Jul 172016
 

mario-santonastaso-pippoDopo aver delineato alcuni concetti teorici sulla costante di tempo dell’apparato respiratorio (vedi post del 30/06/2016), iniziamo a considerare una prima implicazione pratica.

Consideriamo due soggetti, Mario e Pippo, con una moderata ipertensione intracranica secondaria ad un trauma cranico. Mario e Pippo sono accomunati anche dalla sfortuna di avere avuto una ARDS secondaria ad aspirazione polmonare prima dell’intubazione. La differenza è che Mario non ha malattie polmonari croniche, mentre Pippo ha una broncopneumopatia cronica ostruttiva associata ad un enfisema polmonare. In termini di costante di tempo, Mario ha una costante di tempo breve (ha la bassa compliance e resistenze dell’apparato respiratorio lievemente aumentate, profilo tipico della ARDS), mentre Pippo ha una costante di tempo lunga (compliance più elevata di Mario per l’enfisema e resistenze marcatamente aumentate rispetto al normale).

Entrambi hanno la stessa impostazione della ventilazione meccanica: una pressione controllata di 17 cmH2O (sopra PEEP), PEEP di 10 cmH2O, frequenza respiratoria di 20/min e rapporto I:E di 1:1 (cioè l’inspirazione ha una durata pari all’espirazione).

Nella figura 1 vediamo le immagini di 10 secondi di monitoraggio grafico dei due pazienti. Dopo aver letto il post precedente, riconosciamo subito che il monitoraggio a sinistra è di Mario (il flusso, la traccia rossa, si riduce rapidamente fino ad azzerarrsi, quindi la costante di tempo è “breve”), mentre quello di destra è di Pippo (il flusso si riduce lentamente e non si azzera mai, quindi costante di tempolunga”).

Figura 1

Figura 1

Sia Mario che Pippo ottengono lo stesso volume corrente di circa 420 ml e quindi una identica ventilazione minuto di 8.4 litri. Ed entrambi sono ugualmente ipercapnici (PaCO2 55 mmHg). In considerazione della moderata ipertensione intracranica, si rende opportuno aumentare la ventilazione minuto per ridurre la PaCO2. Avendo i pazienti una ARDS, si preferisce aumentare la frequenza respiratoria piuttosto che il volume corrente. Pertanto in entrambi i casi la frequenza respiratoria è aumentata da 20/min a 30/min. Ci aspettiamo la stessa riduzione di PaCO2? Ovviamente no, per “colpa” della costante di tempo: con questa identica modificazione della ventilazione, la PaCO2 di Mario si riduce a 38 mmHg, mentre quella di Pippo a 51 mmHg.

L’aumento della frequenza respiratoria riduce sia in Mario che in Pippo la durata del ciclo respiratorio, da 3 a 2 secondi. (La durata del ciclo respiratorio si calcola semplicemente suddividendo i 60 secondi di cui è composto un minuto per la frequenza respiratoria, cioè il numero di atti respiratori in 1 minuto). Essendo il rapporto I:E=1:1, sia il tempo inspiratorio che quello espiratorio si riducono quindi da 1,5 secondi a 1 secondo.

Nella figura 2 possiamo valutare come cambiano le curve del monitoraggio grafico di Mario, quello con la costante di tempo “breve: a sinistra il monitoraggio con 20/min di frequenza respiratoria, a destra con la frequenza respiratoria aumentata a 30/min.

Figura 2

Figura 2

Osserviamo la traccia rossa del flusso. La riduzione del tempo inspiratorio (conseguente all’aumento della frequenza respiratoria) non impedisce che il flusso raggiunga lo zero a fine inspirazione (immagine a destra). Rispetto alla condizione con 20/min di frequenza respiratoria (immagine a sinistra) si è eliminata una fase in cui il flusso si manteneva sempre a zero (area evidenziata). Il flusso va visto come la velocità con cui il volume di gas entra nei polmoni: dal momento in cui questa velocità diventa zero, non vi è ovviamente più alcuna variazione di volume dell’apparato respiratorio. Quindi con l’aumento di frequenza respiratoria è rimasto costante il volume corrente, pertanto la ventilazione minuto è passata da 8.4 a 12.6 litri/min e la PaCO2 si è ridotta efficacemente da 55 a 38 mmHg.

Vediamo ora nella figura 3 il caso di Pippo, quello con la costante di tempo “lunga. A sinistra il moniraggio con 20/min di frequenza respiratoria, a destra la frequenza aumentata a 30/min.

Figura 3

Figura 3

L’aumento della frequenza respiratoria e la consensuale riduzione del tempo inspiratorio determinano la riduzione del volume corrente perché eliminano una fase dell’inspirazione in cui è ancora presente flusso, quindi passaggio di gas nei polmoni (area evidenziata).

