Mag 022020
 

Nel post precedente abbiamo visto che tutte le forme di ARDS sono caratterizzate da una più o meno grave una riduzione della capacità funzionale residua e che la compliance è ad essa approssimativamente proporzionale.

La ventilazione della capacità funzionale residua è ciò che può accomunare la ventilazione meccanica di tutti i pazienti con ARDS, inclusi quella associata a COVID-19. Va bene per tutti perché consente di individualizzare volume corrente e PEEP in ciascun paziente, relativizzandoli al volume polmonare ventilato. E ci evita il fastidio di entrare in discussioni sterili come ad esempio “PEEP alta o bassa”, o nelle certezze, dogmatiche e indimostrate, come ad esempio quella dei 6 ml/kg di volume corrente a tutti, sentendosi tranquilli se la pressione di plateau non è superiore a 30 cmH2O.

Questo approccio segna una frattura totale con quello fondato sull’emogasanalisi arteriosa. Vediamo quindi cosa non fare e cosa invece è ragionevole fare. 

Per i lettori attenti di ventilab non vi sarà nulla di sostanzialmente nuovo, però potrà essere lo spunto per vedere concetti noti anche sotto altre prospettive.

Cosa NON fare.

Il PaO2/FIO2 NON PUO’ essere la base per l’impostazione e la verifica della ventilazione protettiva nell’ARDS (vedi post del 31/01/2020, l’ultimo dell’era pre-COVID-19…).

Ipotizziamo che Mario e Pippo siano due pazienti con ARDS, il peso ideale di entrambi è 70 kg, entrambi hanno PaO2 80 mmHg e FIO2 0.8 (PaO2 /FIO2 100 mmHg). Ipotizziamo che Mario abbia compliance 21 ml/cmH2O e Pippo 42 ml/cmH2O

Figura 1

Ci sembra ragionevole ventilare Mario e Pippo allo stesso modo, ad esempio con 420 ml di volume corrente (6 ml/kg) e 14 cmH2O di PEEP (come indicato nella tabella PEEP-FIO2 in figura 1)?

La prima conseguenza di questa impostazione sarebbe che Mario ha avrebbe una driving pressure (volume corrente/compliance) di 20 cmH2O e Pippo di 10 cmH2O. Ad entrambi dovremmo mettere una PEEP di 14 cmH2O, senza tenere conto del fatto che questa possa migliorare o peggiorare compliance e driving pressure…

Anestesisti rianimatori di tutto il mondo, unitevi: smettiamo di guardare l’emogasanalisi per decidere come ventilare i pazienti con ARDS. Non è l’emogasanalisi arteriosa a guidare la ventilazione meccanica!!! E’ dura, lo so… è forte la tentazione di vedere quel dannato foglietto con PaO2 e PaCO2… ma possiamo farcela. 

Come fare e perchè.

Il volume corrente.

Dal momento che ogni paziente con ARDS ha una più o meno marcata riduzione del volume polmonare (che riconduciamo alla riduzione della capacità funzionale residua), è ragionevole che in tutti i pazienti con ARDS (sia i Mario che i Pippo) il volume di gas che si introduce nei polmoni ad ogni inspirazione (il volume corrente) debba essere proporzionato al volume polmonare, cioè alla capacità funzionale residua.

La capacità funzionale residua è il contenitore, il volume corrente  un oggetto da introdurvi: se il contenitore è grande, vi si può mettere, senza danneggiarlo, un oggetto grande. In un contenitore molto piccolo, si può infilare solo un oggetto piccolo se non lo si vuole rompere.

Il rapporto tra volume corrente e capacità funzionale residua è conosciuto con il termine di strain, il quale è direttamente proporzionale alla driving pressure (1, 2). Se vuoi un approfondimento su strain e driving pressure, puoi rileggere anche il post del 26/02/2016.

La prima regola che vale in tutte le ARDS è quindi che il volume corrente debba essere ridotto se la driving pressure (cioè la differenza tra pressione di plateau e PEEP) è elevata (indicativamente superiore a 14-15 cmH2O).

Per semplicità parliamo della driving pressure delle vie aeree, quella che si può calcolare molto facilmente dal display di qualsiasi ventilatore meccanico. 

In realtà lo stress del polmone andrebbe misurato con la driving pressure transpolmonare, che richiede la misurazione della pressione esofagea. Se la pressione esofagea è misurata correttamente, la driving pressure transpolmonare è data dalla driving pressure delle vie aeree (pressione di plateau – PEEP) meno la driving pressure della gabbia toracica (pressione esofagea a fine inspirazione – pressione esofagea a fine espirazione).

Può essere opportuno complicarsi la vita con la driving pressure transpolmonare nei casi in cui non si riesce a contenere la driving pressure entro i limiti normalmente accettati, in particolare nei pazienti obesi. Non è un caso che una elevata driving pressure sia associata alla mortalità nei pazienti con ARDS, ad eccezione degli obesi (3). In essi, come in tutti i pazienti con bassa compliance della gabbia toracica, l’entità delle variazioni tidal di pressione esofagea rompe una consueta proporzionalità tra la driving pressure delle vie aeree e driving pressure transpolmonare. Non approfondisco ulteriormente l’argomento per necessità di brevità. 

La PEEP.

Abbiamo visto nel post precedente che la compliance dell’apparato respiratorio (Ctot) è uguale alla somma delle compliance delle singole parti di cui è composto (le compliance regionali C1, C2, C3, …, Cn

Ctot = C1 + C2 + C3 + … + Cn.

Se le compliance regionali sono sostanzialmente costanti (dal momento che la compliance specifica è simile in tutti i polmoni), la variazione della Ctot dovrà essere secondaria all’aumento o alla riduzione del numero di porzioni ventilate dei polmoni.

Ne consegue che se l’applicazione della PEEP aumenta la compliance, essa dovrebbe aver aumentato il numero di unità polmonari disponibili alla ventilazione. Questo è schematizzato nella figura 2A, in cui l’unità polmonare 4 non è ventilata a ZEEP mentre lo diventa con l’applicazione della PEEP, determinando un aumento della compliance totale.

Se la variazione di PEEP mantiene costante la compliance, ragionevolmente possiamo pensare che sia rimasto invariato il numero di unità polmonari ventilate, semplicemente se ne è modificato il volume (figura 2B). 

Figura 2

Se la PEEP riduce la compliance, la spiegazione più coerente con le nostre attuali conoscenze è che si sia ridotta la compliance regionale di alcune zone perchè queste diventano sovradistese e pertanto, questa volta sì, più “rigide” (figura 2C).

L’effetto della PEEP sulla compliance è sempre la somma algebrica di questi tre fenomeni che si possono presentare contemporaneamente nelle diversi porzioni di un parenchima polmonare disomogeneo. Come effetto finale vediamo quello prevalente.

Una spiegazione così semplice non può che essere una semplificazione della realtà, come del resto lo è qualsiasi modello. Ma dal punto di vista operativo, clinico, mi sembra a tutt’oggi quella più coerente con quanto la ricerca ci ha insegnato.

Per vedere se la PEEP migliora la compliance, dobbiamo fare un PEEP trial. Dobbiamo cioè provare PEEP diverse e scegliere, tra queste, quella che riduce la driving pressure (se usiamo una ventilazione volumetrica controllata senza modificare il volume corrente alle diverse PEEP) o quella che aumenta il volume corrente (se usiamo una pressione controllata con pressione inspiratoria sopra PEEP costante). 

Nel periodo COVID-19 mi è tornato comodo quest’ultimo approccio, avendo dovuto utilizzare per ventilare qualsiasi tipo di cosa avesse ricordasse un ventilatore meccanico. In alcuni ventilatori portatili domiciliari, in ventilatori da trasporto, in vecchi ventilatori da anestesia, il monitoraggio lascia molto a desiderare e la pressione di plateau è invisibile o inaffidabile. In questi casi è più semplice mantenere una PCV di 15 cmH2O e testare PEEP diverse andando semplicemente a leggere il numero del volume corrente sul display.

La frequenza respiratoria e tempo inspiratorio.

Con l’emergere del concetto di mechanical power (4), forse per ora ancora acerbo per una diretta declinazione clinica, si fa sempre più strada l’idea che, tra le altre cose, anche la frequenza respiratoria possa contribuire al possibile danno da ventilazione meccanica. Pertanto la frequenza respiratoria dovrebbe essere tenuta bassa per quanto possibile, il che per una ARDS significa tra 20 e 25/min. Anche tollerando l’ipercapnia che ne deriva, che come abbiamo visto in passato è tutto fuorché un veleno (altro mito da sfatare per gli anestesisti rianimatori) (vedi anche post del 25/03/2018). 

Nella fase di ventilazione controllata della ARDS, il tempo inspiratorio a mio avviso merita la stessa dignità del tempo espiratorio. Durante il prolungamento dell’inspirazione si favorisce infatti il raggiungimento della ventilazione anche nelle zone a costante di tempo lunga, con omogeneizzazione della ventilazione e miglioramento dello scambio gassoso.  Di default tendo a mettere, nei pazienti passivi, un rapporto I:E 1:1, con un tempo inspiratorio che quindi oscilla tra 1 e 1.5 secondi per frequenze respiratorie tra 20 e 30/min.

Ovviamente, tutto cambia quando si passa alla ventilazione assistita-controllata, qui il I:E diventa libero e ci si preoccupa solo del tempo inspiratorio (vedi anche post del 15/03/2014).

Verifica finale.

Alla fine, dopo aver impostato volume corrente, PEEP, frequenza respiratoria, se il paziente è passivo (senza alcun segno di attivazione dei muscoli inspiratori), una osservazione allo stress index in volume controllato a flusso inspiratorio costante, misurato per chi ce l’ha, occhiometrica per gli altri (me compreso). Se va tutto bene, l’impostazione del ventilatore si conferma ragionevole. Per ulteriori informazioni sullo stress index puoi vedere i post del 15/08/2011 e del 28/08/2011.

 

In conclusione, abbiamo visto che è possibile in qualsiasi forma di ARDS avere un approccio semplice ma ragionato alla ventilazione meccanica. Chi propone numeri magici e tabelle lo fa pensando che questa sia la strada migliore per limitare i danni se la ventilazione capita nelle mani sbagliate… Ci possono essere della ragioni anche in questo. 

Per quanto mi riguarda, preferisco scrivere e parlare per chi ha il piacere di migliorarsi ogni giorno e sfrutta ogni occasione per imparare. Nella mia personale esperienza con le migliaia di persone che ho avuto il piacere di vedere e conoscere in questi anni, sono sempre più convinto che sia meglio parlare a chi vuol sentire piuttosto che urlare ai sordi.

Nei prossimi post (se riesco già la prossima settimana) concluderò le riflessioni sugli argomenti che mi sono stati richiesti nel periodo COVID-19 con cenni su pronazione, reclutamento, APRV, ventilazione non-invasiva, terapia farmacologica, weaning, sedazione e tracheotomia.

Come sempre, un sorriso agli amici di ventilab.

 

Bibliografia

  1. Chiumello D, Carlesso E, Cadringher P, et al.: Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2008; 178:346–355
  2. Gattinoni L, Carlesso E, Caironi P: Stress and strain within the lung: Curr Opin Crit Care 2012; 18:42–47
  3. De Jong A, Cossic J, Verzilli D, et al.: Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med 2018; 44:1106–1114
  4. Marini JJ: Evolving concepts for safer ventilation. Crit Care 2019; 23:114
Giu 302019
 

Nel post del 31 maggio abbiamo riflettuto sulla PEEP in un paziente obeso sottoposto ad anestesia generale. Pochi giorni dopo (il 3 giugno) è stato pubblicato online su JAMA “Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients” (1), un trial controllato e randomizzato, multicentrico che ha arruolato circa 2000 pazienti. Procediamo quindi ad una lettura critica dello studio per comprenderlo ed interpretarne correttamente i risultati.

Partiamo dalla conclusione dello studio: “Tra i pazienti obesi sottoposti a chirurgia in anestesia generale, una strategia di ventilazione meccanica intraoperatoria con un più alto livello di PEEP e manovre di reclutamento alveolare, rispetto a una strategia con un basso livello di PEEP, non ha ridotto le complicanze polmonari postoperatorie.”

Prima di guardare i risultati, analizziamo con attenzione che tipo di pazienti sono stati studiati, in quali interventi, e quali erano le strategie ventilatorie a confronto: un risultato acquisisce un senso solo ed esclusivamente alla luce dei metodi con il quale è stato ottenuto.
Tipo di pazienti ed intervento: Sono stati arruolati nello studio i pazienti obesi (body mass index > 35 kg/m2) sottoposti a chirurgia addominale di almeno 2 ore di durata, a rischio medio-elevato di complicanze polmonari postoperatorie. La maggior parte dei pazienti (82%) ha eseguito un intervento laparoscopico. Oltre la metà dei pazienti (54%) ha eseguito l’intervento in posizione di anti-Trendelenburg o seduta (“a testa in su“, cioè con il torace più alto dell’addome), mentre solo il 8% dei pazienti era in posizione di Trendelenburg (“a testa in giù“, cioè con il torace più in basso dell’addome). Questi dati non li trovi nell’articolo, ma nella tabella e6 del supplemento 4 (clicca qui per scaricarlo). Nonostante questo dato sia difficile da trovare, è decisivo per interpretare i risultati: in Trendelenburg il peso dell’addome grava sul diaframma e quindi sui polmoni, aumentando la pressione intratoracica e riducendo la capacità funzionale residua (figura 1, a sinistra). Al contrario, in anti-Trendelenburg il peso dell’addome viene allontanato dai polmoni riducendo la pressione intratoracica (figura 1, a destra) (4-6).

