; 321:2292-2305
2. Pirrone M, Fisher D, Chipman D, et al.: Recruitment Maneuvers and Positive End-Expiratory Pressure Titration in Morbidly Obese ICU Patients: Critical Care Medicine 2016; 44:300–307
3. Fahy G, Barnas M, Flowers JL, et al.: The Effects of Increased Abdominal Pressure on Lung and Chest Wall Mechanics During Laparoscopic Surgery. Anesthesia & Analgesia 1995; 81:744–750
4. De Leon A, Thörn S-E, Ottosson J, et al.: Body positions and esophageal sphincter pressures in obese patients during anesthesia. Acta Anaesthesiologica Scandinavica 2010; 54:458–463
5. Lehavi A, Livshits B, Katz Y: Effect of position and pneumoperitoneum on respiratory mechanics and transpulmonary pressure during laparoscopic surgery. Laparosc Surg 2018; 2:60–60
6. Couture EJ, Provencher S, Somma J, et al.: Effect of position and positive pressure ventilation on functional residual capacity in morbidly obese patients: a randomized trial. Can J Anesth/J Can Anesth 2018; 65:522–528
7. Futier E, Lefrant J-Y, Guinot P-G, et al.: Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017; 318:1346
8. Meng L, Yu W, Wang T, et al.: Blood Pressure Targets in Perioperative Care: Provisional Considerations Based on a Comprehensive Literature Review. Hypertension 2018; 72:806–817
9. Wesselink EM, Kappen TH, Torn HM, et al.: Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. British Journal of Anaesthesia 2018; 121:706–721

Nota: Nel mondo esistono infiniti pazienti che possono essere sottoposti a “alta PEEP+reclutamento” o “bassa PEEP” (li possiamo considerare infiniti perchè includiamo anche quelli che saranno ventilati in futuro): queste sono le popolazioni “alta PEEP+reclutamento” o “bassa PEEP”. I circa 2000 pazienti dello studio possono essere considerati come campioni di queste popolazioni: in questi campioni le complicanze polmonari postoperatorie sono state indiscutibilmente il 2.3% superiori nel gruppo “bassa PEEP”(23.6 % vs 21.3 %). Ma noi siamo siamo interessati a generalizzare il risultato alla popolazione, a cui appartengono anche i pazienti che anestetizzeremo e ventileremo domani e nei giorni a venire. Il valore di p indica la probabilità che la popolazione dei pazienti con “alta PEEP+reclutamento” e la popolazione dei pazienti “bassa PEEP” abbiano lo stesso numero di complicanze polmonari postoperatorie (compatibilmente con i dati ottenuti nei campioni arruolati nello studio). La p di 0.23 dice che c’è il 23 % di probabilità che queste popolazioni abbiano la stessa indicenza di complicanze. E quindi il 77% di probabilità che queste complicanze siano diverse nelle due popolazioni (quindi che uno dei due trattamenti sia migliore dell’altro). Per convenzione (ampiamente discutibile) in ambito scientifico (e biomedico in particolare), si dice che un trattamento è efficace (è “statisticamente significativo”) se esiste meno del 5 % di probabilità che il dato che interessa sia uguale nelle popolazioni (quindi se la p è minore di 0.05). Negli altri casi (come nello studio che abbiamo commentato) è meglio evitare di sostenere con certezza che si è esclusa l’efficacia di un trattamento, semplicemente non si è riusciti a dimostrarne l’efficacia. Come ci ricordano due grandi statistici “L’assenza di evidenza non è l’evidenza dell’assenza” (Altman DG, Bland JM: Statistics notes: Absence of evidence is not evidence of absence. BMJ 1995; 311:485–485).

Nov 082013
 

the-buddha-of-happinessLa posizione seduta (rispetto a quella supina) modifica flow limitation, PEEP intrinseca e pressione di plateau durante la ventilazione meccanica dei pazienti obesi: questo è il risultato principale di uno studio pubblicato questo mese su Critical Care Medicine (1) che oggi vorrei condividere con gli amici di ventilab.

