Jan 312019
 

Un paziente (non sedato) con pressione di supporto di 17 cmH2O (e 4 cmH2O di PEEP) ha un volume corrente di circa 720 ml. Puoi vedere a fianco la traccia di pressione (in alto) e flusso (in basso) di un atto respiratorio. Il peso ideale del paziente è  66 kg.

Certamente avrai notato che il volume corrente è 11 ml/kg di peso ideale. Un valore che usualmente riteniamo opportuno evitare, preferendo limitarlo a circa 8 ml/kg di peso ideale,  che in questo paziente corrisponderebbe a 530 ml. Come possiamo ridurre questo volume corrente durante ventilazione in pressione di supporto?

Molti pensano che la soluzione sia quella di ridurre la pressione di supporto, ma purtroppo questa convinzione (largamente diffusa) spesso non è corretta. Vediamo infatti cosa succede al variare del livello di pressione di supporto.

In questo paziente facciamo una occlusione delle vie aeree a fine inspirazione (figura 1):

Figura 1

Vediamo che la pressione di plateau è 25 cmH2O (valore mostrato in alto a destra, misurato dove è collocata la linea verticale bianca, cioè sulla parte di pressione costante dopo l’occlusione). Ricordiamo che la pressione di plateau è la somma di pressione elastica (la pressione generata dal volume corrente) e PEEP totale (vedi post del 24/06/2011).

In questo caso la pressione erogata dal ventilatore meccanico è 21 cmH2O, cioè la somma di 17 cmH2O di pressione di supporto e 4 cmH2O di PEEP. Una pressione di plateau più elevata della pressione erogata dal ventilatore è segno di attività dei muscoli inspiratori (vedi post del 08/05/2016). Se il paziente attiva i propri muscoli inspiratori, probabilmente il supporto inspiratorio applicato è insufficiente per soddisfare completamente la richiesta di ventilazione dei suoi centri respiratori.

La figura 2 mostra cosa accade quando si riduce il supporto inspiratorio a 13 cmH2O (4 cmH2O in meno del basale), mentre la figura 3 quando lo si aumenta a 21 cmH2O (4 cmH2O in più rispetto al basale).

Figura 2

Figura 3

Nonostante la cospicua variazione di pressione di supporto (il 25% in più o in meno del basale), la variazione associata di volume corrente è insignificante. Non variando significativamente il volume corrente e la PEEP totale, è prevedibile che la pressione di plateau rimanga costante a 25 cmH2O.

Quello che cambia è la pressione generata dai muscoli inspiratori (cioè la differenza tra pressione di plateau e pressione applicata dal ventilatore), che aumenta al ridursi del supporto inspiratorio: 0 cmH2O con pressione di supporto 25 cmH2O (figura 3), 4 cmH2O con pressione di supporto 17 cmH2O (figura 1) e 8 cmH2O con pressione di supporto 13 cmH2O (figura 2).*

La traduzione clinica di queste misurazioni è: riducendo la pressione di supporto abbiamo fatto faticare di più il paziente senza ridurre il volume corrente. Il suo “cervello” vuole questo livello di ventilazione, indipendentemente dal livello di supporto inspiratorio. Questa dinamica è però vera fino a un certo punto, fino a quando il paziente riesce a permetterselo…

Vediamo infatti cosa succede se riduciamo il supporto di pressione di altri 4 cmH2O rispetto alla figura 2, portandolo cioè a 9 cmH2O.

Figura 4

Finalmente il volume corrente (circa 580 ml) si riduce in maniera significativa! Questo però non significa che stiamo facendo un favore al nostro paziente…. La stima della pressione generata dai muscoli inspiratori è 7 cmH2O (pressione di plateau 20 cmH2O – 13 cmH2O applicati dal ventilatore), un valore simile agli 8 cmH2O calcolati nella figura 2 con supporto inspiratorio 13 cmH2O.

La traduzione clinica di questa osservazione è: i muscoli inspiratori probabilmente non riescono a generare più di 7-8 cmH2O di pressione ad ogni inspirazione. Ne consegue che, arrivati a questo punto, ogni ulteriore riduzione del supporto ventilatorio si traduce in una riduzione del volume corrente: probabilmente stiamo mantenendo il paziente al massimo sforzo di cui è capace durante l’inspirazione, con il conseguente rischio di fatica dei muscoli inspiratori.