Figura 1

L’effetto della PEEP è opposto nelle due posizioni. Nella posizione di Trendelenburg (figura 2, a sinistra), ancor più se con pneumoperitoneo, la PEEP agisce controbilanciando la pressione sul diaframma dei visceri addominali, facendo quindi riguadagnare ai polmoni la capacità funzionale residua persa con il Trendelenburg. Nella posizione di anti-Trendelenburg (figura 2, a destra), la PEEP agisce abbassando un diaframma già sgravato dal peso dei visceri addominali. Quindi in Trendelenburg la stessa quantità di PEEP dovrebbe avere un effetto sui polmoni e sulla meccanica respiratoria ben diverso dalla posizione di anti-Trendelenburg.

Figura 2

Per questi motivi, dato l’esiguo numero di pazienti in Trendelenburg arruolati nel trial, dobbiamo avere chiaro che i risultati non si possono estendere ai pazienti in Trendelenburg. Che, ahimè, sono proprio i pazienti più difficili da ventilare…
Modalità di ventilazione meccanica a confronto: tutti i pazienti sono stati ventilati con un volume corrente di 7 ml/kg di peso ideale. Il gruppo “bassa PEEP” (987 pazienti) riceveva 4 cmH2O di PEEP, uguale per tutti i pazienti. Il gruppo “alta PEEP+reclutamento” (989 pazienti) invece aveva 12 cmH2O di PEEP associati a manovre di reclutamento. Queste erano ottenute con l’incremento del volume corrente di 4 ml/kg di peso ideale alla volta (mantenendo i 12 cmH2O di PEEP) fino a raggiungere una pressione di plateau tra i 40 e 50 cmH2O. Dopo aver erogato 3 respiri a 40-50 cmH2O di pressione di plateau, il volume corrente era riportato agli iniziali 7 ml/kg di peso ideale. Le manovre di reclutamento erano eseguite dopo l’induzione, quindi ogni ora, dopo ogni deconeconnessione dal ventilatore meccanico e prima dell’estubazione. E’ fondamentale capire che lo studio confronta solo ed esclusivamente queste due strategie di ventilazione meccanica: 4 cmH2O di PEEP (non 2 o 6, ma proprio 4), applicati sempre e comunque a tutti i pazienti obesi, oppure 12 di PEEP (non 10 o 14, ma proprio 12) sempre associati a quel tipo di reclutamento, applicati sempre e comunque a tutti i pazienti obesi.

Entrambi questi approcci sono profondamenti diversi da quello proposto nel post del 31 maggio 2019, in cui si propone una PEEP variabile da paziente a paziente (basata sulla riduzione della driving pressure) in assenza di manovre di reclutamento. Nella mia pratica clinica riservo le manovre di reclutamento a quelle condizioni di ipossiemia intraoperatoria in cui ritengo esse possano essere appropriate.
Obiettivo principale dello studio: rilevare il numero di complicanze polmonari postoperatorie nei primi 5 giorni dopo l’intervento. E’ stata definita come complicanza polmonare postoperatoria la comparsa di almeno una di queste condizioni: insufficienza respiratoria (anche lieve, cioè con PaO2 < 60 mmHg o SpO2 < 90% senza ossigenoterapia per almeno 10 minuti), ARDS, broncospasmo, nuovi infiltrati polmonari, infezioni polmonari, polmoniti da aspirazione, versamento pleurico, atelectasia, edema cardiopolmonare, pneumotorace.
Risultati: Le complicanze polmonari postoperatorie hanno avuto una incidenza simile nei pazienti “alta PEEP+reclutamento” ed in quelli “bassa PEEP” (21.3 % vs. 23.6 %, p=0.23). (Cosa significa esattamente p=0.23? Se vuoi approndire, vedi la nota dopo la bibligrafia). Quindi non ci sono elementi per ritenere che una delle due strategie sia migliore dell’altra. Questo risultato di parità è stato ottenuto nonostante una driving pressure più bassa ed una ossigenazione migliore nel gruppo “alta PEEP+reclutamento“. Questo gruppo ha però ha avuto una maggior incidenza di bradicardia ed ipotensione, quest’ultima sempre più chiaramente associata all’aumento di complicanze postoperatorie (7-9). L’ipotensione nei pazienti in anti-Trendelenburg con alta PEEP è facile da prevedere, se si ragiona in termini di ritorno venoso: aumento della pressione intratoracica associato alla riduzione della pressione sistemica media (vedi post del 30/09/2018).
Conclusioni: le conclusioni proposte nello studio le abbiamo viste all’inizio. Qui dò spazio ad alcune mie personali considerazioni. Dopo aver letto questo studio, ho la sensazione di saperne come prima… Il dato più importante è forse l’ulteriore conferma che le manovre di reclutamento eseguite di routine non hanno il supporto della letteratura.

Oggi si ritiene erroneamente che i trial randomizzati, controllati, multicentrici siano il miglior modo per darci le risposte utili alla cura dei pazienti. Ma la qualità della risposta dipende dalla qualità della domanda, più che dal rigore formale. Sono convinto che nell’articolo analizzato oggi ci sia una carenza nella qualità della domanda: cercare un numero magico di PEEP valido per tutti mi sembra davvero semplicistico e contario alle conoscenze finora accumulate.

Un merito di questo trial è quello di rafforzare la convinzione che la strada migliore per scegliere la PEEP sia quella di individualizzarla. A mio parere per farlo è necessario tener conto della meccanica respiratoria del paziente e dell’impatto su di essa della posizione, della tecnica chirurgica (pneumoperitoneo in laparoscopia e divaricatori autostatici nella chirurgia open) e degli effetti emodinamici. Ad oggi non possiamo dire con certezza quale sia la modalità “giusta” di scelta individualizzata della PEEP: la scelta di minimizzare la driving pressure è per ora la migliore, avendo un razionale fisiologico e studi clinici a favore o neutrali.

Il tempo ed una ricerca clinica di qualità (più che di quantità) ci aiuteranno a trovare strade sempre migliori.

Come sempre, un sorriso agli amici di ventilab.

Bibliografia.

1. Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, et al.: Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA 2019; 321:2292-2305
2. Pirrone M, Fisher D, Chipman D, et al.: Recruitment Maneuvers and Positive End-Expiratory Pressure Titration in Morbidly Obese ICU Patients: Critical Care Medicine 2016; 44:300–307
3. Fahy G, Barnas M, Flowers JL, et al.: The Effects of Increased Abdominal Pressure on Lung and Chest Wall Mechanics During Laparoscopic Surgery. Anesthesia & Analgesia 1995; 81:744–750
4. De Leon A, Thörn S-E, Ottosson J, et al.: Body positions and esophageal sphincter pressures in obese patients during anesthesia. Acta Anaesthesiologica Scandinavica 2010; 54:458–463
5. Lehavi A, Livshits B, Katz Y: Effect of position and pneumoperitoneum on respiratory mechanics and transpulmonary pressure during laparoscopic surgery. Laparosc Surg 2018; 2:60–60
6. Couture EJ, Provencher S, Somma J, et al.: Effect of position and positive pressure ventilation on functional residual capacity in morbidly obese patients: a randomized trial. Can J Anesth/J Can Anesth 2018; 65:522–528
7. Futier E, Lefrant J-Y, Guinot P-G, et al.: Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017; 318:1346
8. Meng L, Yu W, Wang T, et al.: Blood Pressure Targets in Perioperative Care: Provisional Considerations Based on a Comprehensive Literature Review. Hypertension 2018; 72:806–817
9. Wesselink EM, Kappen TH, Torn HM, et al.: Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. British Journal of Anaesthesia 2018; 121:706–721

Nota: Nel mondo esistono infiniti pazienti che possono essere sottoposti a “alta PEEP+reclutamento” o “bassa PEEP” (li possiamo considerare infiniti perchè includiamo anche quelli che saranno ventilati in futuro): queste sono le popolazioni “alta PEEP+reclutamento” o “bassa PEEP”. I circa 2000 pazienti dello studio possono essere considerati come campioni di queste popolazioni: in questi campioni le complicanze polmonari postoperatorie sono state indiscutibilmente il 2.3% superiori nel gruppo “bassa PEEP”(23.6 % vs 21.3 %). Ma noi siamo siamo interessati a generalizzare il risultato alla popolazione, a cui appartengono anche i pazienti che anestetizzeremo e ventileremo domani e nei giorni a venire. Il valore di p indica la probabilità che la popolazione dei pazienti con “alta PEEP+reclutamento” e la popolazione dei pazienti “bassa PEEP” abbiano lo stesso numero di complicanze polmonari postoperatorie (compatibilmente con i dati ottenuti nei campioni arruolati nello studio). La p di 0.23 dice che c’è il 23 % di probabilità che queste popolazioni abbiano la stessa indicenza di complicanze. E quindi il 77% di probabilità che queste complicanze siano diverse nelle due popolazioni (quindi che uno dei due trattamenti sia migliore dell’altro). Per convenzione (ampiamente discutibile) in ambito scientifico (e biomedico in particolare), si dice che un trattamento è efficace (è “statisticamente significativo”) se esiste meno del 5 % di probabilità che il dato che interessa sia uguale nelle popolazioni (quindi se la p è minore di 0.05). Negli altri casi (come nello studio che abbiamo commentato) è meglio evitare di sostenere con certezza che si è esclusa l’efficacia di un trattamento, semplicemente non si è riusciti a dimostrarne l’efficacia. Come ci ricordano due grandi statistici “L’assenza di evidenza non è l’evidenza dell’assenza” (Altman DG, Bland JM: Statistics notes: Absence of evidence is not evidence of absence. BMJ 1995; 311:485–485).

Mag 312019
 

La ventilazione meccanica può ridurre le complicanze polmonari postoperatorie? Come? Risponderemo a questa domanda analizzando il caso di un paziente, che chiameremo Valerio, sottoposto a emicolectomia sinistra laparoscopica. Un caso che può essere interessante anche per chi non pratica l’anestesia…

Valerio è obeso (Body Mass Index 32 kg/m2), con un peso ideale di 80 kg. L’intervento a cui è sottoposto ha la durata di alcune ore, con pneumoperitoneo in posizione di Trendelenburg. Per interventi di questo tipo, le complicanze polmonari postoperatorie sono frequenti (nei pazienti con ASA > 2 si verificano in un terzo dei casi) e si associano ad un incremento della mortalità ospedaliera (1). Facciamo quindi un buon servizio se possiamo contribuire a prevenirle con una buona ventilazione meccanica.

So per esperienza che la prima domanda che viene in mente a questo proposito è: quale modalità di ventilazione? A mio parere qualsiasi modalità va bene, se utilizzata correttamente. Qualsiasi modalità può essere nociva se i criteri di ventilazione non sono corretti. In particolare si possono ridurre le complicanze se si impostano appropriatamente volume corrente e PEEP. Ribadisco, qualunque sia la modalità di ventilazione. Se non ne sei convinto, scrivi le tue perplessità in un commento, magari dopo aver letto il post del 16/12/2015.

Il volume corrente è abbastanza facile da impostare. Infatti è ormai ben supportato il ricorso alla scelta di un volume “protettivo” (cioè fisiologico) anche in anestesia, stimato approssimativamente in 6-8 ml/kg di peso ideale (2). Per Vittorio potrebbe essere adeguato un volume corrente tra 480 e 640 ml: la scelta nel caso reale è stata di 500 ml.

Sulla PEEP esistono invece più incertezze (3), anche legate al fatto che spesso ci si fa la domanda sbagliata: “meglio una PEEP alta o una PEEP bassa?” (4). E’ una approccio classico, ma probabilmente non molto sensato. Infatti in alcuni casi può essere meglio una PEEP alta, in altri una PEEP bassa. Nei pazienti con ARDS ci siamo abituati a ragionare in maniera individualizzata scegliendo la PEEP che minimizza la driving pressure, cioè la differenza tra pressione di plateau e PEEP (vedi anche post del 18/10/2015). La scelta della PEEP che si associa alla minor driving pressure sembra una scelta molto ragionevole anche per ridurre le complicanze postoperatorie in anestesia (5).

L’intervento di Vittorio prevede diverse fasi, nelle quali può cambiare la meccanica respiratoria per effetto delle diverse combinazioni tra posizione (supina o Trendelenburg) e pneumoperitoneo (assente o presente). Ho valutato la PEEP che si associa alla minor driving pressure nelle diverse fasi, vediamo il risultato.

Fase 1: posizione supina senza pneumperitoneo

Dopo l’induzione ho applicato due livelli di PEEP, 5 e 10 cmH2O. Nella figura 1 sono riprodotte le curve di pressione.

Figura 1

Nel riquadro bianco vediamo pressione di plateau (Pplat) e PEEP (cerchiata in rosso). Ho aggiunto in bianco il valore della driving pressure, che è di 9 cmH2O a PEEP 5 e 10 cmH2O a PEEP 10. Possiamo concludere che la modificazione della PEEP non ha avuto un impatto significativo sulla driving pressure (ritengo trascurabile una differenza di 1 cmH2O nelle pressioni delle vie aeree*, a meno che si inserisca in un trend ben identificabile.). Visto che la PEEP più alta non migliora (cioè non riduce) la driving pressure, scelgo la PEEP di 5 cmH2O, che mi consente di ottenere il medesimo risultato con la minor pressione applicata. Questa fase dell’intervento è molto breve, abbiamo fatto questo esercizio per “conoscere” il paziente ed avere un valore basale su cui confrontare le modificazioni che potrebbero essere indotte da posizione, pressione addominale ed eventuali complicanze. La miglior compliance (volume corrente/driving pressure) in questa fase è circa 55 ml/cmH2O.