Un secondo meccanismo contribuisce a ridurre il volume corrente: l’aumento dell’autoPEEP. Come il tempo inspiratorio, anche il tempo espiratorio si riduce. Pippo già con la frequenza respiratoria di 20/min aveva segni di espirazione interrotta precocemente (il flusso espiratorio non arriva allo zero all’inizio dell’inspirazione successiva) ed aveva una PEEP intrinseca di 3 cmH2O. Avendo una PEEP di 10 cmH2O, la sua PEEP totale (la somma di PEEP e autoPEEP) è quindi di 13 cmH2O. Ricordiamo che la PEEP totale è la pressione presente nell’apparato respiratorio all’inizio dell’inspirazione. La pressione che genera flusso (e volume) ad inizio inspirazione è la differenza tra la pressione nel ventilatore e quella nell’apparato respiratorio ad inizio inspirazione. Quando Pippo ha 20/min di frequenza respiratoria, questa pressione è di 14 cmH2O: 27 cmH2O è la pressione applicata dal ventilatore durante la fase inspiratoria (la somma di pressione controllata e PEEP) a cui si devono sottrarre i 13 cmH2O di PEEP totale. In altre parole 14 cmH2O spingono l’aria nei polmoni di Pippo ad inizio inspirazione. Quando la frequenza respiratoria aumenta a 30/min, la riduzione del tempo espiratorio determina una più precoce interruzione del flusso a fine espirazione (freccia nera tratteggiata) e quindi un aumento dell’autoPEEP, che nel nostro esempio diventa di 5 cmH2O, con una conseguente PEEP totale di 15 cmH2O. In questa condizione la differenza di pressione che genera il flusso diventa 12 cmH2O (27 cmH2O di pressione applicata dal ventilatore meno 15 cmH2O di PEEP totale) invece dei 14 cmH2O che avevamo calcolato con la frequenza respiratoria di 20/min: meno differenza di pressione, meno flusso, meno volume corrente.

Per l’effetto combinato di interruzione del flusso inspiratorio ed aumento della PEEP intrinseca, l’aumento della frequenza respiratoria da 20/min a 30/min si associa in Pippo ad una riduzione del volume corrente da 420 a 300 ml. In questo modo la ventilazione minuto aumenta molto poco, da 8.4 l/min a 9 l/min (ricordiamo che Mario aveva invece aumentato la ventilazione minuto a 12,6 l/min). Questo piccolo aumento della ventilazione è la causa della minima riduzione della PaCO2 di Pippo.

Cosa dobbiamo fare per risolvere il problema di Pippo ed abbassare la PaCO2 della stessa entità di quella di Mario? Dobbiamo inevitabilmente aumentare la pressione inspiratoria per ripristinare il volume corrente al valore iniziale. Nel nostro esempio dobbiamo arrivare a 22 cmH2O di pressione controllata sopra PEEP per tornare al volume corrente di 420 ml e quindi conseguire in Pippo lo stesso aumento di ventilazione (e quindi la stessa riduzione di PaCO2) di Mario (figura 4).

Figura 4

Figura 4

In questo post abbiamo discusso solo una delle molte implicazioni della costante di tempo nella pratica clinica. Per oggi mi sembra che basti. In futuro, riprenderemo l’argomento per riflettere su altri importanti ed interessanti fenomeni condizionati dalle costanti di tempo.

Proviamo a sintetizzare i punti salienti del post di oggi:

  1. la presenza o meno di una fase di zero flusso a fine inspirazione in ventilazione pressometrica controllata dipende dalla costante di tempo;
  2. in ventilazione a pressione controllata, se non si azzerano il flusso a fine inspirazione e/o a fine espirazione, le variazioni di frequenza respiratoria (e/o del rapporto I:E) possono determinare variazioni imprevedibili del volume corrente anche se si mantiene una pressione di insufflazione costante;
  3. quando si osserva una variazione indesiderata del volume corrente, questa può essere corretta modificando la pressione controllata impostata.

Un sorriso a tutti gli amici di ventilab.

 

PS: monitoraggio e valori di flusso, pressione, volume, autoPEEP e PaCO2 nelle varie condizioni analizzate nel post sono stati ottenuti utilizzando un modello matematico.

Dec 162015
 

daisyAffrontiamo ora un tema rimasto aperto nella discussione al post precedente: è meglio una modalità volumetrica o pressometrica per la ventilazione meccanica nei pazienti con grave patologia ostruttiva acuta ed iperinflazione dinamica?