Nello studio è stato valutato l’effetto del cambio di posizione, da supino a seduto, sulla meccanica respiratoria in un 15 pazienti obesi (BMI > 35) sottoposti a ventilazione meccanica controllata. Vediamo i rilievi principali e cerchiamo di capire come possiamo sfruttarli nella pratica clinica.

Un primo dato da sottolineare tutti i pazienti obesi dello studio avevano flow limitation quando erano supini. Ricordiamo che la flow limitation è l’impossibilità di aumentare il flusso espiratorio (a parità di volume polmonare) durante l’espirazione forzata rispetto all’espirazione passiva. In altre parole, non si riesce ad aumentare la velocità con cui l’aria esce dalle nostre vie aeree nemmeno cercando di soffiare più forte rispetto ad un ‘espirazione normale. Il nonno che non riesce a spegnere le candeline sulla torta di compleanno, anche mettendocela tutta, probabilmente ha flow limitation.

La flow limitation è abbastanza facile da diagnosticare nei pazienti sottoposti a ventilazione meccanica grazie alla manovra di compressione manuale dell’addome (per un approfondimento rimando al post del 4 giugno 2012).

La flow limitation è una causa importante di autoPEEP (o PEEP intrinseca come più spesso viene definita). Infatti i pazienti obesi dello studio avevano una autoPEEP di 10 cmH2O (per semplicità riporto i valori mediani del campione dello studio) in posizione supina senza PEEP esterna. Questa autoPEEP, insieme al volume corrente,  contribuisce alla pressione di plateau, che nei pazienti dello studio era di 22 cmH2O in posizione supina.

Riassumiamo: 22 cmH2O di pressione di plateau, 10 cmH2O dei quali determinati dall’autoPEEP ed i rimanenti 12 cmH2O dal volume corrente (che nello studio era circa 8 ml/kg di peso ideale, circa 400 ml).

Quando, a parità di ventilazione, i pazienti obesi erano messi in posizione seduta, l’autoPEEP si riduceva a 1 cmH2O e la pressione di plateau 16 cmH2O. E la flow limitation si riduceva di entità, scomparendo addirittura in 8 dei 15 pazienti.

In questo studio la posizione seduta era ottenuta alzando lo schienale a 70° per ottenere la “poltrona cardiologica”, nella quale la schiena del paziente viene tenuta diritta ed il sedere è appoggiato posteriormente contro il letto. Inoltre le gambe erano tenute leggermente aperte per evitare la compressione dell’addome. Nell’immagine qui sotto puoi vedere bene come venivano tenuti i pazienti.

obese_sitting

Dobbiamo notare che gli stessi vantaggi della posizione seduta sopra descritta non sono ottenuti con il decubito a 30° che spesso adottiamo in Terapia Intensiva (2).

Quali implicazioni cliniche può avere questo risultato?

Se i pazienti sono in ventilazione assistita, un simile risultato determina una marcata riduzione del lavoro respiratorio grazie all’abbattimento del carico soglia rapprentato dalla PEEP intrinseca. Infatti per iniziare l’inspirazione dobbiamo prima azzerare la pressione residua nei polmoni a fine espirazione: se questa si riduce 10 a 1 cmH2O, evidentementeanche il lavoro fatto per azzerarla si riduce proporzionalmente. (Qui per “lavoro” intendiamo lo sforzo complessivo dei muscoli respiratori che può essere quantificato con il pressure-time product).

Inoltre lo stesso meccanismo può favorire l’interazione paziente-ventilatore riducendo gli sforzi inefficaci, cioè quei tentativi di inspirazione del paziente che non riescono ad attivare il trigger.

Meno chiari sono gli effetti della riduzione della pressione di plateau sullo stress dei polmoni, che è rappresentato dalla pressione che li distende a fine inspirazione. Infatti lo stress del polmone è misurato con la pressione transpolmonare (vedi post del 7 febbraio 2012), ed è ragionevole ipotizzare che questa non sia cambiata molto rispetto alla posizione supina nonostante il calo della pressione di plateau. Si può infatti ipotizzare una riduzione consensuale della pressione pleurica e quindi il mantenimento dello stesso livello di stress. Il ragionamento può risultare complesso, eventualmente lo approfondirò se sarà richiesto in qualche commento. In ogni caso, la riduzione della autoPEEP contribuisce alla riduzione dello stress polmonare.