Fase 2: posizione supina con pneumoperitoneo

Anche questo periodo è abbastanza breve, proviamo comunque a valutare che modificazioni ha prodotto lo pneumoperitoneo e quale PEEP è preferibile in questa condizione. Nella figura 2 possiamo vedere la driving pressure a diversi livelli di PEEP:

Figura 2

A parità di volume corrente, vediamo che la driving pressure a 5 cmH2O di PEEP aumenta moltissimo rispetto alla fase precente (da 9 a 20 cmH2O). L’aumento della PEEP (diversamente dalla fase precedente) riduce notevolmente la driving pressure, che considero raggiungere il valore minimo (sempre con l’approssimazione di 1 cmH2O) già a 15 cmH2O di PEEP. La miglior compliance in questa fase è diventata circa 40 ml/cmH2O . Avrai forse notato che la pressione di plateau non si modifica aumentando la PEEP da 5 a 10 cmH2O, un fenomeno interessante e complesso di cui oggi non parleremo.

Fase 3: Trendelenburg con pneumoperitoneo

Questa è la condizione che viene mantenuta per la maggior parte del tempo operatorio. La ventilazione in questa fase è pertanto quella che può avereil maggior impatto sulle complicanze polmonari postoperatorie. Ho applicato in rapida successione PEEP crescenti da 0 a 20 cmH2O, calcolando per ciascuna la driving pressure.

Figura 3

Nella figura 3 vediamo il collage della pressione delle vie aeree alle diverse PEEP. E’ una sequenza ottenuta con incrementi successivi di 2 cmH2O, che consente di avere una bella documentazione del caso. Nella pratica clinica più pragmaticamente si potrebbero testare livelli incrementali di PEEP di 4-5 cmH2O alla volta. Una volta trovata la PEEP che si associa alla miglior driving pressure, si può raffinire il risultato rilevando la driving pressure con PEEP aumentata e ridotta di 2 cmH2O rispetto a questo valore.

Il risultato non propone certamente l’applicazione di una PEEP “convenzionale”: la driving pressure diventa minima a 18-20 cmH2O (la compliace è circa 35 ml/cmH2O). Può rimanere il dubbio se ulteriori aumenti di PEEP avrebbero potuto ridurre ulteriormente la driving pressure, ma ho preferito evitare di testare valori più elevati per due motivi: 1) a 18-20 cmH2O di PEEP la driving pressure si è comunque ridotta a valori ritenuti accettabili, cioè ≤ 15 cmH2O. Siamo comunque al limite massimo della driving pressure, dato che suggerisce di non aumentare il volume corrente (driving pressure=volume corrente/compliance); 2) nella posizione di Trendelenburg il ritorno venoso è favorito (il cuore è più in basso dell’addome). Infatti la stabilità cardiovascolare di Valerio era ottimale anche alle PEEP più elevate. Ma bisogna pensare anche al deflusso dal circolo cerebrale, che avviene invece “in salita” (la testa è più in basso del cuore). L’effetto della PEEP sulla pressione atriale destra (che condiziona il ritorno venoso) è complesso, ma in assenza di monitoraggi più avanzati preferisco non eccedere nel valore di PEEP.

Fase 4: Trendelburg senza pneumoperitoneo

In questa fase si procede all’estrazione della porzione resecata del colon attraverso una piccola incisione sulla parete addominale. La sua durata è relativamente breve, vediamo comunque come si modifica la driving pressure con la normalizzazione della pressione addominale.

Figura 4

Vi è un cambio sostanziale rispetto alla fase precedente. Arrivati ai 6-8 cmH2O di PEEP, la driving pressure ha raggiunto il suo valore minimo (compliance circa 45 ml/cmH2O).

In sintesi: Valerio aveva una PEEP ottimale di 5 cmH2O dopo l’induzione dell’anestesia, quindi è diventata 15 cmH2O con l’inizio dello pneumoperitoneo, è aumentata a 18-20 cmH2O durante la fase in Trendelenburg con pneumoperitoneo, è scesa a 6-8 cmH2O con il Trendelenburg senza pneumoperitoneo.

In conclusione, possiamo riassumere quando detto finora in alcuni punti:

– la ventilazione meccanica può avere un impatto sull’outcome del paziente sottoposto a chirurgia, soprattutto nelle procedure di almeno 2 ore di durata e nei pazienti con maggior rischio perioperatorio;
– la modalità di ventilazione è indifferente, se si scelgono correttamente volume corrente e PEEP;
– il volume corrente dovrebbe essere di 6-8 ml/kg di peso ideale, comunque senza superare una driving pressure di 15 cmH2O;
– la PEEP può essere ragionevolmente scelta per ridurre la driving pressure (una volta definito il volume corrente);
– i valori ottimali di PEEP possono variare da paziente a paziente, ed anche (e molto) nello stesso paziente durante tempi diversi dell’intervento.

Questo è quanto di ragionevole possiamo fare alla luce delle conoscenze attuali. La medicina (se vuole essere, per quanto possibile, scientifica) non deve essere vista come una verità definitivamente acquisita: dobbiamo essere sempre disponibli a cambiare idea se emergeranno nuove conoscenze.

Un sorriso a tutti gli amici di ventilab.
* la pressione delle vie aeree di solito è misurata con la precisione di ±1 cmH2O.

Bibliografia.

1. Fernandez-Bustamante A, Frendl G, Sprung J, et al.: Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators. JAMA Surgery 2017; 152:157

2. Guay J, Ochroch EA, Kopp S: Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in adults without acute lung injury [Internet]. Cochrane Database Syst Rev 2018; 7:CD011151

3. Neto AS, Hemmes SNT, Barbas CSV, et al.: Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis. Anesthesiology 2015; 123:66–78

4. PROVE Network: High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384:495–503

5. Neto AS, Hemmes SNT, Barbas CSV, et al.: Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. The Lancet Respiratory Medicine 2016; 4:272–280

Feb 272019
 

Qualche giorno fa un amico, dopo aver letto un recentissimo articolo pubblicato su JAMA (1), mi ha chiamato un po’ confuso chiedendomi: “Ma dopo questo articolo, ha ancora senso misurare la pressione esofagea nella ARDS?”

Cerchiamo di trovare insieme la risposta a questa domanda.

Nel 2008 è stato pubblicato un trial clinico che mostrava la superiorità della ventilazione protettiva guidata dalla pressione esofagea rispetto all’utilizzo delle tabelline PEEP-FIO2 della ARDS network (2). Il gruppo che fece questo studio ha coordinato il trial clinico randomizzato, controllato, multicentrico, condotto dal 2012 al 2017, che oggi cercheremo di capire e commentare.

L’articolo si propone di valutare l’utilità della pressione esofagea nella selezione della PEEP nella ARDS rispetto alle tabelle PEEP-FIO2 (il titolo infatti è: “Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-FIO2 Strategy…“).

Le conclusioni dell’abstract non lasciano dubbi: i dati dello studio non supportano l’utilizzo della pressione esofagea nella scelta della PEEP nella ARDS (“…Pes-guided PEEP, compared with empirical high PEEP-FIO2, resulted in no significant difference in death and days free from mechanical ventilation. These findings do not support Pes-guided PEEP titration in ARDS.“).

Spesso non sono d’accordo con le conclusioni degli abstract. Ed anche questa volta ritengo vi siano molti elementi su cui riflettere e che dovrebbero farci riformulare queste conclusioni. Alla fine del post vedremo quali dovrebbero essere le conclusioni appropriate da trarre dai risultati di questo studio.

Nel trial in esame i pazienti sono stati randomizzati per scegliere la PEEP con la tabella PEEP-FIO2 (a questo riguardo, vedi post del 06/10/2016) o valutando la pressione esofagea. Vediamo cosa significa.

Come è stata scelta la PEEP senza la pressione esofagea (Empirical High PEEP-FIO2 Strategy).

Figura 1

E’ stata impostata una PEEP per ottenere una PaO2 tra 55 e 80 mmHg o una SpO2 tra 88 e 93%: si aumenta la PEEP se l’ossigenazione è inferiore a questi obiettivi, mentra la si riduce se è superiore. Ogni PEEP ha una FIO2 associata da utilizzare, come indicato nella figura 1. Il criterio di scelta della PEEP in questo gruppo di pazienti è guidato dall’ossigenazione e non dalla pressione esofagea.

Chi segue ventilab sa bene che non suggerisco di scegliere la PEEP guardando la PaO2 (come si fa con questo approccio), ma piuttosto di sceglierla per aumentare la compliance e quindi ridurre la driving pressure (vedi post del 28/02/2015). Non ritengo siano molto importanti le variazioni di PaO2 quando si imposta il ventilatore nei pazienti con ARDS perchè spesso ciò che migliora l’ossigenazione può in realtà aumentare la mortalità. Ad esempio utilizzare un volume corrente di 12 ml/kg di peso ideale, rispetto a 6 ml/kg, o utilizzare reclutamento ed alta PEEP migliorano l’ossigenazione nei primi giorni di ventilazione ma, ahimè, aumentano la mortalità (3,4). Mi sembrano argomentazioni più che sufficienti per non farsi abbagliare da un aumento della PaO2 o del rapporto PaO2/FIO2 quando si “smanetta” con il ventilatore meccanico. Personalmente preferisco mantenere una ventilazione protettiva anche a costo di ridurre il rapporto PaO2/FIO2.

Una riflessione sugli obiettivi di ossigenazione dello studio che stiamo analizzando (PaO2 55-80 mmHg, SpO2 88-93%): essi sono probabilmente inferiori ai valori di PaO2 che molti medici inseguono nei pazienti con ARDS. Nella mia pratica clinica sono in sintonia con questi target ossigenativi: quando la PaO2 è tra 60 e 90 mmHg sono più che soddisfatto, e livelli superiori di PaO2 mi inducono a ridurre la FIO2.

 

Come è stata scelta la PEEP con la pressione esofagea (Esophageal Pressure-Guided Strategy).

Figura 2

E’ stata impostata una PEEP per ottenere una PaO2 tra 55 e 80 mmHg o una SpO2 tra 88 e 93%. Ti sembra uguale a quanto descritto per l’altro gruppo? Non è un errore, in fondo è proprio così… Cerchiamo di capire il perchè.

Nel gruppo con la pressione esofagea è stata utilizzata una tabella PL-FIO2 (figura 2), che differisce da quella in figura 1 perchè sostituisce la PEEP con la pressione transpolmonare di fine espirazione (PL). La pressione transpolmonare di fine espirazione si calcola come differenza tra PEEP totale e pressione esofagea di fine espirazione (vedi post del 07/02/2012). PL è la pressione che distende i polmoni a fine espirazione, cioè la “PEEP dei polmoni” (esclude la pressione generata dalla gabbia toracica).

Come si fa ad aumentare PL? Si aumenta la PEEP. Come si fa a ridurre PL? Si riduce la PEEP.

Per questo ho iniziato il capitolo scrivendo che anche in questi pazienti “E’ stata impostata una PEEP per ottenere una PaO2 tra 55 e 80 mmHg o una SpO2 tra 88 e 93%“.

In sostanza, l’unica differenza, rispetto al gruppo senza pressione esofagea, è che la PEEP, oltre a raggiungere l’obiettivo ossigenativo (PaO2 55-80 mmHg), deve anche portare ad una pressione transpolmonare di fine espirazione tra 0 e 6 cmH2O, tanto più elevata quanto più grave è l’ipossiemia (figura 2). E per ogni valore di PL si deve utilizzare la FIO2 indicata nella tabella a fianco.

A me sembra una strategia molto simile quella tra i due gruppi: in entrambi i casi la PEEP ha un obiettivo ossigenativo. La pressione esofagea avrebbe potuto essere usata senza alcuna finalità ossigenativa: in tal caso sarebbe stato sufficiente regolare la PEEP per ottenere una PL≅0 cmH2O, indipendentementente dal livello di ipossiemia. Questo avrebbe realmente reso diverse le due filosofie di trattamento, ma così non è stato.

PEEP e pressione di plateau con e senza pressione esofagea.

Durante la prima settimana i valori di PEEP impostati erano uguali nei due gruppi (figura 3, in giallo il gruppo con la PEEP guidata dalla pressione esofagea): le due strategie (presuntamente diverse) hanno portato alla fine all’applicazione dello stesso livello di PEEP

Figura 3

Il grafico è complesso, ma una informazione che possiamo ricavare è che in prima giornata il 25% dei pazienti (in entrambi i gruppi) aveva una PEEP > 20 cmH2O, una condizione che è molto diversa da quella riscontro nella pratica clinica, in cui è veramente raro utilizzare PEEP di 20 cmH2O o superiori. Non voglio certamente proporre le mie strategie di cura come uno standard di riferimento, semplicemente noto che è uno scenario molto diverso da quello che vedo nei miei pazienti: ne consegue che i risultati di questo studio hanno una bassa validità esterna (problema tipico dei trial randomizzati e controllati) e quindi hanno una scarsa ricaduta nella pratica clinica (5).

Un altro dato interessante riguarda le pressioni di plateau, che possiamo osservare nella figura 4.

Figura 4

Anche per questa variabile non ci sono differenze tra i due approcci terapeutici. Questa figura ci dice che in prima giornata il 50% dei pazienti aveva pressioni di plateau > di 30 cmH2O (vediamo un paziente con oltre 55 cmH2O). Ho imparato dalla letteratura e dalla mia pratica quotidiana che la maggior parte dei pazienti con ARDS mostra segni di sovradistensione già sopra i 25 cmH2O. Non entro nel merito del significato della pressione di plateau (se qualcuno fosse interessato ne possiamo discutere nei commenti), rilevo semplicemente che anche questo è un dato decisamente diverso da quanto si osserva nella pratica clinica e ribadisce la bassa validità esterna dello studio che stiamo commentando.