Per rispondere a questa domanda, vediamo cosa succede applicando una ventilazione a volume controllato o a pressione controllata allo stesso paziente ostruttivo. Per poter facilmente manipolare ventilazione e meccanica respiratoria, utilizzeremo i dati e le curve di pressione e flusso generati con un modello matematico a cui specifichiamo le caratteristiche del paziente e l’impostazione della ventilazione.(nota 1)

Dopo aver attribuito al paziente una elevata resistenza delle vie aeree ed una elastanza sostanzialmente normale (una situazione simile a quella del paziente protagonista del post precedente), cerchiamo di ventilarlo “bene” sia in volume controllato che in pressione controllata. Teniamo conto che il nostro paziente è in fase acuta, in ventilazione controllata ed ha una grave ipotensione. Date queste premesse, una buona ventilazione meccanica dovrebbe ridurre al minimo la PEEP totale, sia per migliorare il ritorno venoso e quindi la portata cardiaca, sia per ridurre la pressione di plateau, qualora ve ne fosse bisogno. Possiamo quindi condividere che, indipendentemente da volumetrica o pressometrica, dovremo erogare un volume corrente normale (ricordiamo che in fisiologia è normale un volume corrente di circa 6-7 ml/kg di peso ideale) lasciando un lungo tempo espiratorio. Quindi potremmo impostare una ventilazione iniziale con 450 ml di volume corrente senza PEEP, 12/min di frequenza respiratoria, 1” di tempo inspiratorio e 4” di tempo espiratorio, ed una rampa di 0.1”. Ovviamente questa impostazione dovrà essere rivalutata alla luce dei risultati ottenuti (ad esempio per decidere se e quanta PEEP applicare).

Impostiamo quindi una pressione controllata ed un volume controllato, scegliendo il livello di pressione controllata che consente di ottenere lo stesso volume corrente della ventilazione a volume controllato. Vediamo le curve di pressione e flusso nelle due modalità di ventilazione in figura 1.

Figura 1.

Figura 1.

In ventilazione a pressione controllata abbiamo dovuto applicare un livello di pressione di 35 cmH2O per erogare 450 ml di volume corrente (curva in alto a sinistra). In volume controllato abbiamo invece raggiunto una pressione di picco di 40 cmH2O per assicurarci lo stesso volume corrente (curva in alto a sinistra).

Possiamo considerare un vantaggio della pressione controllata la riduzione della pressione delle vie aeree rispetto al volume controllato? Ritengo di no, come forse avranno intuito i lettori più attenti di ventilab. Cerchiamo di capire il perché.

La pressione che leggiamo sul display e sulle curve del ventilatore meccanico è la pressione NEL VENTILATORE e NON NEI POLMONI del paziente.

Durante l’insufflazione, il flusso aereo si sposta dal ventilatore al paziente perché nel ventilatore c’è una pressione più alta rispetto a quella del parenchima polmonare. Al contrario, in espirazione l’aria esce dai polmoni perché questi hanno una pressione più alta rispetto a quella del ventilatore. E’ una legge molto semplice: il flusso si sposta dal punto in cui la pressione è più elevata a quello in cui è più bassa. In termini matematici si può esprimere questo concetto con la formula V’=dP/R, dove V’ è il flusso, dP la differenza di pressione tra il punto di partenza e quello di arrivo del flusso ed R la resistenza che si oppone al flusso. Quindi quando c’è flusso la pressione nel ventilatore è sempre diversa dalla pressione nei polmoni.

Ritorniamo al nostro caso: la ventilazione a pressione controllata consente di avere 5 cmH2O di pressione in meno rispetto al volume controllato nel VENTILATORE. Mantiene questo vantaggio anche nel PARENCHIMA POLMONARE?

Per rispondere a questa domanda dobbiamo necessariamente misurare la pressione intrapolmonare. Ricordando la relazione V’=dP/R, possiamo anche dire che ventilatore e polmoni hanno la stessa pressione quando non c’è flusso (e le vie aeree sono pervie). Con una pausa del flusso alla fine della inspirazione, consentiamo alla pressione nel ventilatore e nel parenchima polmonare di equilibrarsi: la pressione che leggiamo nel ventilatore sarà quindi simile a quella intrapolmonare.

Eseguiamo nel nostro paziente “modello” l’occlusione delle vie aeree a fine inspirazione durante la ventilazione a pressione controllata e durante quella in volume controllato e misuriamo le rispettive pressioni di plateau (figura 2).

Figura 2.

Figura 2.