Nella figura 5 vediamo invece un cospicuo aumento di volume corrente (circa 950 ml) quando si aumenta la pressione di supporto di 4 cmH2O rispetto ad una condizione di passività, come quella descritta in figura 3:

Figura 5

La traduzione clinica è: quando i muscoli inspiratori sono già passivi (come con pressione di supporto 21 cmH2O), ogni ulteriore aumento di pressione applicata si traduce in un incremento di volume corrente (come nelle ventilazioni controllate).

Una regola importante (e spessissimo trascurata) è che la pressione di supporto si dovrebbe regolare valutando anche (e soprattutto) lo sforzo inspiratorio del paziente e non solo (e non tanto) il valore del volume corrente/kg di peso ideale.

Torniamo al quesito iniziale: quando ci troviamo un paziente come in figura 1, che fare per ridurre un volume corrente eccessivo? Pensiamo solo ad una strategia ventilatoria che non contempli l’utilizzo di sedazione e paralisi (scelta raccomandabile solo in casi particolari).

La via di uscita  può essere nell’impostare una ventilazione controllata con un volume corrente accettabile, ad esempio 8 ml/kg di peso ideale. Nel caso del nostro paziente circa 530 ml. Ovviamente la frequenza respiratoria deve essere sufficientemente elevata da iperventilare (almeno inizialmente) il paziente, superando le sue necessità di ventilazione al fine di renderlo passivo.

In questo caso abbiamo iniziato una ventilazione pressometrica a target di volume  con 530 ml di volume corrente e 32 di frequenza respiratoria. Nel giro di 5 minuti il paziente diventa passivo alla ventilazione (dopo essersi un pochino “ribellato” per i primi minuti). A questo punto riduciamo la frequenza impostata fino ad avere la comparsa solo occasionale di atti respiratori triggerati. Ecco il risultato finale.

Figura 6

Il paziente è stato “catturato” da un volume corrente appropriato. Nelle modalità assistite-controllate ricordo che è fondamentale il controllo della duranta del tempo inspiratorio che deve essere normalmente tra 0.8″-1″ (da adeguare osservando il monitoraggio, come insistiamo nei corsi di Ventilazione Meccanica) (vedi anche post del 15/03/2014).

Valutiamo anche il risultato di questa ventilazione anche alla luce delle occlusioni a fine inspirazione e fine espirazione:

Figura 7

La pressione di plateau è 23 cmH2O con una PEEP totale di 10 cmH2O, ed una driving pressure di 13 cmH2O: i valori di pressione e volume, valutati congiuntamente, sono ampiamente accettabili.

Potremo poi ridare un maggior controllo della ventilazione (ed una maggior attività) al paziente riducendo ulteriormente la frequenza respiratoria impostata dopo un ragionevole periodo di riposo.

Non sempre l’approccio descritto in questo post è efficace, ma, quando lo è (e cioè spesso), risolve rapidamente situazioni imbarazzanti.

Ricordo infine che un po’ di autoPEEP in un paziente passivo è, il più delle volte, un evento assolutamente benigno, che non richiede alcuna contromisura.

Come ultima cosa, ti lascio un piccolo calcolo da fare da solo: come è variata la compliance dalla ventilazione iniziale (figura 1) a quella finale (figura 7)? Da questo punto di vista quale ventilazione preferisci?

Terminiamo il post, come sempre, riepilogando i punti essenziali:

  • la ventilazione con pressione di supporto può portare ad un volume corrente pericolosamente elevato;
  • spesso la riduzione della pressione di supporto non è una scelta saggia: affatica il paziente, spesso senza ridurre il volume corrente;
  • per ridurre il volume corrente in un ambito di normalità si può impostare una ventilazione a target di volume con elevata frequenza respiratoria;
  • dopo un breve periodo (5′-10′) ad elevata frequenza respiratoria, questa può essere progressivamente ridotta fino alla occasionale comparsa di atti respiratori triggerati;
  • è sempre determinante mantenere un tempo inspiratorio (e non il rapporto I:E) ragionevole, spesso compreso tra 0.8″-1″.

Un sorriso a tutti gli amici di ventilab.

* La pressione resistiva (vedi post del 5/12/2011) non è considerata in queste stime.

PS: segnalo che il 22 febbraio 2019 si terrà il convegno “EMERGENZE IN SALA PARTO – APPROCCIO MULTIDISCIPLINARE” presso Fondazione Poliambulanza a Brescia (clicca qui per scaricare la locandina). Ci sarò anche io 🙂

 

Dec 272017
 

Una caratteristica peculiare della pressione di supporto è il modo in cui il ventilatore meccanico decide il termine dell’inspirazione (il cosiddetto ciclaggio). Unica tra tutte le modalità di ventilazione, la pressione di supporto è infatti ciclata a flusso ed il trigger espiratorio è il segnale che utilizza per questo scopo.