I risultati.

Le due strategie di scelta della PEEP non hanno evidenziato differenze di mortalità (31-32%) o di giorni liberi da ventilazione meccanica a 28 giorni.

Il dato non sorprende quando si constata che sono stati applicati gli stessi livelli di PEEP e pressione di plateau nei due gruppi.

Come mai, nello studio del 2008, il gruppo guidato dalla pressione esofagea aveva mostrato una chiara tendenza alla riduzione della mortalità rispetto all’uso della tabella PEEP-FIO2 (2)? Una spiegazione semplice è che le tabelle PEEP-FIO2 e PL-FIO2 utilizzate nello studio del 2008 erano diverse da quelle mostrate nelle figure 1 e 2. In particolare i valori di PEEP nella tabella 1 sono più elevati di quelli utilizzati nello studio precedente, mentre quelli di PL della tabella 2 sono stati ridotti.

Figura 5

Le tabelle PEEP-FIO2 e PL-FIO2  utilizzate nel 2008 determinavano differenze di PEEP e pressione di plateau tra i gruppi (figura 5): sono state applicate pressioni diverse nei due gruppi di pazienti ed ottenuti risultati diversi.  Le tabelle PEEP-FIO2 e PL-FIO2 utilizzate nello studio del 2019 hanno invece portato apressioni e risultati simili nelle due strategie. Tutto quadra.

Ricordo che tutte le tabelle PEEP-FIO2 e PL-FIO2 sono inventate, arbitrarie,  senza alcuna evidenza clinica o fisiopatologica a loro supporto. Se domani ci volessimo fare la nostra tabella, basterebbe che ci sedessimo al bar, e con una discussione da bar, ne scrivessimo una… E, come abbiamo visto, se si cambia tabella, cambiano i risultati.

Conclusioni.

Ecco perchè non sono d’accordo con le conclusioni dell’abstract (“These findings do not support Pes-guided PEEP titration in ARDS.“): questo studio ha esaminato solo una delle infinite possibili coppie di tabelle PEEP-FIO2 e PL-FIO2. Le vere conclusioni si dovrebbero limitare a queste tabelle: “Questi dati non supportano l’utilizzo di questa tabella PL-FIO2 rispetto a questa tabella PEEP-FIO2“.

Ma ancor più importante è la considerazione che si può fare un utilizzo completamente diverso della pressione esogafea nella ARDS rispetto a quello descritto nell’articolo di JAMA.

La pressione tranpolmonare di fine espirazione è una misura di meccanica respiratoria e può essere inserita in un percorso di scelta della PEEP basato sulla meccanica respiratoria (e non sull’ossigenazione). Non intendo proporre un utilizzo sicuramente efficace della pressione transpolmonare, ma solo descrivere un possibile approccio al suo utilizzo come guida nella ventilazione meccanica, INDIPENDENTEMENTE dalle variazioni acute di PaO2.

Si può fare un PEEP trial (rivedi post del 28/02/2015), e scegliere il livello di PEEP che la minimizza driving pressure transpolmonare (invece di quella che normalmente calcoliamo sulla pressione delle vie aeree). La driving pressure transpolmonare si calcola come la differenza tra pressione tranpolmonare di fine inspirazione (pressione di plateaupressione esofagea durante la pausa di fine inspirazione) e pressione transpolmonare di fine espirazione (vedi sopra).

Se, come spesso capita, PEEP differenti portano ad avere la stessa driving pressure transpolmonare (cmH2O più, cmH2O meno), si può scegliere tra queste PEEP quella che garantisce una pressione transpolmonare di fine espirazione ≅ 0 cmH2O.

Si può ridurre il volume corrente se la pressione tranpolmonare di fine inspirazione (vedi sopra) diventa eccessiva. Senza alcuna evidenza, gli studi propongono un valore massimo di 20-25 cmH2O (1,2), ma nella mia esperienza con valori sopra i 15 cmH2O si osservano spesso segni di sovradistensione, per cui preferisco limitare il volume corrente se ci si avvicina a questo limite.

Sarebbe interessante confrontare i risultati di una ventilazione fatta con questi criteri con una invece in cui si scelgono i paramentri ventilatori con un obiettivo ossigenativo… Ma gli studi che abbiamo a disposizione sulla pressione esofagea non ci dicono nulla in merito.

La pressione esofagea nella ARDS ha certamente bisogno di ulteriori studi per capire se, come e quando utilizzarla. Non ritengo che il trial clinico controllato randomizzato multicentrico che abbiamo commentato abbia dato un gran contributo alle nostro conoscenze, se non per dire che le due tabelline a confronto producono risultati simili.

Invito a non avere certezze su questo argomento ed a basarsi, per ora, su presupposti fisiopatologici in attesa di eventuali verifiche in trial clinici che ci possano essere realmente di aiuto nella nostra pratica clinica.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia.
1) Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure–Guided Strategy vs an Empirical High PEEP-FIO2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. February 2019. doi:10.1001/jama.2019.0555
2) Talmor D, Sarge T, Malhotra A, et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. New England Journal of Medicine. 2008;359(20):2095-2104. doi:10.1056/NEJMoa0708638
3) Acute Respiratory Distress Syndrome Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. The New England Journal of Medicine. 2000;342(18):1301-1308. doi:10.1056/NEJM200005043421801
4) Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017;318(14):1335. doi:10.1001/jama.2017.14171
5) Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial apply?” The Lancet. 2005;365(9453):82-93. doi:10.1016/S0140-6736(04)17670-8
Set 302018
 

Può capitare di iniziare la ventilazione meccanica in un paziente con shock ipovolemico. Quando pensiamo allo shock ipovolemico, ci viene subito in mente lo shock emorragico, con ipotensione grave causata dalla evidente perdita acuta di una notevole quantità di sangue. Non dimentichiamo però che esistono anche quadri più subdoli (e probabilmente più frequenti) di shock ipovolemico. Ad esempio pensiamo ad una persone che arriva in Pronto Soccorso dopo alcuni giorni di febbre, vomito e diarrea: non è difficile immaginare che anch’essa possa aver sviluppato una ipovolemia secondaria ad una grave disidratazione e che richieda gli stessi accorgimenti nella ventilazione meccanica che riserviamo allo shock emorragico.

 

Figura 1

Nella figura 1 è schematizzato l’apparato cardiocircolatorio. Il flusso di sangue che esce dal ventricolo sinistro è la portata cardiaca (cardiac output, CO) ed il flusso di sangue che ritorna all’atrio desto è il ritorno venoso (RV). E’ intuitivo che, all’equilibrio, la portata cardiaca ed il ritorno venoso siano uguali. E che quindi la riduzione del ritorno venoso implichi la diminuzione della portata cardiaca.

Il ritorno venoso all’atrio destro è spinto dalla pressione del sistema venulare, che dogmaticamente si assimila alla pressione sistemica media (Pms in figura 1). La pressione sistemica media è determinata sia dalla volemia che dal tono vascolare: la riduzione di uno dei due porta alla riduzione della pressione che spinge il ritorno venoso in atrio destro. In condizioni di ipovolemia, la riduzione della pressione sistemica media e del ritorno venoso può essere limitata grazie all’aumento del tono simpatico (tipico delle condizioni di shock) che incrementa il tono vascolare. In questa condizione a volte è inevitabile dover indurre un’anestesia generale, ad esempio per iniziare la ventilazione invasiva o per eseguire un intervento chirurgico urgente. Questo è un momento particolarmente delicato perchè determina una marcata riduzione del tono simpatico, che in alcuni (per fortuna rari) casi può essere fatale: ricordiamo che l’utilizzo di farmaci vasostrittori può essere salvavita in queste situazioni.

Se la pressione sistemica media è la forza che facilita il ritorno venoso, la pressione in atrio destro (la pressione venosa centrale, PVC in figura 1) ostacola il ritorno venoso. La ventilazione meccanica gioca un ruolo rilevante nella riduzione del ritorno venoso in condizioni di ipovolemia. L’aumento della pressione intratoracica determina un aumento anche della pressionei nei vasi venosi intratoracici e quindi della pressione venosa centrale. Ne consegue che la differenza di pressione tra vene ed atrio destro si riduce e quindi anche il ritorno venoso (vedi nota) (figura 2).

Figura 2

L’effetto della PEEP sul ritorno venoso in questi casi è drammatico. In un modello animale di shock emorragico, l’eliminazione della PEEP determina il miglioramento di portata cardiaca e pressione arteriosa, e consente la sopravvivenza di quasi tutti gli animali. Viceversa mantenere una PEEP di 5 cmH2O o l’incremento della stessa a 10 cmH2O causa la morte di tutti gli animali prima dell’inizio della fase di riespansione volemica (1).

Meno importante è l’effetto del volume corrente, la cui riduzione ha un impatto trascurabile su emodinamica e sopravvienza (2).

L’importanza quasi esclusiva della PEEP è prevedibile: la PEEP è un ostacolo al ritorno venoso che rimane per tutto il ciclo respiratorio, mentre l’espirazione del volume corrente consente una ripresa del ritorno venoso almeno in espirazione.

Da notare che per PEEP si deve intendere la PEEP totale e non la PEEP impostata sul ventilatore meccanico (per la differenza tra le due PEEP vedi post del 10/12/2016). Questo significa che nei pazienti ostruttivi anche la frequenza respiratoria deve essere tenuta bassa (oltre al rapporto I:E). Con la conseguenza dell’ipercapnia, spesso ingiustamente accusata di ogni male, ma che invece può avere numerosi effetti positivi… (vedi post del 03/08/2013). A maggior ragione nei pazienti con shock emorragico, in cui l’incremento della PaCO2 e della ETCO2 possono essere visti come segni positivi di ripristino del circolo.

La PEEP deve però essere gradualmente ripristinata man mano che la pressione arteriosa si stabilizza su valori accettabili. Infatti lo shock emorragico è di per se uno stimolo infiammatorio per il parenchima polmonare (e non solo), ed una ventilazione non protetiva (cioè senza PEEP, peggio se associata ad un elevato volume corrente) amplifica la risposta infiammatoria polmonare e sistemica, con il rischio di facilitare l’insorgenza di ARDS ed insufficienze d’organo (3).

Nel paziente con grave shock emorragico può essere anche utile utilizzare anche una elevata FIO2 nella fase di ipotensione ed anemia. Sappiamo che l’iperossia può essere deleteria, ma per tempi brevi, nella condizione di shock emorragico grave, potrebbe invece essere di aiuto. In uno studio sperimentale è stato infatto dimostrato che la ventilazione con FIO2 1 (rispetto a quella con FIO2 0.21) riduce gli episodi di ipossia tissutale e la mortalità degli animali a 6 ore dall’inizio dello shock (4).

In conclusione, abbiamo buone ragioni per fare una “brutta” ventilazione in caso di grave shock ipovolemico che metta in pericolo la sopravvivenza a breve termine del paziente. In questi casi:

  1. eliminare la PEEP
  2. ridurre la frequenza respiratoria per azzerare l’autoPEEP, cioè consentendo al flusso espiratorio di azzerarsi prima dell’inizio dell’espirazione successiva;
  3. mantenere un volume corrente ragionevole (a buon senso un 7-8 ml/kg di peso ideale, in assenza di particolari danni polmonari)
  4. tollerare l’ipercapnia
  5. utilizzare una elevata FIO2 (anche 1)
  6. appena si ripristina un sufficiente compenso cardiocircolatorio, utilizzare subito la PEEP e ridurre la FIO2 per mantenere la normossiemia (PaO2 tra 60 e 100 mmHg).

E come sempre, un sorriso a tutti gli amici di ventilab.

Nota: Un piccolo dettaglio fisiologico per i più interessati all’argomento. Questa è la teoria classica del ritorno venoso che attribuisce poca importanza alle resistenze venose. In realtà sembra che la pressione positiva intratoracica agisca prevalentemente aumentando le resistenze venose piuttosto che riducendo la differenza di pressione che guida il ritorno venoso (5-8).

 

Bibliografia.

  1. Krismer AC et al. Influence of positive end-expiratory pressure ventilation on survival during severe hemorrhagic shock. Ann Emerg Med 2005; 46:337-42
  2. Herff H et al. Influence of ventilation strategies on survival in severe controlled hemorrhagic shock. Crit Care Med 2008; 36:2613-20
  3. Bouadma L et al. Mechanical ventilation and hemorrhagic shock-resuscitation interact to increase inflammatory cytokine release in rats. Crit Care Med 2007; 35:2601-6
  4. Meier J et al. Hyperoxic ventilation reduces six-hour mortality after partial fluid resuscitation from hemorrhagic shock. Shock 2004; 22:240-7
  5. Scharf SM et al. Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol 1977; 232:H35-43
  6. Fessler HE et al. Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 1991; 143:19-24
  7. Nanas S et al. Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 1992; 146:688-93
  8. Jellinek H et al. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol
    2000; 88:926-32
Ott 012017
 

Quattro giorni fa è stato pubblicato online su JAMA il trial clinico “Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. A Randomized Clinical Trial” (1). I risultati dello studio sono “forti” ed è diventato subito molto popolare (in questi pochi giorni ha già ricevuto quasi 45.000 visualizzazioni). Per questo merita di essere commentato per evitare di limitarsi a ripetere le conclusioni dell’abstract senza avere capito bene di cosa si parla (ahimè vizio frequente, se non la normalità, nella sedicente Evidence Based Medicine).