Altrettanto poco prevedibili possono essere gli effetti emodinamici della posizione seduta negli obesi. Se da una parte si potrebbe avere una riduzione del ritorno venoso dovuta al gradiente idrostatico che la posizione seduta aggiunge (il sangue deve andare “in salita” per raggiungere l’atrio destro dalle zone sottodiaframmatiche del corpo), dall’altra parte la probabile riduzione della pressione pleurica con la posizione seduta dovrebbe invece favorire il ritorno venoso. Lo studio non prende in considerazione questi aspetti e quindi non ci aiuta a capire quale meccanismo possa prevalere.

In conclusione, i risultati dello studio che abbiamo sommariamente presentato ci dicono che la posizione seduta negli obesi (e probabilmente anche in altri pazienti con flow limitation):

– può essere necessaria nelle fasi di weaning per aumentare l’efficienza della ventilazione;

– potrebbe essere utile nei pazienti a rischio di “barotrauma” (cioè con elevate pressioni di plateau);

– gli effetti emodinamici ad essa associati sono imprevedibili e devono essere valutati caso per caso.

Grazie per l’attenzione, un sorriso a tutti.

 

Bibliografia

1 ) Lemyze M et al. Effects of sitting position and applied Positive
End-Expiratory Pressure on respiratory mechanics of critically ill obese patients receiving mechanical ventilation. Crit Care Med 2013; 41:2592-9

2) Benedik PS et al. Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects. Respir Care 2009; 54:334-9

 

Jul 242010
 

La ventilazione meccanica in anestesia è importante o no? Questo era il problema proposto nel post della scorsa settimana. Spesso l’impostazione di default dei ventilatori meccanici di anestesia é: volume controllato, volume corrente 500 ml, frequenza respiratoria 12, PEEP 0. Quando vale la pena cambiarla? Ecco le mie personali regole per la ventilazione in anestesia:

  1. PEEP: l’anestesia generale induce la formazione di atelettasie, effetto shunt ed ipossiemia (1-2). Nei pazienti ipossiemici 5-10 cmH2O di PEEP potrebbero essere una scelta ragionevole, soprattutto se decidiamo di somministrare bassi volumi correnti. Nei pazienti grandi obesi (BMI > 40) una PEEP di  10 cmH2O migliora ossigenazione e meccanica respiratoria anche quando si utlizzano volumi correnti di 10 ml/kg di peso ideale (3). La mia scelta personale è di applicare a tutti i pazienti 5 cmH2O di PEEP. Nei pazienti obesi preferisco aumentare la PEEP a 10 cmH2O. Eccezione: il paziente ipovolemico. In questo caso non metto utilizzo la PEEP, rivalutandone l’indicazione solo dopo aver ottimizzato la volemia.
  2. VOLUME CORRENTE: consiglio di utilizzare volumi correnti di 5-8 ml/kg di peso corporeo ideale negli interventi lunghi poichè volumi correnti più elevati possono indurre un danno infiammatorio polmonare già dopo 12 ore di ventilazione in polmoni sani (4). Anche durante la ventilazione monopolmone per gli interventi toracotomici può essere utile utilizzare bassi volumi correnti (5). Con in BASSI VOLUMI CORRENTI utilizzare sempre la PEEP! (vedi sopra).
  3. MODALITA’ DI VENTILAZIONE: la ventilazione a volume controllato va sempre bene. A volte vedo l’utilizzo della pressione controllata per ridurre le pressioni di picco, tipicamente negli obesi o durante laparoscopia. Chi ha partecipato al Corso di Ventilazione Meccanica sa bene che è una manovra inutile: la riduzione della pressione di picco con la pressione controllata non riduce la pressione di plateau, un indicatore grossolano ma facilmente misurabile di sovradistensione polmonare. Molto spesso negli obesi e durante laparoscopia possiamo accettare l’aumento delle pressioni nelle vie aeree: in questi pazienti sono elevate sia le resistenze dell’apparato respiratorio che l’elastanza della gabbia toracica (6,7). Il conseguente aumento di pressioni di picco e pressioni di plateau di norma non si associa ad un rilevante aumento della pressione transpolmonare e quindi dello stress polmonare. Entreremo nel dettaglio di questi argomenti in prossimi post. Aspetto al Corso di Ventilazione Meccanica chi volesse approfondire e padroneggiare questi argomenti. Nei casi in cui invece dobbiamo ridurre le pressioni di insufflazione, possiamo tranquillamente ridurre il volume corrente ed accettare anche un aumento di PaCO2, soprattutto durante laparoscopia: se la PaCO2 sale anche a 50-60 mmHg di norma non succede proprio nulla (8). L’unica buona ragione per ridurre le pressioni di picco con la pressione controllata è quello di facilitare l’utilizzo della maschera laringea nei pazienti con elevate pressioni di picco e perdite aeree durante la ventilazione a volume controllato (9).