Oggi vedremo cosa significaciclata a flusso” e ” trigger espiratorio“; ma soprattutto rifletteremo sul significato e sull’utilizzo clinico di queste funzioni. E capiremo come possa essere poco sensato quello che solitamente ci si racconta…

Ciclaggio a flusso e trigger espiratorio (versione canonica)

Durante tutte le modalità di ventilazione controllate ed assitite-controllate, la durata dell’inspirazione è determinata dal tempo inspiratorio*. Sono quindi definite come “ciclate a tempo“. In questo caso tutte le inspirazioni hanno una durata fissa, sempre uguale, ed il paziente è obbligato a rimanere in inspirazione per il tempo che abbiamo impostato: il controllo della durata della inspirazione è nella mani del medico (e del ventilatore) ed il paziente si deve adeguare. Questo vincolo non è, di per sè, nè un bene nè un male: può essere un punto di forza o un limite in relazione agli obiettivi clinici ed all’interazione paziente-ventilatore.

La pressione di supporto invece non ha nessuna impostazione del tempo inspiratorio** perchè è “ciclata a flusso“. Questo termine significa che il ciclaggio (cioè il passaggio dall’inspirazione all’espirazione) è guidato dal flusso inspiratorio.

La pressione di supporto è una ventilazione pressometrica, ed è quindi caratterizzata da un flusso inspiratorio decrescente (in assenza di attività inspiratoria del paziente). Un picco di flusso inspiratorio viene raggiunto all’inizio dell’inspirazione, quindi il flusso decresce, interrompendosi quando raggiunge il trigger espiratorio. Il trigger espiratorio è espresso come percentuale di flusso rispetto al picco. Vediamo un esempio in figura 1, in cui è rappresentata la curva di flusso di una pressione di supporto con trigger espiratorio del 30%: il picco di flusso è di 45 l/min ed il flusso a cui si attiva il trigger espiratorio (quando cioè il flusso repentinamente scende a zero, trattino rosso) è 15 l/min, cioè il 30% del valore di picco.

Figura 1

A questo punto è facile capire come la riduzione del trigger espiratorio (cioè della percentuale rispetto al piccodi flusso) possa portare ad un prolungamento dell’inspirazione, ed invece un aumento del trigger espiratorio ad una sua riduzione. Il processo è rappresentato in figura 2, in cui è riportata in giallo la durata dell’inspirazione: essa aumenta da 0.6 a 1.2 secondi riducendo il trigger espiratorio dal 50% al 10%.

Figura 2.

Ma ha senso pensare in questo modo al trigger espiratorio? Nella pratica clinica funziona veramente così?

Significato ed utilizzo clinico del ciclaggio a flusso

Negli anni ottanta del secolo scorso entrò nel mondo della ventilazione meccanica il Servo Ventilator 900C Siemens (figura 3), una macchina per certi versi rivoluzionaria e con la novità della ventilazione a pressione di supporto e quindi del ciclaggio a flusso. Rivederlo mi emoziona sempre: su questa macchina ho iniziato ad amare ventilazione meccanica e meccanica respiratoria.

Come si può vedere dallo scarno pannello dei comandi, nel ventilatore che ha “inventato” la pressione di supporto era assente l’impostazione del trigger espiratorio, che era di default fisso al 25%. Oggi i nostri moderni ventilatori  ci consentono di impostare il trigger espiratorio a valori che possono variare anche dal 1% al 80%. La regolazione del trigger espiratorio è un reale passo avanti o uno degli inutili gadget dei ventilatori meccanici? Potremo rispondere a questa domanda alla fine del post.

Figura 3

Se ci pensiamo bene, l’unica vera innovazione della pressione di supporto è il ciclaggio a flusso. Infatti, anche senza pressione di supporto, l’assistenza inspiratoria pressometrica tutta triggerata dal paziente si può tranquillamente ottenere impostando una pressione controllata con frequenza respiratoria molto bassa e trigger inspiratorio sensibile; di fatto tutti gli atti respiratori sono triggerati dal paziente e con supporto pressometrico.