Con entrambe le ventilazioni abbiamo 14 cmH2O di pressione di plateau (curve in alto). Un dato ampiamente prevedibile: la pressione di plateau è INDIPENDENTE dalla modalità di ventilazione, ed è determinata unicamente dal volume corrente erogato, dall’elastanza dell’apparato respiratorio e dalla PEEP totale. Le strutture alveolari sono esposte (in media) alla pressione di plateau ed è questo il motivo per cui si utilizza la pressione di plateau (e non quella di picco) per guidare la ventilazione protettiva.

Da quanto abbiamo detto ne consegue necessariamente che, a parità di volume erogato, ventilazione pressometrica e volumetrica devono essere considerate equivalenti in termini di protezione dal danno associato alla ventilazione meccanica.

Spesso nella pratica clinica la ventilazione pressometrica viene adottata per limitare la pressione di picco nelle vie aeree, senza però badare alla riduzione di volume corrente ad essa associata. Penso sia ora evidente che potremmo ottenere un risultato analogo (in termini di pressione alveolare) se scegliessimo una ventilazione a volume controllato con riduzione del volume corrente. La differenza è data dal volume corrente e non dalla modalità di ventilazione.

Durante la fase di ventilazione controllata (quindi con paziente prevalentemente passivo), a volte preferisco la ventilazione a volume controllato per alcuni piccoli vantaggiosi effetti “secondari” di questa scelta: 1) obbliga a prendere decisioni esplicite (e quindi consapevoli) sul volume corrente, senza affidarsi alla sua riduzione imprevedibile (e casuale!) legata alla riduzione della pressione applicata; 2) consente di avere sempre sott’occhio una breve pressione di pausa di fine inspirazione (se questa è introdotta nell’impostazione della ventilazione). Questa consente di avere in evidenza una stima approssimativa della pressione di plateau; 3) la valutazione qualitativa della curva di pressione offre informazioni anche su altri segni di possibile sovradistensione polmonare, come ad esempio lo stress index.

Le considerazioni che abbiamo fatto finora ci fanno concludere che anche nel paziente ostruttivo in fase acuta e sottoposto a ventilazione controllata:

1) la diatriba tra ventilazione volumetrica e pressometrica è fuorviante, quello che è veramente importante è scegliere il volume corrente appropriato da raggiungere;

2) il risultato di ogni ventilazione controllata nei pazienti con insufficienza respiratoria dovrebbe essere valutato anche alla luce della pressione di plateau e della PEEP totale.

Un sorriso a tutti gli amici di ventilab.

 

nota 1: Non entro nei dettagli del modello. I risultati sono affidabili, anche se le curve di pressione e flusso sono “squadrate”, per effetto dei cambi istantanei del segnale che il modello genera.

Feb 052014
 

mcEsher01Il post di oggi mi è stato suggerito dal commento che Andrea ha fatto ad un vecchio post: “come è possibile in pressione controllata con PEEP 15 e PCV 15 ottenere un plateau di 24?“.

La risposta alla domanda di Andrea può essere data solo se si comprende a fondo un concetto fondamentale per la ventilazione in pressione controllata: la costante di tempo dell’apparato respiratorio.

La costante di tempo è una caratteristica di tutte le funzioni esponenziali, ma qui considereremo ovviamente solo la sua applicazione all’inspirazione.

L’inspirazione può essere descritta da una funzione esponenziale solo quando è la conseguenza dell’applicazione di una pressione costante ad un apparato respiratorio in condizioni di rilasciamento muscolare. E’ quello che avviene durante la ventilazione a pressione controllata, in cui scegliamo un livello di pressione costante da mantenere per tutta l’inspirazione. Vediamo qui sotto un esempio della curva di pressione durante la ventilazione a pressione controllata.

pcv_insp

Il valore di pressione costante durante l’inspirazione condiziona il volume massimo che può essere erogato al paziente: il massimo volume erogabile è dato dal prodotto della pressione applicata (cioè il livello di pressione inspiratoria sopra PEEP) per la compliance dell’apparato respiratorio. La compliance infatti esprime la variazione di volume per ogni cmH2O applicato: una compliance di 60 ml/cmH2O vuol dire, ad esempio, che il volume dell’apparato respiratorio aumenta di 60 ml per ogni cmH2O di pressione applicata. Se, per ipotesi, applicassimo 12 cmH2O di pressione inspiratoria ad un paziente con 60 ml/cmH2O di compliance, potremmo al massimo ottenere un volume inspiratorio di 720 ml. Il volume realmente erogato dipende, in ogni istante, dal tempo trascorso dall’inizio dell’inspirazione, dalla costante di tempo e dal volume massimo teorico.