Partiamo proprio dalle conclusioni dell’abstract: “In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality.” Questi i numeri: sono morti il 55% dei pazienti con reclutamento+PEEP individualizzata dopo PEEP trial rispetto al 49% dei pazienti con bassa PEEP. Sembra proprio che  reclutamento e scelta della PEEP sulla miglior compliance facciano molto male rispetto alla PEEP scelta con le tabelle PEEP/FIO2. Rimando per eventuali approfondimenti sulle strategie di scelta della PEEP al post del 28/02/2015.

Di fronte a nuove conoscenze, è assolutamento onesto saper cambiare le proprie convinzioni. Su ventilab abbiamo sempre supportato, nella ARDS, la scelta della PEEP che si associa alla minor driving pressure (cioè alla massima compliance): dobbiamo ora suggerire un cambio di strategia? Penso proprio di no, cerchiamo di capire insieme il perchè.

Una premessa prima di entrare nel merito: lo studio ha arruolato 1013 pazienti nel corso di quasi 6 anni in 120 Terapie Intensive. Facendo due semplici conti, mediamente ciascuna  Terapia Intensiva ha arruolato poco meno di 1.5 pazienti/anno, quindi un paziente ogni 8 mesi. Questo vuol dire che la strategia “reclutamento+PEEP trial, applicata nel 50 % dei pazienti, è stata messa in pratica mediamente una volta ogni 16 mesi in ciascuna Terapia Intensiva. Stiamo parlando quindi di un intervento molto raro, sul quale probabilmente le maggior parte delle Terapie Intensive partecipanti non ha molta esperienza. E forse molti pazienti potrebbero essere “sfuggiti” allo screening; se così fosse la rappresentatività del campione potrebbe essere fortemente in discussione.

Vediamo ora quali trattamenti sono stati messi a confronto. Il gruppo di controllo (definito arbitrariamente nello studio come “bassa PEEP“) era ventilato con basso volume corrente (circa 6 ml/kg) e PEEP ricavata dalla tabella PEEP/FIO2 (figura 1): si sceglieva cioè la combinazione tra PEEP e FIO2 presente nella tabella per arrivare ad una SpO2 tra 90 e 95%.

Figura 1

Il gruppo di studio (“reclutamento+PEEP trial“) era ventilato con lo stesso basso volume corrente del gruppo di controllo, ma da esso si differenziava per 2 motivi: 1) riceveva una iniziale manovra di reclutamento alveolare e 2) sceglieva la PEEP dopo un PEEP trial. Dobbiamo perciò tenere presente che l’intervento nel gruppo “reclutamento+PEEP trial era la combinazione di 2 interventi concettualmente indipendenti l’uno dall’altro (in molti studi sono infatti analizzati separatamente). Ne consegue che non possiamo sapere se i risultati ottenuti siano da attribuire a uno dei due o ad entrambi gli interventi.

Esaminiamo ora nel dettaglio come sono stati eseguiti i due interventi nel gruppo di studio, cioè reclutamento e PEEP trial.

Reclutamento.

Ritengo che, già prima dello studio che stiamo commentando, non vi fossero buone ragioni per eseguire il reclutamento al di fuori di casi selezionati (vedi ad esempio il post del 12/4/2014). Lo studio di JAMA sembra confermare piuttosto chiaramente questo punto di vista: il reclutamento non dovrebbe essere fatto di routine nei pazienti con ARDS moderata-grave.

Merita un approfondimento la tecnica di reclutamento utilizzata nello studio. Nei primi 555 pazienti arruolati, il reclutamento è stato eseguito con una pressione controllata di 15 cmH2O più PEEP di 25 cmH2O per 1 minuto, PEEP di 35 cmH2O per un’altro minuto ed infine PEEP 45 cmH2O per 2 minuti. Quindi nei due minuti finali la pressione di plateau era circa 60 cmH2O. Mica poco, vero? Infatti, dopo aver avuto 3 arresti cardiaci durante le manovre di reclutamento alveolare, si è deciso di modificare questo schema di reclutamento. Dopo poco più di metà dei pazienti arruolati, è stato cambiato il protocollo del reclutamento alveolare (fortunatamente per i pazienti, sfortunatamente per la qualità dello studio): le PEEP del reclutamento sono diventate di 25, 30 e 35 cmH2O, ciascuna mantenuta per 1 minuto.

I risultati dello studio sembrano fortemente condizionati proprio dall’esecuzione di queste manovre di reclutamento. I pazienti che hanno fatto il reclutamento hanno avuto un maggior numero di drenaggi pleurici per pneumotorace ed una maggior frequenza di barotrauma rispetto al gruppo di controllo (il cosiddetto “bassa PEEP“). Inoltre, l’unica causa di morte risultata differente tra i due trattamenti è quella con barotrauma, come si può osservare nella tabella semplificata dei risultati della figura 2.

Figura 2

Poichè è ben noto che la manovra di reclutamento alveolare può indurre grave ipotensione (fino all’arresto cardiaco), i pazienti che sono stati sottoposti a questo trattamento hanno ricevuto un carico di fluidi aggiuntivi fino ad arrivare ad una pressione venosa centrale superiore a 10 mmHg (!?) (o a pulse pressure variation < 13%). Ben sappiamo che ricevere liquidi in eccesso si associa ad un aumento della mortalità, in particolare nei pazienti con ARDS (2-3).

Mi sembra si possa dire che il reclutamento, già da solo, sembra aver inciso molto sul risultato negativo del trial clinico.

PEEP trial.

La scelta della PEEP è stata eseguita con un PEEP trial, cioè ricercando la PEEP che si associa alla maggior compliance (quindi alla minor driving pressure se il volume corrente è costante). Questo un approccio è stato più volte proposto e commentato su ventilab (ad esempio vedi il post del 06/10/2013 e quello del 28/02/2015). Nello studio di JAMA questo PEEP trial è però stato condotto in modo molto discutibile, comunque molto diverso da quello sempre descritto su ventilab. Innanzitutto si sono testate solo PEEP di 23, 20 17, 14 ed 11 cmH2O. La PEEP alla fine utilizzata per la ventilazione meccanica corrispondeva a quella che nel PEEP trial aveva ottenuto la maggior compliace, aumentata però di 2 cmH2O (perchè questo aumento? se a qualcuno interessa, ne possiamo discutere nei commenti). I pazienti potevano quindi ricevere una PEEP mai inferiore a 13 cmH2O. Questa scelta può essere in accordo con la strategia del Open Lung Approach, ma non con quello della scelta della PEEP che minimizza la driving pressure, poichè quest’ultima spesso porta a scegliere PEEP inferiori a 10 cmH2O. Lo vedo nella mia pratica clinica ed è confermato in uno studio che ha scelto la PEEP dopo PEEP trial iniziato da 5 cmH2O (la metà dei pazienti riceveva infatti una PEEP minore o uguale a 11 cmH2O) (4). Se vuoi riflettere su questo aspetto, prova a pensare se metteresti una PEEP di almeno 13 cmH2O nella paziente presentata nel già citato post del 28/02/2015

Figura 3

L’utilizzo di PEEP elevate sembra particolarmente temibile nei pazienti con ARDS focale, più di un terzo dei pazienti con ARDS (5): esso infatti produce una iperinflazione delle zone sane del polmone con solo un minimo reclutamento in quelle basali con gli infiltrati alveolari (6). In un bellissimo studio italiano già 10 anni fa si faceva notare che in questo tipo di ARDS era opportuno ridurre la PEEP ben al di sotto dei valori proposti nella tabella utilizzata anche nello studio di JAMA per il gruppo di controllo (il cosiddetto bassa PEEP), una riduzione in media da 13 a 7 cmH2O (7). Questa riduzione di PEEP, rispetto a quella proposta nella tabella PEEP/FIO2, era necessaria per mantenere lo stress index tra 0.9 e 1.1. Con questa strategia di riduzione della PEEP si deteterminava anche la diminuzione della concentrazione plasmatica di mediatori infammatori (IL-6,IL-6 e sTNFα). In figura 3 vediamo l’esempio di come si modificava, in un paziente rappresentativo, lo stress index (da 1.2 a 1) riducendo la PEEP dai 12 cmH2O suggeriti dalla tabella PEEP/FIO2 (a sinistra) ai 5 cmH2O richiesti per avere lo stress index di 1 (a destra). Per qualche informazione in più sullo stress index, puoi leggere anche i post del 15/08/2011 e del 28/08/2011.

A questo punto possiamo comprendere perchè che il PEEP trial proposto nello studio di JAMA non è un vero PEEP trial, ma un modo per scegliere la PEEP meno peggiore tra 13 e 25 cmH2O. Questo senza valutare la presenza di eventuali segni di sovradistensione, molto probabili visto che il 17.4% dei pazienti del “gruppo reclutamento hanno avuto pressioni di plateau > 30 cmH2O (rispetto al 10.7% del gruppo di controllo). Questo anche se nel protocollo era specificato che la pressione di plateau doveva rimanere sotto i 30 cmH2O.

L’iperinflazione nel gruppo “reclutamento+PEEP trial può essere stata ulteriormente aggravata dall’aver trascurato la PEEP intriseca che si aggiunge alla PEEP impostata. Il PEEP trial era eseguito mentre il paziente aveva una frequenza respiratoria di 20/min. Una volta scelta la PEEP da applicare, la frequenza respiratoria veniva aumentata mediamente a 30/min. In questo modo nei pazienti con ARDS si può sviluppare una autoPEEP che si somma sia alla PEEP che alla pressione di plateau. La dimensione dell’autoPEEP durante ventilazione a basso corrente nei pazienti con ARDS è tutt’altro che trascurabile, essendo mediamente 6 cmH2O (8) . Come ben sanno i lettori di ventilab, la best PEEP dovrebbe invece tenere conto anche dell’autoPEEP per limitare la sovradistensione.

Da ricordare infine che elevati valori di PEEP possono aggravare lo scompenso cardiaco destro che insorge acutamente in una quota non trascurabile di pazienti con ARDS (9) e potrebbero quindi aver influito sull’outcome.

Conclusioni.

L’analisi del trial clinico appena apparso su JAMA rende evidente come non vi sia nessun nesso tra i suoi risultati e la scelta della PEEP per minimizzare la driving pressure: si sta parlando di cose completamente diverse. La lettura meditata dello studio ci può comunque insegnare molto:

  1. nella ARDS la sovradistensione sembra essere più temibile dell’atelectrauma: reclutamento e PEEP “alta” non sono quindi un valore da ricercare, ma una carta da giocare solo a ragion veduta in casi selezionati e sotto monitoraggio emodinamico;
    • riservare il reclutamento alveolare alle condizioni di marcata ipossiemia associata a compliance particolarmente bassa, ricordando che probabilmente è più efficace nelle ARDS diffuse (10);
    • PEEP “alta” solo se riduce la driving pressure più di qualsiasi altra PEEP (valutando anche quelle tra i 5 ed i 10 cmH2O); ricordiamo che la PEEP “giusta” nella ARDS spesso può essere una PEEP “bassa”. In definitiva non ha proprio senso porre la scelta tra PEEP “alta” o “bassa”, quando pazienti diversi si giovano di PEEP diverse, talora “alte”, talaltra “basse”;
  2. per limitare la sovradistensione con un approccio individualizzato possiamo:
    • contenere la driving pressure (volume corrente + PEEP ragionati) (meglio ancora la driving pressure transpolmonare);
    • considerare come best PEEP la PEEP totale (quella letta con l’occlusione di fine espirazione) e non quella PEEP impostata sul ventilatore;
    • valutare sempre lo stress index (abituiamoci a vederlo anche “ad occhio”, come in figura 3);
    • in caso di pressione di plateau elevata misurare la pressione transpolmonare di fine inspirazione (possiamo essere abbastanza tranquilli se è al di sotto dei 15-20 cmH2O).

Ed arrivati alla fine, come sempre un sorriso a tutti gli amici di ventilab.

Bibliografia

  1. Writing Group for ART Investigators. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with Acute Respiratory Distress Syndrome. A Randomized Clinical Trial. JAMA. Published online September 27, 2017. doi:10.1001/jama.2017.14171
  2. Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128 :3098-108
  3. Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75
  4. Pintado MD et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013; 58:1416-23
  5. Puybasset Let al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69
  6. Nieszkowska A et al. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 2004;
    32:1496-503
  7. Grasso S et al. ARDSnet ventilatory protocol and alveolar hyperinflation. Role of Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2007; 176:761-7
  8. de Durante G et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic Positive End-Expiratory Pressure in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2002; 165:1271-4
  9. Vieillard-Baron A et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 2001; 29:1551-5
  10.  Constantin JMet al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38:1108-17

PS: ci sarebbero altri aspetti di cui discutere, come ad esempio la scelta di una ventilazione a flusso inspiratorio costante in assistita-controllata, la mancata definizone della durata dell’occlusione di fine inspirazione per calcolare la compliance durante il PEEP trial, l’assenza di qualsiasi dato emodinamico, l’incompatibilità dei risultati con un reale utilizzo della tabella PEEP/FIO2 nel gruppo di controllo. Ma penso che sia sufficiente quanto abbiamo detto finora. Per approfondimenti, si possono fare richieste nei commenti.

Apr 172016
 

beep-peepNel post precedente abbiamo messo in discussione l’affermazione ricorrente che “la PEEP debba essere l’80% della PEEP intrinseca”. Ora cercheremo di capire come possiamo scegliere una PEEP ragionevole nei pazienti con auto-PEEP.


Effetto della PEEP sulla PEEP totale.