Quindi la pressione di supporto è stata inventata per avere il ciclaggio a flusso. Ma perchè mai qualcuno ha voluto inventare il ciclaggio a flusso? Perchè il ciclaggio a flusso consente al paziente di determinare la durata dell’inspirazione: si abbandona la logica del ciclaggio a tempo, cioè di un tempo inspiratorio rigido, immutabile e definito dal ventilatore, per passare alla flessibilità del ciclaggio a flusso, dove la durata dell’inspirazione è determinata dal paziente atto per atto respiratorio. Ed il trigger espiratorio è lo strumento sfruttato per ottenere tutto questo.

Adesso torna alla figura 2. Ti sembra che il ciclaggio a flusso sia utilizzato per consentire al paziente di definire spontaneamente, respiro per respiro, la durata dell’inspirazione? A me non sembra proprio: in questo modo si torna ad attribuire al ventilatore il compito di decidere la durata dell’inspirazione. Un risultato che possiamo ottenere tranquillamente con un normale ciclaggio a tempo, impostando quindi un bel tempo inspiratorio sul ventilatore. Peraltro nota una cosa: il controllo della durata dell’inspirazione utilizzando il ciclaggio a flusso, come vedi in figura 2, è possibile solo se si ottiene una bella curva di flusso decrescente. Come ormai ben sanno gli amici di ventilab, questo si verifica solo quando manteniamo il paziente sostanzialmente passivo durante l’inspirazione, condizione che spesso dovremmo cercare di evitare durante la ventilazione assistita (vedi post del 10/09/2016).

Quando ventiliamo con una pressione di supporto un  paziente che mantenga una buona attività dei muscoli inspiratori, come ben sappiamo la curva di flusso inspiratorio smette di avere un profilo decrescente e presenta invece una concavità verso il basso. Quando siamo in questa condizione, il trigger espiratorio influenza davvero la durata dell’inspirazione? Vediamolo nella figura 4.

Figura 4

La curva di flusso ha un picco inspiratorio iniziale di 40 l/min. Dopo il raggiungimento del picco, il flusso inspiratorio non decresce linearmente verso il punto di ciclaggio, ma è mantenuto elevato dall’attività dei muscoli inspiratori (per dettagli rivedi nuovamente il post del 10/09/2016). Nella parte finale dell’inspirazione, il flusso scende quasi verticalmente verso lo zero. In questa fase agisce il trigger espiratorio: quando il flusso raggiunge il valore impostato, finisce l’inspirazione ed inizia l’espirazione. Nel caso in figura 4 il trigger espiratorio era impostato al 10% del picco di flusso, quindi a 4 l/min per il respiro preso in considerazione. A questo livello di flusso è disegnata la linea tratteggiata orizzontale rossa. Il ciclaggio avviene quanto viene raggiunto questo flusso inspiratorio (tratto verticale rosso). Quando sarebbe terminata l’inspirazione se avessimo impostato un trigger espiratorio molto diverso, ad esempio il 50%? In questo caso il flusso a cui avverrebbe il ciclaggio sarebbe la metà del picco inspiratorio, cioè 20 l/min: a questo livello è disegnata la linea orizzontale tratteggiata gialla. Possiamo facilmente vedere come il momento in cui il flusso inspiratorio raggiunge questo valore (identificato sull’asse orizzontale del tempo dalla linea tratteggiata verticale gialla) sia solo minimamente diverso da quello determinato dal trigger al 10%.

In sintesi: quando il paziente è attivo durante l’inspirazione, il trigger espiratorio non modifica significativamente la durata dell’inspirazione. Al contrario questo accade quando il paziente è passivo, come abbiamo visto nella figura 2. Ma quando un paziente è passivo durante l’inspirazione, che vantaggio c’è nel fare una pressione di supporto? Se vogliamo controllare noi la durata dell’inspirazione, non è più semplice ed immediato scegliere una ventilazione ciclata a tempo, decidendo esplicitamente quanto far durare l’inspirazione?

Riassumendo: l’unica vera innovazione della pressione di supporto è stato il controllo, respiro per respiro, della durata dell’inspirazione esercitato dal paziente. Abbiamo capito che questo è realmente possibile solo quando il paziente mantiene una buona attività durante tutta la fase inspiratoria. Ed abbiamo visto che in queste condizioni la variazione del trigger espiratorio ha una influenza trascurabile sulla durata dell’inspirazione.