La costante di tempo (che si misura in secondi) descrive la velocità con cui l’apparato respiratorio raggiunge il suo massimo volume teorico. Quando dall’inizio dell’insufflazione è trascorso un tempo uguale alla costante di tempo, in quel momento sarà stato erogato un volume pari al 63% del volume massimo teorico. Se il paziente dell’esempio precedente avesse una costante di tempo di 0.8″, dopo 0.8″ dall’inizio dell’inspirazione avrebbe ricevuto 454 ml di volume, ovvero il 63% di 720 ml. Dopo un tempo pari a 3 volte la costante di tempo (nel nostro ipotetico paziente dopo 2.4″) il volume erogato sarà il 95% del volume massimo teorico (713 ml) e per arrivare di fatto ad eguagliare il volume massimo teorico (99%) servono circa 5 costanti di tempo (cioè 4″ nel paziente dell’esempio).

La costante di tempo è  uguale al prodotto della compliance per la resistenza dell’apparato respiratorio (è uno dei modi per calcolarla, se dovesse interessare ne potremmo riparlare in un prossimo post). Se il paziente dell’esempio precedente avesse una resistenza di 10 cmH2O.l-1.sec, la sua costante di tempo sarebbe 0.6″ (per il calcolo la compliance deve essere espressa in litri/cmH2O e quindi diventa 0.06 l/cmH2O). Ne consegue che qualsiasi aumento della resistenza o della compliance determina un aumento direttamente proporzionale della costante di tempo.

La costante di tempo gioca un ruolo decisivo nel volume erogato e nel significato della pressione delle vie aeree durante pressione controllata.

pcv_tau_fastCi saranno alcuni pazienti in cui il volume erogato aumenta rapidamente (=costante di tempo breve). Quando il volume insufflato raggiunge il volume massimo teorico, la pressione alveolare diventa uguale alla pressione di insufflazione del ventilatore (la pressione alveolare è uguale al rapporto volume/compliance, vedi post del 24/06/2011): quando la pressione applicata dal ventilatore e quella alveolare sono uguali, non esiste più alcuna differenza di pressione tra ventilatore ed alveoli e quindi cessa il flusso inspiratorio. Si crea di fatto una pausa nella parte finale dell’inspirazione. A sinistra puoi vedere un esempio di questo comportamento. Il paziente ha una costante di tempo chiaramente breve e già a metà inspirazione ha ottenuto il volume massimo ed inizia quindi una pausa.

Quando vediamo una pausa nel flusso inspiratorio nella ventilazione a pressione controllata, abbiamo almeno due informazioni importanti:
1) la pressione di fine inspirazione (cioè la pressione di picco) è già ottenuta in assenza di flusso, quindi è una pressione che può approssimare la pressione di plateau, che normalmente misuriamo facendo l’occlusione delle vie aeree a fine inspirazione proprio per avere una pausa di flusso. Quindi la differenza tra la pressione di picco e la pressione di plateau sarà minima (spesso 1-2 cmH2O), imputabile solamente a fenomeni redistributivi e viscoelastici (credetemi sulla parola…) che si completano quando prolunghiamo la pausa con una vera e propria manovra di occlusione mantenuta 3-4 secondi. In queste condizioni la pressione di picco è quindi una buona approssimazione della pressione di plateau e può darci informazioni sullo stress (la distensione dell’apparato respiratorio a fine inspirazione);
2) l’aumento della frequenza respiratoria è efficace ad aumentare la ventilazione/minuto. Infatti aumentando la frequenza respiratoria, si riduce inevitabilmente il tempo inspiratorio (a parità di I:E). In questo caso la riduzione del tempo inspiratorio non determina riduzioni del volume corrente perchè il volume massimo è già stato ottenuto ben prima della fine del tempo inspiratorio.

pcv_tauMolti pazienti non si comportano però in questo modo perchè hanno una costante di tempo più lunga. Qui sulla destra vediamo le curve del monitoraggio respiratorio di un paziente con una costante di tempo maggiore rispetto all’esempio precedente. Sottolineo che in questo momento non ci poniamo l’obiettivo di misurare la costante di tempo, ma solo di capire dal monitoraggio grafico della ventilazione meccanica se siamo di fronte ad un caso di costante di tempo lunga o breve.