Abbiamo visto che teoricamente l’applicazione di una PEEP inferiore all’auto-PEEP non dovrebbe aumentare la PEEP totale nei pazienti con flow-limitation, mentre in assenza di flow limitation la PEEP che applichiamo dovrebbe sommarsi alla pre-esistente PEEP intrinseca. Questa interpretazione, fondata su ragionevoli presupposti fisiopatologici, è proposta ed indiscussa da quasi trent’anni. Ma, abbastanza sorprendentemente, non era mai stata verificata nella clinica, cioè nessuno aveva mai misurato sistematicamente su molti pazienti con PEEP intrinseca cosa succede alla PEEP totale quando si applica una PEEP esterna inferiore (circa l’80%) all’auto-PEEP. Questo lavoro l’abbiamo allora fatto noi. Circa 3 anni fa ventilab ha promosso uno studio a cui hanno entusiasticamente partecipato 11 Terapie Intensive italiane arruolando i pazienti con PEEP intrinseca. Il disegno dello studio era molto semplice: misurare la PEEP totale quando il paziente era a ZEEP (cioè senza PEEP), applicare una PEEP uguale al 80% dell’auto-PEEP e rimisurare la PEEP totale. (Ricordiamo che la PEEP intrinseca è la differenza tra PEEP totale e la PEEP esterna; pertanto in assenza di PEEP, auto-PEEP e PEEP totale coincidono.). Ci saremmo aspettati, in teoria, due sole possibili risposte: un gruppo di pazienti avrebbe avuto la stessa PEEP totale sia senza che con la PEEP (come teorizzato nei pazienti con flow limitation), un altro gruppo di pazienti invece avrebbe dovuto aumentare la PEEP totale più o meno della stessa entità della PEEP applicata (come teorizzato in assenza di flow limitation). Queste due ipotetiche possibili risposte sono schematizzate nella figura 1 con l’esempio di un soggetto con 10 cmH2O di auto-PEEP a ZEEP: in alto l’applicazione della PEEP di 8 cmH2O non modifica la PEEP totale, mentre in basso la PEEP totale aumenta della stessa entità della PEEP applicata. Misurando la variazione della PEEP totale come percentuale della PEEP applicata, nel primo caso avremo una variazione della PEEP totale dello 0% rispetto alla PEEP esterna, mentre nel secondo caso avremo un aumento della PEEP totale pari al 100% della PEEP applicata.

Figura 1.

Figura 1.

Dopo aver raccolto ed analizzato i dati di 100 pazienti con PEEP intrinseca, ci siamo accorti che questa interpretazione della realtà non è vera. Non esiste cioè un comportamento “tutto o nulla”, che contempli solo le possibilità che la PEEP totale aumenti dello 0% o del 100% rispetto al valore della PEEP esterna, ma sono più probabili le risposte intermedie a questi due comportamenti paradigmatici: cioè un elevato numero di pazienti ha variazioni della PEEP totale che sono intermedie tra lo 0% ed il 100%, come si può vedere nell’istogramma in figura 2.

Figura 2.

Figura 2.

Tradotto in termini pratici, quando metto una PEEP di 8 cmH2O ad un paziente con PEEP intrinseca, posso aspettarmi più spesso un aumento della PEEP totale di circa il 50% della PEEP (cioè di 4 cmH2O), anche se in realtà è possibile qualsiasi aumento tra lo 0% ed il 100% (tralasciamo per semplicità i rari casi con aumento sopra il 100%, cioè con la PEEP totale che aumenta più della PEEP applicata).


Gli “assorbitori di PEEP”: cosa è necessario per evitare l’aumento della PEEP totale dopo l’applicazione della PEEP.

Questi dati possono sembrare a prima vista incompatibili con la teoria della flow limitation, che prevede solo una risposta “tutto o nulla” come abbiamo prima descritto. Vedremo in seguito perchè questa contraddizione è probabilmente solo apparente.

Ci siamo quindi chiesti se sia possibile prevedere in quale tipo di pazienti l’applicazione della PEEP non aumenta la PEEP totale. Abbiamo chiamato questi pazienti “assorbitori di PEEP”, perchè la fanno scomparire all’interno della propria auto-PEEP. L’analisi dei nostri dati ci ha indicato chiaramente che è fondamentale l’associazione di due caratteristiche per avere un paziente “assorbitore di PEEP”: una bassa frequenza respiratoria e la presenza di flow limitation. L’assenza di una di queste due caratteristiche rende pressochè impossibile essere “assorbitore di PEEP”. Nulla di nuovo sulla flow limitation, come detto già più volte. La vera novità è però la frequenza respiratoria: senza una bassa frequenza respiratoria non è possibile “assorbire” completamente la PEEP. Nel nostro campione di pazienti abbiamo identificato una frequenza respiratoria critica di 20/min: cioè una frequenza uguale o superiore a 20/min precludeva possibilità di essere “assorbitori di PEEP”, anche ai pazienti con flow limitation.

L’importanza della frequenza respiratoria è mediata ovviamente dal suo effetto sul tempo espiratorio: l’aumento della frequenza respiratoria riduce come conseguenza il tempo espiratorio. E la riduzione del tempo espiratorio genera PEEP-intrinseca con un meccanismo indipendente dalla flow limitation.


Disomogenità polmonare e risposta alla PEEP.

Dobbiamo pensare ai polmoni ammalati come ad una struttura disomogenea, dove si alternano aree con caratteristiche diverse tra loro. Tra le differenze che caratterizzano le diverse zone di un polmone patologico possiamo includere la dinamica espiratoria: in certe aeree polmonari ci saranno le condizioni perchè il l’espirazione sia flusso-limitata, mentre altre zone del polmone avranno una espirazione non flusso-limitata. In un paziente tachipnoico la PEEP intrinseca potrà generarsi, nello stesso polmone, con un duplice meccanismo: in alcune zone polmonari sarà determinata solo dalla flow-limitation, in altre zone polmonari da una espirazione incompleta dovuta ad un insufficiente tempo espiratorio. In queste diverse aree, l’effetto della PEEP sulla PEEP intrinseca sarà differente e noi potremo misurare solo un effetto medio. Figura 3Facciamo un esempio. Come presentato nella figura 3 in alto, ipotizziamo che in assenza di PEEP, vi siano due aree polmonari, una caratterizzata da flow limitation con 14 cmH2O di auto-PEEP ed una senza flow limitation con 6 cmH2O di PEEP intrinseca. Se il volume corrente fosse distributio al 50% in ciascuna delle due aree, la PEEP totale che misureremmo con l’occlusione espiratoria delle vie aeree sarebbe la media delle due, cioè 10 cmH2O. Qualora applicassimo 8 cmH2O di PEEP (pari al 80% della auto-PEEP) (figura 3, in basso), nell’area con flow limitation questa PEEP non modificherebbe la PEEP totale regionale, mentre nell’area senza flow limitation questa aumenterebbe la PEEP totale della stessa entità della PEEP applicata. Il risultato finale sarebbe che entrambe le zone a questo punto avrebbero 14 cmH2O di auto-PEEP e questa sarebbe anche la PEEP totale che misureremmo con l’occlusione di fine espirazione.

Questo modello interpretativo ci spiega come sia possibile avere aumenti della PEEP totale pari al 50% della PEEP applicata, quando in teoria ci aspetteremmo lo 0% nelle zone con flow limitation ed il 100% nelle zone senza flow limitation. Noi possiamo solo misurare il comportamento medio complessivo dei polmoni, mentre gli effetti della flow limitation possono essere solo regionali. In questo modo si possono capire i dati presentati nella figura 2.


Conclusioni ed implicazioni pratiche.

Possiamo riassumere i punti fondamentali del post:

1) l’applicazione di una PEEP esterna di poco inferiore all’auto-PEEP ha effetti molto diversi da soggetto a soggetto: in alcuni pazienti l’iperinflazione (cioè la PEEP totale) non aumenta, in altri pazienti invece aumenta di una quantità non prevedibile.
2) possiamo identificare i pazienti che non aumenteranno l’iperinflazione (“assorbitori di PEEP”) se sono contemporaneamente presenti 2 caratteristiche: flow limitation e bassa frequenza respiratoria (indicativamente sotto i 20/min)

Le implicazioni cliniche per l’applicazione della PEEP nei pazienti con auto-PEEP possono essere queste:

1) pazienti tachipnoici e/o pazienti senza flow limitation:
qualsiasi PEEP esterna aggrava l’iperinflazione (=PEEP totale)
– quando l’aumento dell’iperinflazione rappresenta un problema (riduzione dell’efficienza dei muscoli respiratori, sovradistensione polmonare, impatto emodinamico) bisogna evitare la PEEP esterna oppure metterla al minimo ragionevole (a mio parere circa 4-5 cmH2O)

2) pazienti con flow limitation e frequenza respiratoria normale/bassa (< 20/min circa):
– è ragionevole impostare una PEEP un po’ inferiore all’auto-PEEP (in questo caso può andar bene il famoso 80%): si ha la massima riduzione del carico soglia senza i possibili effetti negativi del peggioramento dell’iperinflazione
– quando non è possibile valutare la flow limitation (NIV, ventilatore senza loop flusso-volume), possiamo ragionevolmente pensare che i pazienti con malattia polmonare cronica ostruttiva siano flusso-limitati.

Un sorriso ai tantissimi amici di ventilab.


PS: Questi dati sono presentati in anteprima assoluta ai lettori di ventilab. E’ in corso il processo di revisione per la eventuale pubblicazione: vediamo se qualcun’altro, oltre a ventilab, ritiene questi risultati interessanti…

Mar 302016
 

so_grecheQuanta PEEP mettere nei pazienti con auto-PEEP? La risposta che spesso si dà a questa domanda è carica di certezze: la PEEP deve essere l’80% della PEEP intrinseca.

In realtà questa affermazione è impraticabile nella pratica clinica, senza un chiaro razionale fisiopatologico e non confermata da studi clinici. Cerchiamo di capire il motivo dell’inadeguatezza di questa risposta comune e, cosa più importante, come scegliere correttamente la PEEP nei pazienti con auto-PEEP. Ricordiamo che auto-PEEP e PEEP intrinseca sono sinonimi e quindi li useremo in maniera intercambiabile. Personalmente preferisco il termine auto-PEEP a quello di PEEP intrinseca anche per sottolineare che questa PEEP non è un evento intrinsecamente presente nel paziente, ma piuttosto il frutto di una interazione tra le caratteristiche del paziente ed il suo pattern respiratorio.

Iniziamo con 3 buone ragioni per dubitare della PEEP al 80% della auto-PEEP.

1) la PEEP intrinseca non è sempre misurabile.

Mentre è facile (ma di solito poco importante) misurare la auto-PEEP nei pazienti passivi durante la ventilazione meccanica, spesso è difficile farlo quando servirebbe, cioè durante la ventilazione assistita. Purtroppo alcuni ventilatori disattivano l’occlusione di fine espirazione durante la ventilazione di supporto. Ma quando anche questa fosse disponibile, spesso non si ottiene un plateau durante l’occlusione di fine espirazione quando si rimuove la PEEP. Come vediamo nella figura 1, durante l’occlusione delle vie aeree nei pazienti attivi e senza PEEP, spesso non si ottengono dei plateau di pressione regolari e costanti.

Figura 1.

Figura 1.

In questi casi non si può fare alcuna ipotesi circa il valore di auto-PEEP, che richiede invece un plateau di pressione stabile. Ricordiamo peraltro che se entriamo nell’ottica di mettere l’80% di PEEP rispetto alla PEEP intrinseca, questa dovrebbe essere misurata ovviamente senza PEEP.

2) i pazienti non hanno UNA PEEP intrinseca.

Una prima considerazione: nei pazienti passivi il valore di PEEP intrinseca varia principalmente al variare del tempo espiratorio, delle resistenze delle vie aeree e della presenza o meno di flow limitation (1). Quindi una variazione di frequenza respiratoria/tempo inspiratorio oppure un miglioramento o peggioramento di flow limitation e broncocostrizione porteranno a diversi valori auto-PEEP nello stesso paziente, anche in tempi relativemente brevi.

Nei pazienti con attività respiratoria spontanea, la auto-PEEP può cambiare anche in funzione della presenza o meno di attività dei muscoli espiratori. In caso di espirazione attiva, infatti aumenterà il flusso espiratorio e si ridurrà quindi la PEEP intrinseca, a parità di tutti gli altri fattori. Questo evento, seppur tipico dei pazienti senza flow limitation, può accadere anche in pazienti flusso-limitati, perchè la flow limitation spesso inizia a presentarsi solo nella seconda metà dell’espirazione (vedi figura 3 del post del 25/11/2012).

Una dimostrazione eclatante di quanto sia variabile l’auto-PEEP ce la fornisce un vecchio studio che misurava la PEEP intrinseca in 35 respiri consecutivi in pazienti in ventilazione assistita-controllata. Nei pazienti con almeno 3 cmH2O di PEEP intrinseca, il valore medio di auto-PEEP era di 7 cmH2O con una deviazione standard di 4 cmH2O (2). Detto in altre parole, nello stesso paziente il valore della auto-PEEP poteva ragionevolmente variare tra 0 e 15 cmH2O (pari a due deviazioni standard dalla media), con i due terzi dei respiri che avevano una auto-PEEP compresa tra 3 e 11 cmH2O (entro una deviazione standard dalla media). E questa variazione in 35 respiri consecutivi!

E’ evidente che poichè la PEEP intrinseca varia continuamente nello stesso paziente, non ha molto senso cerca di applicare il famoso 80% di PEEP rispetto al valore di auto-PEEP: quale valore di auto-PEEP?