A questo punto possiamo ripondere consapevolmente alla domanda lasciata in sospeso in precedenza: è stato un progresso reale passare dal trigger espiratorio fisso al 25% alla possibilità di variarlo dal 1 al 80%? A mio parere no: se vogliamo controllare la durata della inspirazione meglio un ciclaggio a tempo. La “mission” del ciclaggio a flusso è invece quella di togliere a noi il controllo della durata dell’inspirazione per lasciarla al paziente. In questo l’inventore del ciclaggio a flusso è stato veramente geniale: era perfettamente consapevole dell’effetto dell’attività del paziente sulla curva di flusso e capì che quando il paziente avesse smesso di inspirare (cioè rilasciato i muscoli inspiratori e/o attivato i muscoli espiratori), il flusso inspiratorio sarebbe crollato rapidamente. E quindi il segnale critico per sincronizzare l’espirazione del paziente con quella del ventilatore era cogliere “al volo” questo calo repentino di flusso inspiratorio: ripeto, GENIALE! E fissare come criterio la riduzione del flusso inspiratorio al 25% del picco di flusso fu una una soluzione semplice e ragionevole.

Un’ultima riflessione, forse un po’ complessa, ma veramente interessante: utilizzare il trigger espiratorio per modificare la durata dell’inspirazione (come abbiamo visto nella figura 2) produce necessariamente una asincronia di termine, in paricolare un ciclaggio ritardato. Non abbiamo tempo per approndire ora questo aspetto, ma teniamone conto. Gli studi che hanno documentato il ciclaggio ritardato durante pressione di supporto probabilmente hanno fatto un utilizzo “contro natura” (in senso stretto) della pressione di supporto, associando la passività del paziente al trigger a flusso: in queste condizioni è implicita l’asincronia. Per chiarire meglio questo aspetto potrei fare prossimamente un post sulle asincronie di termine.

E’ giunta l’ora di concludere, e facciamolo come sempre con le implicazioni pratiche di quello che abbiamo detto:

  • se vogliamo mantenere un paziente poco attivo e controllare la durata dell’inspirazione, non abbiamo bisogno della pressione di supporto: possiamo utilizzare in modo semplice ed efficace una ventilazione a pressione controllata con una frequenza respiratoria minima ed un tempo inspiratorio ragionevole (tra 0.8″ e 1″);
  • se l’obiettivo principale è la costante sincronia paziente-ventilatore, allora è molto semplice ed efficace utilizzare la pressione di supporto con paziente attivo durante l’inspirazione. Il ciclaggio avrà una buona sincronia entro ampi limiti di impostazione del trigger espiratorio. Direi che nella maggior parte dei casi il 25% può essere ragionevole (anche in omaggio alle buone intenzioni di chi ha sviluppato la pressione di supporto).

A tutti gli amici di ventilab, un sorriso e tanti cari auguri di buon Anno Nuovo!

 

Note:
*: tempo inspiratorio che può essere impostato direttamente definendone la durata in secondi o indirettamente con il settaggio del rapporto I:E o del flusso inspiratorio.
**: esiste sempre un tempo inspiratorio massimo consentito, che può essere fisso (in questo caso non compare tra i parametri di impostazione) o definibile dall’utente. Entro quel tempo inspiratorio massimo, la fine dell’inspirazione è innescata dal trigger espiratorio.

Apr 302017
 

Il successo della ventilazione meccanica dipende in maniera decisiva anche dall’appropriatezza della sua impostazione. Se in un paziente con ARDS sbagliamo la scelta di volume corrente e PEEP, possiamo trasformare una tecnica molto efficace in un problema senza soluzione; se durante la ventilazione assistita utilizziamo costantemente un supporto inspiratorio eccessivo o insufficiente, possiamo perpetuare la dipendenza dalla ventilazione meccanica invece che avviarci verso lo svezzamento.

A volte ho la sensazione che ci si dimentichi questo concetto fondamentale quando si parla di ventilazione non-invasiva: si passa il tempo a discutere se sia efficace o meno, senza specificare i criteri di impostazione. E’ un approccio profondamente sbagliato: la ventilazione non-invasiva non è efficace perchè si applica una maschera sulla faccia, ma perchè si eroga una ventilazione meccanica

Oggi vediamo come impostare il supporto inspiratorio (cioè la pressione di supporto o la differenza IPAP-EPAP) in maniera efficace quando curiamo un paziente con insufficienza respiratoria acuta (anche in presenza di una componente cronica). Su questo argomento esistono diversi approcci ed opinioni autorevoli, quello che propongo è ciò che personalmente ritengo più logico.