Questo paziente alla fine dell’inspirazione non ha certamente raggiunto il volume massimo teorico: la sua lunga costante di tempo determina un aumento lento del volume polmonare (e quindi della pressione alveolare). La conseguenza della persistente differenza tra pressione del ventilatore meccanico e pressione alveolare a fine inspirazione è la presenza di flusso a fine inspirazione. Le implicazioni di questo comportamento saranno molto diverse rispetto al caso precedente:
1) la differenza tra pressione di picco e pressione di plateau in questo caso è dovuta a 2 diverse componenti: a) i fenomeni redistributivi e viscoelastici sopracitati (che in questo caso, per motivi piuttosto complicati che tralasciamo, potrebbero essere quantitativamente maggiori rispetto ai pazienti con costante di tempo breve); b) l’occlusione delle vie a fine inspirazione interrompe un flusso ancora presente e quindi determina la scomparsa della pressione resistiva (che è una delle componenti della pressione delle vie aeree, vedi l’equazione di moto nel post del 24/06/2011) . Poichè la pressione resistiva è data dal prodotto del flusso per le resistenze, il calo di pressione dovuto all’interruzione del flusso sarà tanto maggiore quanto più alto è il flusso alla fine dell’inspirazione e quanto più elevate sono le resistenze delle vie aeree (vedi post del 5/12/2011 e del 20/10/2013). Adesso possiamo quindi rispondere compiutamente alla domanda iniziale di Andrea: “come è possibile in pressione controllata con PEEP 15 e PCV 15 ottenere un plateau di 24?“. Questo può avvenire facilmente in un paziente con costante di tempo relativamente lunga:  perchè l’interruzione del flusso a fine inspirazione avviene ancora con flusso presente e quindi la pressione resistiva è rilevante, soprattutto se il paziente ha elevate resistenze (ecco come può formarsi un circolo vizioso: alte resistenze->lunga costante di tempo->elevato flusso a fine inspirazione->alta pressione resistiva a causa sia del flusso che delle resistenze!)
2) l’aumento di frequenza respiratoria sarà poco efficace ad aumentare la ventilazione/minuto a parità di pressione inspiratoria. Infatti la riduzione del tempo inspiratorio interrompe sempre più precocemente il flusso, riducendo quindi il volume corrente. Questo fenomeno può essere poi amplificato dall’aggravarsi dell’iperinflazione dinamica che consegue alla riduzione del tempo espiratorio.

Riassumiamo e confrontiamo nella figura qui sotto le differenze delle curve di flusso e volume con costante di tempo breve (a sinistra) e lunga (a destra) e come cambia il volume dimezzando il tempo inspiratorio.

pcv_tau_volComplicato? Certamente! A mio parere la ventilazione a pressione controllata è densa di insidie e dovrebbe essere utilizzata, nei casi più complessi, solo se si padroneggia la meccanica respiratoria ed il monitoraggio grafico della ventilazione meccanica.

Oggi abbiamo detto molte cose, ma come sempre cerchiamo di far emergere un messaggio pratico: la costante di tempo condiziona in modo rilevante la ventilazione a pressione controllata. Possiamo distinguere due casi paradigmatici:

1) il flusso inspiratorio si azzera prima della fine del periodo inspiratorio (=> costante di tempo breve):
– la pressione di picco può essere una stima approssimata per eccesso della pressione di plateau;
– la variazione della frequenza respiratoria non modifica il volume corrente e quindi il suo effetto sulla ventilazione è prevedibile;
– la gestione della ventilazione a pressione controllata è facile.

2) il flusso inspiratorio è ancora presente alla fine del periodo inspiratorio (=> costante di tempo lunga):
– la pressione di picco può essere sensibilmente più elevata della pressione di plateau: è quindi necessario affidarsi all’occlusione delle vie aeree a fine inspirazione per stimarla;
– la variazione della frequenza respiratoria può modificare (anche in modo rilevante) il volume corrente e quindi il suo effetto sulla ventilazione è imprevedibile. Ad ogni cambio di impostazione del ventilatore bisogna quindi controllare l’effetto sul volume corrente;
– la ventilazione a pressione controllata diventa insidiosa e dovrebbe essere  affidata a medici esperti.

Un sorriso a tutti gli amici di ventilab.

Mar 222012
 

In anestesia vi è molta routine: una serie ripetuta, quasi rituale di procedure e farmaci con poche variazioni sul tema. A volte si può essere portati a pensare che, in fondo, la ventilazione meccanica non richieda una grande preparazione specifica: un semplice volume controllato, che spesso perdona anche impostazioni poco felici.
Oggi presento su ventilab un caso nel quale mi sono trovato coinvolto un po’ di tempo fa.

Una donna di 40 con obesità grave è sottoposta ad intervento chirurgico per una fistola perianale. La paziente presenta una difficoltà prevista di intubazione tracheale e nella visita anestesiologica preoperatoria ha dato il prorpio consenso per un’anestesia subaracnoidea. L’anestesia spinale, eseguita con difficoltà, non raggiunge un livello sufficiente per poter eseguire l’intervento e bisogna quindi procedere all’anestesia generale.