3) la PEEP interagisce con la auto-PEEP in maniera differente nei pazienti con e senza flow limitation.

La flow limitation a cui ci riferiamo è più precisamente la “tidal expiratory flow limitation”, cioè quella flow limitation che si manifesta durante l’espirazione del normale volume corrente. La flow limitation è una condizione che rende impossibile l’aumento del flusso espiratorio nonostante l’aumento della differenza di pressione tra i polmoni e l’apertura delle vie aeree. Al contrario di un soggetto sano, un paziente con flow limitation non aumenta il flusso espiratorio (cioè la velocità con cui il volume corrente esce dall’apparato respiratorio) nemmeno se espira forzatamente. Come, ad esempio, può succedere al nonno quando non riesce a spegnere le candeline sulla torta di compleanno: se il nonno è flusso-limitato probabilmente non riuscirà a spegnere le candeline nemmeno se soffierà più intensamente, perché comunque non potrà aumentare il flusso espiratorio.

La teoria ci dice che nei soggetti con flow-limitation, l’aggiunta di una PEEP esterna inferiore alla PEEP intrinseca non aumenta la PEEP totale (cioè la somma di PEEP esterna e auto-PEEP) (3-5). Vediamo in figura 2 una curva pressione-tempo di un soggetto senza PEEP: una insufflazione è seguita da una occlusione delle vie aeree a fine espirazione.

Figura 2.

Figura 2.

Il valore di pressione misurato durante questa occlusione è definito PEEP totale, che nell’esempio è di 10 cmH2O. In assenza di PEEP, la PEEP totale coincide ovviamente con l’auto-PEEP (che è sempre calcolata come differenza tra PEEP totale e PEEP esterna). Se ad un soggetto con flow limitation applichiamo una PEEP minore della auto-PEEP, ci aspettiamo che la PEEP totale rimanga stabile con una conseguente riduzione dell’auto-PEEP. Come possiamo ben capire da questo esempio, la PEEP intrinseca è quella parte di PEEP totale non spiegata dalla PEEP esterna. Questa condizione è riprodotta nella figura 3.

Figura 3.

Figura 3.

Dobbiamo evitare di credere che in questo caso l’applicazione della PEEP riduca l’iperinflazione, cioè il volume polmonare a fine espirazione. Infatti la PEEP totale (che stima il livello di iperinflazione) è rimasta identica: l’iperinflazione è quindi invariata. Semplicemente abbiamo scambiato una parte dell’auto-PEEP con la PEEP esterna. In questo caso si ha una riduzione del carico soglia (vedi post del 23/06/2010). Qualora il paziente fosse in ventilazione assistita o spontanea, l’applicazione di questa PEEP determinerebbe quindi un miglioramento della sincronia paziente-ventilatore ed una riduzione del carico dei muscoli respiratori.

Nei pazienti senza flow limitation però dovremmo aspettarci un comportamento completamente diverso.

Figura 4.

Figura 4.

Come si vede nella figura 4, se il paziente descritto nella figura 2 non fosse flusso-limitato, l’aggiunta della PEEP esterna pari al 80% della PEEP intriseca potrebbe fare solo guai. Infatti, in assenza di flow limitation, la fisiopatologia ci porta a concludere che tutta la PEEP applicata si somma alla preesistente auto-PEEP, aumentato la PEEP totale. La conseguenza è un aumento dell’iperinflazione a fine espirazione, con possibili effetti sfavorevoli sia respiratori che emodinamici (e senza nemmeno il vantaggio della riduzione del carico soglia).

Da quanto abbiamo visto, penso si possa comprendere perchè sia discutibile e/o impraticabile la scelta di applicare ai pazienti una PEEP esterna pari al 80% della auto-PEEP misurata a ZEEP. Al massimo questa può essere una scelta sensata solo per alcuni pazienti, sempre ammesso (e non concesso) si possa avere a disposizione un valore fisso ed attendibile di auto-PEEP.

Quindi, alla fine, come decidere ragionevolmente quanta PEEP mettere nei pazienti con PEEP intrinseca? La risposta a questa domanda è articolata, e ventilab può offrire un contributo originale per capire la scelta migliore al letto del paziente. Il post di oggi è però già abbastanza lungo, quindi tra un paio di settimane vedremo la risposta di ventilab.

Nel frattempo, come sempre, un sorriso alle migliaia di affezionati amici di ventilab.

PS: i commenti, anche tardivi, ai post sono sempre molto graditi. Chiedo solo un po’ di pazienza, non sempre mi è facile trovare il tempo per rispondere tempestivamente.

 

Bibliografia.
1) Natalini G et al. Assessment of factors related to auto-PEEP. Respir Care 2016; 61:134-41
2) Patel H et al. Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Crit Care Med 1995; 23:1074-9
3) Marini JJ. Should PEEP be used in airflow obstruction? Am Rev Respir Dis 1989;140:1-3.
4) Tobin M et al. PEEP, auto-PEEP, and waterfalls. Chest 1989;96:449-51.
5) Marini JJ. Dynamic hyperinflation and auto-Positive End-Expiratory Pressure. Lessons learned over 30 Years. Am J Respir Crit Care Med 2011;184:756-62.

PEEP, BPCO e ARDS

 Posted by on 18/10/2015  8 Responses »
Ott 182015
 

andycappGuglielmo ha 70 anni ed una Asthma-COPD Overlap Syndrome (ACOS), cioè una broncopneumopatia cronica ostruttiva (BPCO) con episodi acuti di asma (1). Guglielmo è quindi un paziente ostruttivo e possiamo prevedere che l’iperinflazione dinamica e la PEEP intrinseca (o auto-PEEP) saranno tra i suoi principali problemi se dovesse essere sottoposto a ventilazione meccanica (ad esempio per una riacutizzazione di BPCO o per una crisi asmatica).

Ed è quello che è successo, come possiamo vedere nella figura 1.

Figura 1

Figura 1

In questa immagine Guglielmo è passivo durante una ventilazione pressometrica (come si capisce dall’onda di flusso decrescente, traccia verde) a target di volume (400 ml di volume corrente) senza PEEP, con una frequenza respiratoria di 28/min ed un I:E di 1:1.5. Durante la ventilazione il flusso espiratorio non si azzera quando inizia l’inspirazione successiva (freccia azzurra), segno di espirazione incompleta e quindi di iperinflazione dinamica. Se eseguiamo un’occlusione delle vie aeree a fine espirazione (linea bianca), l’aumento della pressione ci consente di misurare l’auto-PEEP, in questo caso di 7 cmH2O.

Come sarebbe opportuno modificare l’impostazione della ventilazione meccanica, ed in particolare quale la PEEP più appropriata per Guglielmo?

Aggiungo un particolare…Guglielmo è da poco intubato e sottoposto a ventilazione meccanica per una grave ipossiemia con addensamenti polmonari bilaterali, insorti dopo una perforazione del tratto digestivo. Abbiamo quindi un bel quadro di Acute Respiratory Distress Syndrome (ARDS) in un paziente BPCO e asmatico.

A mio parere la patologia ostruttiva in questo momento è l’ultimo dei nostri problemi. Dovremmo peraltro convincerci, in generale, che la presenza di PEEP intrinseca non dovrebbe necessariamente essere l’invito a modificare la ventilazione, a meno che l’iperinflazione dinamica non sia causa di sovradistensione polmonare oppure non determini un risentimento emodinamico. Cose che in questo momento Guglielmo non presenta: è infatti normoteso senza farmaci vasoattivi e la pressione nelle vie aeree è circa 20 cmH2O (come visibile in figura 1).

Riprendo la domanda posta in precedenza: come sarebbe opportuno modificare l’impostazione della ventilazione meccanica, ed in particolare quale la PEEP più appropriata?

La frequenza respiratoria deve essere un po’ elevata nei pazienti con ARDS se vogliamo (come dobbiamo) utilizzare una ventilazione con basso volume corrente. Infatti la ARDS è caratterizzata da un elevato spazio morto e l’utilizzo di una frequenza respiratoria elevata è l’unico modo per garantire una sufficiente ventilazione alveolare (vedi post del 16/06/2011). Quindi ci teniamo i 28 atti/min di frequenza respiratoria.

Il volume corrente è appropriato, di poco inferiore 6 ml/kg in un soggetto il cui peso ideale sia 70 kg (come nel caso di Guglielmo).

Il rapporto I:E di 1:1.5 con una frequenza respiratoria di 28/min determina un tempo inspiratorio di 0.86″, un valore ai limiti inferiori del fisiologico. Ricordiamo che la fase ossigenativa può essere favorita dal mantenimento di un tempo inspiratorio lungo che può aumentare la pressione media delle vie aeree e quindi migliorare l’accoppiamento tra ventilazione e perfusione (vedi post del 21/10/2012 e del 15/03/2014). Di conseguenza proseguiamo (almeno per ora) con un I:E di 1:1.5, pronti a passare ad un 1:1 in caso di peggioramento dell’ipossiemia.

Ci resta da mettere a posto la PEEP. E lo faremo utilizzando il metodo più semplice (e comunque razionale ed efficace), cioè scegliendo la PEEP che determina la minor driving pressure, cioè la minor differenza tra la pressione di occlusione di fine inspirazione e quella di fine inspirazione (vedi post del 06/10/2013 e del 28/02/2015). Questo criterio di scelta della PEEP è utilizzabile anche nei pazienti con ARDS con malattia polmonare cronica ostruttiva.

Vediamo ora come lo abbiamo applicato a Guglielmo, descrivendo anche qualche “scorciatoia” intelligente che rende questo approccio rapido, semplice ed alla portata di chiunque. Per farlo dobbiamo modificare l’impostazione del ventilatore per il tempo strettamente necessario a scegliere la PEEP. Quindi applicheremo questa PEEP ripristinando l’originale impostazione del ventilatore.

Per prima cosa ventiliamo temporaneamente il paziente in volume controllato senza modificare gli altri parametri della ventilazione. Nella inspirazione inseriamo una breve pausa di fine inspirazione, in modo tale da avere in ogni respiro una pressione di “inizio plateau”, come mostrato in figura 2.

Figura 2

Figura 2

Useremo tranquillamente la pressione di “inizio plateau” al posto della pressione di plateau che si dovrebbe misurare dopo almeno 3 secondi di occlusione delle vie aeree a fine inspirazione. Una comodità della pressione di “inizio plateau” è che ci viene fornita sul display del ventilatore respiro per respiro, senza dover fare nessuna manovra di occlusione manuale.

La pressione di “inizio plateau” solitamente sovrastima di di 1-2 cmH2O la pressione di plateau a 3 secondi (2), cosa che avviene anche nel nostro paziente ARDS/BPCO. Nella figura 3 vediamo infatti che la pressione di “inizio plateau” (linea tratteggiata bianca) è leggermente superiore (di 2 cmH2O) rispetto alla pressione di plateau a 3 secondi.

Figura 3

Figura 3

La pressione di “inizio plateau” è un’approssimazione che possiamo non solo accettare ma addirittura preferire alla tradizionale pressione di plateau. Infatti la caduta della pressione durante il prolungarsi del plateau è determinata anche dalla riduzione di pressione e volume nelle aeree polmonari più ventilate a favore dell’aumento di volume e pressione nelle zone meno ventilate. La pressione di “inizio plateau” dovrebbe riflettere maggiormente la pressione alveolare delle parti di polmone maggiormente ventilate e quindi più esposte allo stress di fine inspirazione ed al danno indotto dalla ventilazione meccanica.

A questo punto riduciamo poi la frequenza respiratoria fino ad osservare l’azzeramento del flusso a fine espirazione. Per facilitare questo obiettivo, conviene mantenere approssimativamente costante il tempo inspiratorio con opportune variazioni del I:E. Possiamo vedere in figura 4 come è diventata a questo punto la ventilazione di Guglielmo.

Figura 4

Figura 4

Se lo riteniamo opportuno, con un’occlusione di fine espirazione (freccia bianca in figura 5) possiamo confermare l’assenza di autoPEEP con questo setting (la pressione delle vie aeree non aumenta dopo l’occlusione).

Figura 5

Figura 5

A questo punto iniziamo ad applicare PEEP crescenti (con incrementi di 2 cmH2O), mantenendo ogni livello di PEEP per un paio di minuti (3). Nella mia esperienza personale ho notato che può essere sufficiente mantenere ogni livello di PEEP anche solo per 1 minuto, poiché dopo questo tempo normalmente le pressioni di plateau non si modificano più.

Ad ogni livello di PEEP, facciamo la differenza tra la pressione di “inizio plateau” e la PEEP applicata, cioè calcoliamo la driving pressure. Se abbiamo seguito i passi precedenti, la cosa è facilissima: facciamo semplicemente la differenza tra la pressione di plateau e la PEEP rilevate dal ventilatore, come possiamo vedere in figura 6, dove è mostrata la ventilazione alla PEEP di 14 cmH2O. La pressione di plateau è 26 cmH2O, la PEEP 14 cmH2O, quindi la driving pressure è 12 cmH2O. Facile, semplice, efficace.

Figura 6

Figura 6

Alla fine avremo una driving pressure per ciascun livello di PEEP. LA PEEP più opportuna sarà quella che determina la minor driving pressure. Ovviamente questa sarà la miglior PEEP nella fase acuta di ARDS, con il miglioramento dell’ipossiemia e l’inizio del weaning i nostri ragionamenti cambieranno completamente. Ma questo è un altro discorso, che avremo certamente modo di riaffrontare in futuro.