Consideriamo il momento in cui si inizia la ventilazione non-invasiva. In questa fase la pressione di supporto dovrebbe essere la più elevata possibile. E’ opportuno iniziare con un basso livello di supporto inspiratorio (ad esempio 5 cmH2O) e rapidamente (in pochissimi minuti) raggiungere, per incrementi successivi, il massimo livello che il paziente tollera o ritiene confortevole e che si associa ad un livello gestibile di perdite aeree.

E’ importante raggiungere il massimo possibile perchè in questa fase la ventilazione non-invasiva viene sempre proposta a pazienti che hanno o 1) una insufficienza della pompa respiratoria o 2) un elevato lavoro dei muscoli respiratori.

Dovremmo intendere come insufficienza della pompa respiratoria quella condizione in cui si ha una acidemia (cioè un pH < 7.35) senza ipocapnia (PaCO2 > 35 mmHg) (vedi post del 29/01/2011). Rientrano in questa categoria, oltre alla classica acidosi respiratoria ipercapnica, anche quei casi di acidosi metabolica senza una ipocapnia. Durante acidosi metabolica, la normale risposta di una pompa respiratoria efficiente è qualla di iperventilare per ridurre la PaCO2 e quindi tendere alla correzione del pH. Se la pompa respiratoria è esaurita, la PaCO2 rimane attorno ai 40 mmHg senza alcun tentativo di correzione respiratoria del pH.

L’elevato lavoro dei muscoli inspiratori è una condizione di stress che può precedere la vera e propria insufficenza della pompa respiratoria, e clinicamente si manifesta con dispnea, tachipnea (aumento della frequenza respiratoria), polipnea (aumento della ventilazione/minuto), non di rado iperpnea (aumento della profondità dell’inspirazione),  e utilizzo dei muscoli accessori della respirazione (è ben esplorabile lo sternocleidomastoideo). In questa fase la PaCO2 può essere normale o ridotta ed il pH normale o alcalino. Quando i muscoli inspiratori iniziano a cedere sotto il peso di un prolungato periodo di elevato lavoro respiratorio, iniziamo a vedere il respiro rapido e superficiale ed infine il respiro paradosso (addome e torace si espandono in maniera alternata invece che sincrona durante gli atti respiratori).

In entrambe queste condizioni un obiettivo fondamentale della ventilazione non-invasiva è mettere a riposo il più possibile i muscoli inspiratori. E’ sbagliato pensare di ottenere questo obiettivo impostando una pressione di supporto sufficiente a raggiungere un volume corrente di 6-8 ml/kg (di peso ideale). Questo può essere un obiettivo necessario ma certamente non sufficiente. Infatti molti pazienti con elevato lavoro respiratorio sono già in grado di inspirare un volume corrente normale (o elevato) anche senza alcun supporto inspiratorio: sono cioè ancora in grado di combattere, seppur ad un elevato prezzo metabolico e di stress. In queste condizioni i muscoli respiratori possono utilizzare anche più del 25% dell’ossigeno consumato dall’intero l’organismo (in condizioni di normalità è circa il 1-2%), con sovraccarico della funzione cardiaca e sofferenza di altri tessuti.

Dobbiamo quindi affidarci a criteri diversi dal volume corrente. Possono aiutarci a scegliere il livello di supporto inspiratorio la valutazione della frequenza respiratoria, della dispnea, dell’utilizzo dei muscoli accessori della respirazione e, come sempre, il monitoraggio grafico della ventilazione.

Se durante ventilazione non-invasiva il volume corrente fosse compreso tra 420 e 470 ml potremmo essere soddisfatti nella maggior parte dei pazienti. Ma il monitoraggio grafico della ventilazione meccanica può fornirci informazioni decisive per una impostazione appropriata della pressione di supporto.

Nella figura 1 vediamo il flusso nelle vie aeree nello stesso paziente con 3 diversi livelli di pressione di supporto (da sinistra a destra: 5, 15 e 20 cmH2O sopra la PEEP di 5 cmH2O). Tra le 3 condizioni, il volume corrente varia effettivamente tra 420 e 470 ml.

Figura 1

Nel riquadro C abbiamo un flusso che, dopo il picco iniziale (porzione verticale viola), è (quasi) decrescente, tipico della ventilazione pressometrica passiva. Questo vuol dire che il paziente, dopo aver attivato il ventilatore, tende a mettere a riposo i muscoli inspiratori. Osserviamo la parte viola della curva di flusso nei riquadri A e B: dopo il picco iniziale, il flusso inspiratorio non decresce come nel riquadro C, segno di una persistente attività dei muscoli inspiratori, che è tanto più marcata tanto più ci si allontana dalla teorica decrescita passiva.