L’induzione dell’anestesia generale avviene senza farmaci miorilassanti e viene posizionata una maschera laringea ProSeal. Con la ventilazione manuale si apprezza una certa resistenza all’insufflazione e rumori di perdite aeree dalla maschera laringea. A questo punto si procede alla somministrazione di un miorilassante a breve durata d’azione (mivacurium) e dopo poco inizano un po’ a ridursi la resistenza all’insufflazione manuale e le perdite aeree. Inizia quindi l’intervento chirurgico con una ventilazione a volume controllato che un iniziale volume espirato sufficiente (seppur con evidenti perdite aeree dalla maschera laringea).

Ma nel volgere di alcuni minuti la pressione di picco delle vie aeree aumenta rapidamente fino a raggiungere il limite di pressione massima impostato sul ventilatore meccanico e contemporaneamente il volume corrente effettivamente erogato (cioè quello espirato) si riduce fino a quasi annullarsi. La saturazione arteriosa inizia scendere fino a circa 85 % ed il chirurgo comunica che gli servono ancora circa 20 minuti per completare l’intervento.

A questo punto l’anestesista di sala sceglie di iniziare la ventilazione a pressione controllata e di chiamare un collega per avere un aiuto…questo collega ero io ed eccomi qui a riflettere insieme su questa esperienza con gli amici di ventilab.

Prima di raccontare che cosa abbiamo fatto veramente e come è andata a finire, voglio proporre ai lettori di ventilab un sondaggio molto semplice (una sola domanda). Come procedere con la gestione della ventilazione meccanica? Spunta il quadratino che precede una delle due risposte qui sotto e poi clicca su “Submit”(il sondaggio è anonimo) : La prossima settimana discuteremo il caso partendo dalle risposte ottenute.

Ovviamente mi farà piacere se, oltre a rispondere al sondaggio, vuoi lasciare anche un commento, dove argomentare la risposta e magari discutere anche come procedere nella gestione delle vie aeree (altro topic fondamentale del caso).

Nel prossimo post ti racconterò il seguito della storia e si discuterà come approcciare a queste situazioni. Che speriamo ci capitino il più raramente possibile.

Per finire: siamo ancora sicuri che la ventilazione in anestesia sia un problema poco importante?

Un saluto a tutti. A presto.

Nov 272011
 

Spesso mi viene chiesto se è meglio utilizzare la ventilazione a pressione controllata o la ventilazione a volume controllato. Vediamo insieme cosa le differenzia per giungere ad una scelta consapevole.

Premetto che la cosa più importante è avere chiari gli obiettivi da raggiungere con la ventilazione: questi poi si possono raggiungere con qualunque modalità di ventilazione si consosca bene.

Come ben sappiamo, la pressione controllata applica una pressione costante nelle vie aeree per tutta la durata dell’inspirazione. Il risultato è un flusso inspiratorio che inizia con un picco e decresce durante l’inspirazione (fig. 1, a sinistra). Il volume controllato invece genera un flusso costante per tutta la durata dell’inspirazione e per ottenere ciò il ventilatore deve aumentare continuamente la pressione nelle vie aeree (fig. 1, a destra).

Figura 1.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di pressione tra volume controllato e pressione controllata.

Prima conseguenza di questa diversa logica di funzionamento è la differenza nelle pressioni di picco. A volte questo viene presentato come un vantaggio della pressione controllata sul volume controllato, ma lo è davvero?

La pressione di picco è la somma di due pressioni: 1) la pressione che ci serve per generare il flusso più 2) la pressione che espande l’apparato respiratorio.

La pressione che genera il flusso è quella forza che spinge il gas inspirato attraverso tubo tracheale e vie aeree. Essa ha il proprio valore massimo all’inizio della branca inspiratoria e si riduce progressivamente fino ad annullarsi al termine delle vie aeree. Il suo valore dipende dall’entità del flusso e dalle resistenze.

Alla fine della inspirazione la pressione per generare flusso è più elevata in volume controllato che in pressione controllata: infatti in volume controllato abbiamo ancora un flusso più elevato (uguale a quello di tutta la fase inspiratoria) che in pressione controllata, che a fine inspirazione vede il flusso più o meno completamente annullato (fig 1).

La pressione per generare flusso non arriva negli alveoli ma si consuma lungo il tubo tracheale e le vie aeree. Non deve essere considerata come una pressione che può indurre danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) .

Alla fine della inspirazione, a parità di volume corrente, avremo la stessa pressione negli alveoli sia in volume controllato che in pressione controllata. E questa pressione (indipendente dalla modalità di ventilazione) dipende unicamente da elastanza e volume corrente. Questa pressione può essere stimata facendo un’occlusione delle vie aeree alla fine della inspirazione: nella figura 2 vediamo sopvrapposte due curve di volume controllato (PCV) e pressione controllata (PCV) a parità di volume corrente. Si può notare come le pressioni di picco siano diverse tra loro, mentre le pressioni di plateau sono uguali tra di loro. Stesso plateau, stesso stress.