Nel caso concreto di Guglielmo abbiamo ottenuto 12 cmH2O di driving pressure a tutti i livelli di PEEP testati tra 4 e 14 cmH2O, mentre dai 16 cmH2O di PEEP in poi la driving pressure ha iniziato gradualmente ad aumentare. Quale livello di PEEP scegliere tra 4 e 14 cmH2O? In questo caso abbiamo scelto 14 cmH2O, quello più elevato, perché si associava ad una pressione di plateau ancora accettabile (26 cmH2O di “inizio plateau”), non vi erano segni evidenti di stress index superiore a 1 (vedi post del 15/08/2011 e del 28/08/2015) e non vi era alcun impatto emodinamico rilevante con questa scelta.

A questo punto bisogna riportare Guglielmo alla frequenza respiratoria iniziale (28/min) per consentire una sufficiente ventilazione alveolare (ed adeguare nuovamente il I:E per mantenere approssimativamente costante il tempo inspiratorio). Ora però dobbiamo tenere conto della autoPEEP che si genererà per la riduzione del tempo espiratorio indotta dall’aumento di frequenza respiratoria.

In questi casi il termine best PEEP” può essere fuorviante, perché ci fa pensare che il nostro obiettivo sia impostare questa “best PEEP” sul ventilatore. Ma se così facessimo, avremmo la “best PEEP” nel circuito del ventilatore. Noi invece vogliamo che la best PEEP” sia raggiunta nell’apparato respiratorio, sia cioè la pressione positiva che leggiamo durante l’occlusione di fine espirazione e che definiamo PEEP totale.

Sarebbe quindi più corretto parlare di “best PEEP totale” invece che di “best PEEP”. Questi due valori sono diversi quando è presente PEEP intriseca. Dobbiamo quindi impostare una PEEP esterna che, assieme alla autoPEEP del paziente, faccia ottenere una PEEP totale uguale alla PEEP che abbiamo deciso di applicare.

Nel nostro Guglielmo è presente autoPEEP, quindi se applichiamo 14 cmH2O di PEEP esterna, la PEEP totale sarà superiore alla PEEP applicata. Dobbiamo quindi ridurre progressivamente la PEEP esterna fino a raggiungere una PEEP totale di 14 cmH2O. Nel nostro caso ci siamo riusciti applicando 12 cmH2O di PEEP, come possiamo vedere nella figura 7.

Figura 7

Figura 7

In alto vediamo la traccia della pressione delle vie aeree durante la ventilazione con 12 cmH2O di PEEP, mentre in basso durante l’occlusione delle vie aeree a fine espirazione. Come si può vedere il valore numerico della PEEP letto sul ventilatore durante la ventilazione segna il livello di PEEP impostata, ma durante l’occlusione si modifica e rileva il valore di PEEP totale. A questo punto, se vogliamo, possiamo riportare Guglielmo in ventilazione pressometrica a target di volume ed il risultato sarà quello che vediamo in figura 8.

Figura 8

Figura 8

Oggi abbiamo affrontato uno tra i casi a maggior complessità nella ventilazione meccanica, cioè quello del paziente con BPCO che sviluppa una ARDS. Ma abbiamo visto che, se abbiamo le idee chiare, in maniera semplice possiamo giungere alle scelte ventilatorie più sensate. Ricapitolando i punti salienti di questo lungo post:

1) la ventilazione meccanica nella fase acuta della ARDS nei pazienti con BPCO ha un approccio simile a quello che adottiamo in tutti gli altri pazienti;

2) dobbiamo rassegnarci a frequenze respiratorie elevate (almeno 22-24/min) e tempi inspiratori almeno normali (1:1.5 o 1:1). Dobbiamo quindi eliminare dai nostri obiettivi la riduzione dell’autoPEEP con il ventilatore;

3) scegliamo come “best PEEP totale” (=pressione di occlusione a fine espirazione) quel valore che garantisce la minor driving pressure a parità di volume corrente.

 

Un sorriso a tutti gli amici di ventilab.

 

Bibliografia

1) Postma DS et al. The Asthma–COPD Overlap Syndrome. N Engl J Med 2015; 373:1241-9
2) Barberis L et al. Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Intensive Care Med 2003; 29:130-4

3) Garnero A et al. Dynamics of end expiratory lung volume after changing positive end-expiratory pressure in acute respiratory distress syndrome patients. Crit Care 2015; 19:340

Feb 282015
 

turbamedicorumRoberto, un bravo collega che ho avuto il piacere di conoscere ad un nostro Corso di Ventilazione Meccanica, mi offre lo spunto per tornare sulla scelta della PEEP nella ARDS.

Roberto ha letto che l’utilizzo delle tabelle PEEP/FIO2 è il solo, tra i metodi descritti per scegliere la PEEP nella ARDS, che consenta di applicare un livello di PEEP correlato alla gravità della ARDS (cioè una PEEP più bassa nella ARDS lieve ed una più elevata nella ARDS grave): possiamo considerare questo dato come un elemento a favore delle tabelle PEEP/FIO2? Vorrebbe anche sapere quanto sia ragionevole la semplificazione di applicare una PEEP tra 5 e 10 cmH2O nella ARDS lieve, tra 10 e 15 cmH2O nella ARDS moderata e superiore a 15 cmH2O nella ARDS grave.

Figura 1.

Prima di entrare nel dettaglio, ripercorriamo la storia di una famosa tabella PEEP/FIO2 (figura 1). Essa nasce come “protocollo di reparto” in qualche Terapia Intensiva americana ed è stata poi utilizzata arbitrariamente (cioè senza spiegare come è stata ottenuta nè proporre una reference) in alcuni trial clinici sulla ARDS. Questa tabella si affaccia quindi nella pratica clinica in assenza di qualsiasi razionale fisiopatologico o evidenza clinicaL’argomento è già stato trattato nel post del 06/10/2013 a cui rimando in caso di necessità di chiarimenti.

Cerchiamo ora di capire perchè l’utilizzo della tabella PEEP/FIO2 consente di differenziare il livello di PEEP nei diversi livelli di gravità della ARDS. La gravità della ARDS è definita dal rapporto PaO2/FIO2: la ARDS è classificata lieve se questo è tra 200 e 300 mmHg, moderata se è tra 100 e 200 mmHg e grave se è inferiore a 100 mmHg. Questa scelta è certamente discutibile da un punto di vista fisiopatologico ma pragmaticamente accettabile dal punto di vista clinico.

Figura 2.

Figura 2.

L’utilizzo di una tabella PEEP/FIO2 prevede che si abbia il medesimo obiettivo ossigenativo (ad esempio una saturazione tra 88 e 95% o una PaO2 tra 55 ed 80 mmHg) nei pazienti con ARDS lieve, moderata e grave. Si aumentano quindi progressivamente e parallelamente i livelli di FIO2 e PEEP secondo la tabella di riferimento finchè non si ottiene la PaO2 desiderata. I pazienti con ARDS grave hanno, per definizione, un rapporto PaO2/FIOpiù basso di quelli con ARDS lieve: è quindi implicito nella definizione che, per ottenere la stessa PaO2, i pazienti con ARDS grave necessitino di una FIO2 più elevata dei pazienti con ARDS lieve. Utilizzando la tabella PEEP/FIO2, PEEP e FIO2 vanno “a braccetto”: se è alta la FIO2 è necessariamente alta anche la PEEPQuindi il fatto che la tabella PEEP/FIO2 attribuisca PEEP crescenti all’aumentare della gravità della ARDS non è un argomento a favore di questa scelta ma semplicemente una conseguenza ovvia ed intrinseca al metodo di scelta della PEEP. Esistono tabelle diverse da quella della figura 1, ad esempio quella in figura 2 prevede l’applicazione di PEEP più elevate per un approccio definito “lung open ventilation”. 

Al contrario delle tabelle PEEP/FIO2, la scelta della “best PEEP” utilizzando semplici misure di meccanica respiratoria slega completamente la PEEP dalla FIO2 e dalla PaO2. Nonostante esistano diversi approcci per questa scelta della “best PEEP”, il risultato finale comune a tutti i metodi è sempre lo stesso: la “best PEEP” è quella che si associa alla miglior (=più alta) compliance. Solo dopo aver scelto la PEEP che determina la miglior compliance, si aggiusta la FIO2 per ottenere un’ossigenazione accettabile: è evidente che in questo modo la FIO2 non ha alcuna influenza nella scelta della PEEP. E’ quindi possibile che pazienti con ARDS grave abbiano una bassa PEEP ed una alta FIO2.

Scegliere la “best PEEP” è molto più facile di quanto possa sembrare e può essere fatto in pochi minuti con qualsiasi ventilatore da qualunque medico abbia un minimo di conoscenza della ventilazione meccanica. Provare per credere. Ecco un esempio. Nella figura 3 vediamo il monitoraggio della ventilazione meccanica in una paziente con ARDS grave.

Figura 3

Figura 3

In questo caso abbiamo valutato la driving pressure (cioè la differenza tra pressione di plateau e PEEP totale) mantenendo un volume corrente costante a diversi livelli di PEEP (come spiegato nel già citato post del 06/10/2013)il livello di PEEP che si associa alla minor driving pressure corrisponde alla PEEP che determina la miglior compliance durante l’erogazione del volume corrente ed è la “best PEEP“. Possiamo vedere nella colonna dei numeri di destra che la pressione di plateau (Pplat) è 21 cmH2O con 5 cmH2O di PEEP: la driving pressure di 16 cmH2O è ottenuta dalla differenza tra queste due pressioni, considerando che in questo caso la PEEP coincide con la PEEP totale perchè è assente PEEP intrinseca (il flusso espiratorio arriva sulla linea dello zero prima dell’inizio dell’inspirazione successiva). La compliance, che ottiene dividendo il volume corrente (in questo caso 360 ml) per la driving pressure, è circa 23 ml/cmH2O. Con 5 cmH2O di PEEP la pressione di plateau sembra “tranquilla” (21 cmH2O difficilmente si associano ad un rilevante stress polmonare) e la valutazione “occhiometrica” dello stress index (vedi post del 15/08/2011 e del 28/08/2011) è rassicurante (vediamo una salita lineare della pressione delle vie aeree durante il flusso inspiratorio, come evidenziato dalla linea bianca tratteggiata sulla curva di pressione della terza inspirazione). In questa paziente con ARDS grave abbiamo ottenuto la minor driving pressure (=la miglior compliance) proprio con questi 5 cmH2O di PEEP.

Nella figura 4 vediamo il monitoraggio della stessa paziente con 11 cmH2O di PEEP.

Figura 4.

La pressione di plateau potrebbe essere ancora accettabile (31 cmH2O), ma la driving pressure è chiaramente aumentata (20 cmH2O) e conseguentemente (essendo costante il volume corrente) anche la compliance è peggiorata (si è ridotta a 18 ml/cmH2O). Inoltre lo stress index (sempre valutato “a occhio”) appare chiaramente superiore a 1 (cioè con un aumento della pendenza della curva di pressione nella parte finale dell’espirazione), come evidenziato dalla linea tratteggiata bianca.

In questa paziente la scelta più ragionevole sembra quindi quella di mantenere una PEEP di circa 5 cmH2O ed associare una FIO2 sufficiente a raggiungere una PaO2 di 60-70 mmHg. Se ci fossimo affidati alle tabelline PEEP/FIO2 o all’applicazione empirica di una PEEP di almeno 15 cmH2O (visto che ci troviamo davanti ad una ARDS grave) avremmo messo in pericolo la vita della paziente (più di quanto non lo fosse già a causa della grave malattia che l’aveva colpita).

Mi sembra quindi ragionevole preferire poche, semplici misure (pressione di plateau e PEEP totale) per determinare la “best PEEP” nell’ottica di una ventilazione protettiva, piuttosto che usare tabelle PEEP/FIO2 o scegliere una PEEP predefinita in funzione del rapporto PaO2/FIO2.

A supporto dell’utilizzo della driving pressure nella scelta della PEEP, è fresco di pubblicazione un articolo scritto da alcuni tra i maggiori esperti della ARDS sul New England Journal of Medicine del 19 febbraio 2015 (1). Questa elegante meta-analisi supporta il concetto che ciò che rende veramente protettiva la ventilazione nella ARDS (cioè che contribuisce alla riduzione della mortalità) è proprio la riduzione della driving pressure. L’entità del volume corrente e della PEEP non sono di per sè associati alla sopravvivenza, lo diventano solo se portano ad una riduzione della driving pressure. In altri termini è protettiva quella ventilazione che imposta volume corrente e PEEP per ridurre la driving pressure: nella pratica clinica questo si traduce nella limitazione del volume corrente e nella scelta della PEEP associata alla compliance più elevata, come abbiamo sopra descritto.

In uno dei prossimi post discuteremo come la misurazione della pressione esofagea possa eventualmente contribuire ad una scelta oculata della PEEP nei pazienti con ARDS.

In conclusione, la scelta della PEEP nella ARDS (allo stato attuale delle conoscenze) potrebbe essere gestita considerando che:

  • l’obiettivo dovrebbe essere il miglioramento (=l’aumento) della compliance dell’apparato respiratorio
  • il miglioramento della compliance si associa sempre alla riduzione della driving pressure (a parità di volume corrente)
  • la driving pressure si calcola facilmente facendo la differenza tra la pressione di plateau e la PEEP totale
  • nella pratica clinica è quindi sufficiente, mantenendo costante il volume corrente, misurare la driving pressure a diversi livelli di PEEP e scegliere una PEEP associata ai minori valori di driving pressure
  • a questo punto la FIO2 può essere scelta per avere un accettabile valore di PaO2 (cioè di almeno 60 mmHg, salvo diverse esigenze).

Un sorriso a tutti gli amici di ventilab.

 

Bibliografia

1) Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. New Eng J Med 2015; 372:747-55