La figura 2 presenta le stesse curve della figura 1, con una retta che congiunge l’iniziale picco di flusso con il flusso quando inizia il ciclaggio tra inspirazione ed espirazione (istante in cui il flusso inizia a crollare verso lo zero).

Figura 2

Questa rappresentazione aiuta a capire cosa si intende per flusso decrescente e come valutare, seppur in maniera grossolana e qualitativa, quando e quanto un soggetto continua ad utilizzare i muscoli inspiratori durante il supporto inspiratorio. Nel riquadro A c’è un’area molto rilevante tra la traccia di flusso e la linea tratteggiata che dovrebbe descrivere l’ipotetico decadimento passivo del flusso; nel riquadro B c’è ancora una evidente area tra flusso e linea di decadimento passivo, però minore rispetto a quella vista in A e quindi segno di un minor contributo dei muscoli inspiratori; in C praticamente tutto il flusso è sulla liena di decadimento e ci fa pensare che resti solo eventualmente una minima attività dei muscoli inspiratori dopo il triggeraggio.

Ora possiamo capire bene perchè, quando iniziamo la ventilazione non-invasiva, dovremmo incrementare la pressione di supporto per avvicinarci il più possibile al profilo di flusso che vediamo in C. E’ importante fermarsi nell’incremento della pressione di supporto appena si nota questo pattern. Il livello di assistenza inspiratoria va rivalutato, con l’approccio appena visto, tutte le volte che si osservi un cambiamento del pattern respiratorio. Spesso vedremo che poco dopo l’inizio della ventilazione non-invasiva potremo ridurre il supporto inspiratorio mantenendo una bassa attività dei muscoli inspiratori.

Quando la condizione di insufficienza di pompa respiratoria o di elevato lavoro dei muscoli inspiratori tendono a risolversi, potremo tranquillamente abbassare il livello di pressione di supporto, senza più ricercare la passività del paziente. Viceversa, se non si dovesse arrivare a questo punto in tempi ragionevolmente brevi, dovremmo iniziare a pensare all’intubazione tracheale.

Se siamo d’accordo su quando detto finora, dobbiamo ammettere che la CPAP raramente può essere una tecnica ottimale di ventilazione non-invasiva.

Uno dei problemi a cui espone questo approccio è quello di avere qualche paziente che genera volumi correnti molto elevati, anche 10-12 ml/kg. Dobbiamo però essere lucidamente consapevoli che questo  volume corrente non è passivamente generato dal livello di supporto inspiratorio se abbiamo scelto il livello di pressione inspiratoria necessario e sufficiente a far riposare i muscoli respiratori. Infatti stiamo semplicemente aiutando il paziente a fare ciò che il suo cervello (=centri del respiro) comanda. Se dal cervello partono ordini potenzialmente dannosi (=generare un alto volume corrente), la soluzione non è mettere in difficoltà la pompa respiratoria per impedire che ciò accada. In questa situazione vale la pena valutare se il volume corrente tenderà a ridursi man mano che si metteno a riposo i muscoli respiratori. Se ciò non dovesse accadere, a noi la responsabilità di scegliere se accettare un volume corrente elevato o iniziare una ventilazione protettiva, che non potrà che essere invasiva e con sedazione/parlisi. Ma questo è un altro capitolo…

Per concludere, facciamo una breve sintesi dei punti principali:

  • all’inizio della della ventilazione non-invasiva il supporto inspiratorio dovrebbe essere regolato per rendere il più decrescente possibile il flusso inspiratorio; ne risulterà anche la riduzione della dispnea, della tachipnea e dell’utilizzo dei muscoli accessori della ventilazione;
  • dopo aver scaricato i muscoli respiratori da un eccessivo lavoro, si dovrebbe iniziare a ridurre il supporto, accettando un livello di attività respiratoria compatibile con le risorse muscolari;
  • qualora con questo approccio si ottenesse un volume corrente che si ritiene causa di possibile danno indotto dalla ventilazione, una soluzione normalmente ragionevole è passare alla ventilazione protettiva invasiva.

Un sorriso a tutti gli amici di ventilab.