Figura 2.

Quindi pressione controllata e volume controllato hanno, a parità di volume corrente, lo stesso impatto sul danno polmonare, che in realtà è determinato solo da elastanza e volume corrente.  Non lasciamoci trarre in inganno dalla diversità delle pressioni di picco. Si potrebbero fare disquisizioni più approfondite per i polmoni caratterizzati da marcata disomogeneità, ma affronterò l’argomento solo se vedrò che può interessare ai lettori di ventilab.

La pressione controllata fa raggiungere inoltre valori di pressione media delle vie aeree più elevata del volume controllato, a meno che a quest’ultimo non si aggiunga un’opportuna pausa di fine inspirazione. E la pressione media delle vie aeree è correlata all’ossigenazione. Si può quindi dire che in pressione controllata è più semplice ottimizzare pressione media delle vie aeree e ossigenazione.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di flusso tra volume controllato e pressione controllata.

Il volume controllato assicura l’erogazione di un predeterminato un flusso (e quindi un volume corrente), mentre il flusso che si genera in pressione controllata è variabile e dipende dalle variazioni della costante di tempo del paziente (cioè del rapporto tra resistenza ed elastanza). In alcuni casi può essere preferibile garantire un volume corrente costante: pensiamo ad esempio ai pazienti con trauma cranico ed ipertensione intracranica, dove la regolazione della PaCO2 è un obiettivo clinico importante. In altri casi può essere meglio limitare automaticamente le pressioni ed accettare variazioni del volume corrente, come ad esempio nei pazienti con ARDS ed elevate pressioni di plateau (o transpolmonari).

Un’altra differenza tra pressione controllata e volume controllato è la diversa distribuzione del flusso. Nella pressione controllata il flusso è elevato all’inizio dell’inspirazione, mentre nel volume controllato è uniforme per tutta l’inspirazione. Un elevato flusso inspiratorio iniziale favorisce la sincronia tra paziente e ventilatore se il paziente triggera gli atti respiratori. Quindi la pressione controllata ci può semplificare la sincronia paziente-ventilatore e la riduzione del lavoro respiratorio del paziente. Ovviamente anche un’oculata regolazione del volume controllato può raggiungere gli stessi obiettivi, ma sicuramente serve un occhio più esperto per gestire l’interazione paziente-ventilatore durante volume controllato (1,2).

 _°_°_°_°_°_°_°_°_°_°_

Le ventilazioni a pressione controllata a target di volume.

Quasi tutti i ventilatori hanno forme di ventilazione che rientrano in questa categoria: PCV-VG (GE), PRVC o VGRP (Maquet, Siemens), AutoFlow (Draeger), ecc. In pratica sono normalissime ventilazioni a pressione controllata in cui però il ventilatore continua ad adeguare la pressione applicata per raggiungere un volume prefissato. Quindi le impostiamo come un volume controllato (a parte la pausa) ma funzionano come una pressione controllata: pressione inspiratoria costante e flusso inspiratorio decrescente. In maniera molto semplice aggiungiamo alla pressione controllata il vantaggio principale del volume controllato: il volume costante. Ovviamente le pressioni potranno aumentare o diminuire secondo le necessità.

 _°_°_°_°_°_°_°_°_°_°_

Come scegliere tra volume controllato e pressione controllata.

Detto questo, mi sento di fare questa proposta nella scelta delle ventilazioni controllate ed assistite-controllate:

– scegliere di norma una ventilazione a pressione controllata a target di volume (PCV-VG, PRVC o VGRP, AutoFlow, ecc). E’ semplice da impostare ed unisce vantaggi di volume controllato e pressione controllata: garantisce il volume corrente, facilitando sincronia ed ossigenazione grazie al flusso decrescente. A questo punto bisogna solo scegliere il volume corrente ed il I:E giusti…

– quando abbiamo la necessità di limitare la pressione di plateau (esempio siamo già a 30 cmH2O di plateau), utilizzare la pressione controllata. Solitamente impostando PEEP e pressione controllata la cui somma non superi 31-32 cmH2O, ci si garantisce di rimanere sotto i 30 cmH2O di pressione di plateau. Meglio comunque verificare di caso in caso.

Un caro saluto a tutti.

PS: il workshop “La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica” si terrà quasi certamente sabato 28 gennaio 2011. A prestissimo la conferma definitiva.

Bibliografia.

1) Chiumello D et al. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 2002; 20: 925-33

2) Kallet RH et al. Work of breathing during lung-protective ventilation in patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50:1623-31