In definitiva spesso possiamo ventilare i pazienti come vogliamo, a volte invece dobbiamo stare attenti a ciò che facciamo (PEEP con bassi volumi correnti), altre volte ancora non dobbiamo preoccuparci di apparenti catastrofi (pressione di picco > 30 cmH2O negli obesi o in laparoscopia, ETCO2 che arriva a 50-55 mmHg durante laparoscopia).

Quando poi capita un paziente con segni di insufficienza respiratoria in sala operatoria, ricordiamoci sempre che una buona ventilazione artificiale è meglio di una cattiva respirazione spontanea: ingegnarsi con stiracchiate sedazioni ed anestesie locoregionali per lasciare il paziente in respiro spontaneo potrebbe essere peggio che fare una buona anestesia con una appropriata ventilazione.

A questo punto avrai già capito come ho ventilato la paziente che ho descritto nel post del 16 luglio. Era obesa (164 cm per 104 kg) ed era programmata per un intervento della durata minima di 4-5 ore. Quindi PEEP più bassi volumi correnti. Il peso ideale si calcola moltiplicando 0.91 per la differenza tra l’altezza del paziente in cm e 152.4 cm. A questo numero si aggiungono 50 cm per gli uomini e 45.5 per le donne (10). Nella nostra paziente il peso ideale è quindi circa 57 kg. Un volume corrente di 8 ml/kg (è obesa, preferisco stare ai limiti superiori) è di circa 450 ml. Inizio con una frequenza respiratoria di 15 atti al minuto (da modificare eventualmente secondo necessità) e metto una bella PEEP di 10 cmH2O, dopo una buona idratazione prima dell’induzione.

Buone vacanze a tutti. Anche durante l’estate ventilab.org continuerà a farvi compagnia. Con delle sorprese per l’autunno.

Bibliografia:

1) Tokics L et al.  Lung collapse and gas exchange durino general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 1987; 66:157-67

2) Tokics L et al. V˙/Q˙ distribution and correlation to atelectasis in anesthetized paralyzed humans. J Appl Physiol 1996; 81:1822-33

3) Pelosi P et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthcsiology 1999; 91:1221-31

4) Pinheiro de Oliveira R et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Critical Care 2010, 14:R39

5) Karzai W et al. Hypoxemia during One-lung Ventilation. Anesthesiology 2009; 110:1402-11

6) P. Pelosi et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol 82:811-818, 1997.

7) Fahy BG et al. The Effects of Increased Abdominal Pressure on Lung and Chest Wall Mechanics During Laparoscopic Surgery. Anesth Analg 1995; 81:744-50

8) Natalini G et al. Acute respiratory acidosis does not increase plasma potassium in normokalaemic anaesthetised patients. A controlled randomised trial. Eur J Anaesthesiol 2001; 18:394-400

9) Natalini G et al. Pressure controlled versus volume controlled ventilation with laryngeal mask airway. J Clin Anesth 2001; 13:436-39

10) The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome.N Engl J Med 2000; 342:1301-8