 

Sep 102016
 

TotoLa ventilazione con pressione di supporto (Pressure Support Ventilation) è una delle modalità di ventilazione assistita più frequentemente utilizzate in Europa. Il motivo del grande successo di questa modalità di ventilazione è dovuto sia alla sua efficacia che alla sua semplicità di impostazione. Tutte e due queste caratteristiche però nascondono dei tranelli. L’efficacia della ventilazione con pressione di supporto è infatti da verificare caso per caso e la semplicità di impostazione può divetare un tranello.

Spesso è suggerito di impostare il livello di pressione di supporto per ottenere un obiettivo di volume corrente (as esempio di 6-8 ml/kg di peso ideale) e di frequenza respiratoria (ad esempio < 25/min). E’ davvero sufficiente questo per impostare correttamente la pressione di supporto? (la pressione di supporto in alcuni ventilatori è denominata ΔASB, in altri ancora è la differenza tra IPAP ed EPAP)

Alcuni giorni fa avevamo in reparto un paziente il cui peso ideale era stimato in 70 kg. Abbiamo modificato il livello di pressione di supporto per scegliere quello a lui più appropriato. Con tre diversi livelli di pressione di supporto (5, 10 e 12 cmH2O), il volume corrente rimaneva sostanzialmente costante (tra i 450 ed i 500 ml), mentre la frequenza respiratoria si riduceva lievemente con l’incremento della pressione di supporto (23/min, 21/min e 18/min). Quale livello di pressione di supporto scegliere? Gli obiettivi di volume e di frequenza respiratoria sono raggiunti con tutte e tre le impostazioni… Lasciamo la scelta al caso e/o all’istinto?

Fortunatamente abbiamo un elemento preziosissimo per scegliere accuratamente il livello di pressione di supporto: il monitoraggio grafico della ventilazione meccanica. Nella scelta del livello di pressione di supporto, ritengo che la curva più importante da valutare sia quella flusso-tempo. Nella figura 1 vediamo l’onda di flusso con 12 cmH2O di pressione di supporto.

Figura 1

Figura 1

La ventilazione in pressione di supporto è una ventilazione pressometrica. Abbiamo ormai imparato che le ventilazioni pressometriche nei pazienti passivi (come ad esempio la ventilazione a pressione controllata) sono caratterizzate da un flusso inspiratorio decrescente (ad esempio vedi post del 27/11/2011). Nella figura 1 il flusso inspiratorio è indicato dalla parte di onda al di sopra dello zero. Nella parte iniziale dell’inspirazione il flusso raggiunge il picco, che successivamente decresce linearmente (linea gialla tratteggiata) fino al punto in cui il flusso inspiratorio “crolla” verso lo zero. [Questo punto coincide con il raggiungimento del trigger espiratorio, che come sappiamo è definito da una percentuale di flusso rispetto al picco iniziale. In questo caso abbiamo un picco di flusso di circa 50 L/min ed il trigger espiratorio si attiva a circa 15 L/min: possiamo quindi supporre che il trigger espiratorio sia stato impostato a circa il 33% (cioè 50 L/min / 15 L/min 100).] Il flusso non è mai superiore alla linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio: è una condizione simile a quella della pressione controllata con paziente passivo (trascuriamo il fatto che in questa condizione il flusso decreace esponenzialmente e non linearmente). Possiamo quindi dedurre che il paziente, dopo l’attivazione del trigger, è sostanzialmente passivo.

Nella figura 2 vediamo la curva di flusso con 10 cmH2O di pressione di supporto.

Figura 2

Figura 2

Rispetto al condizione precedente, la riduzione di pressione di supporto è minima. Frequenza respiratoria e volume corrente sono simili a quanto abbiamo ottenuto con 12 cmH2O. Ma la morfologia del flusso inspiratorio si modifica in maniera sostanziale: una parte del flusso inspiratorio si mantiene al di sopra della linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio. Un aspetto diverso da quello delle ventilazioni pressometriche a paziente passivo. Questa informazione è utile per indicare che i muscoli inspiratori continuano a “lavorare” anche dopo l’attivazione del trigger.

La figura 3 mostra la curva di flusso con 5 cmH2O di pressione di supporto.

Figura 3

Figura 3

A questo punto possiamo facilmente vedere come il flusso sia marcatamente aumentato rispetto alla linea ideale di decadimento passivo. E concludere che il soggetto in questo caso mette in gioco una rilevante attivazione dei muscoli inspiratori. Come si può vedere nella figura 3, è molto difficile (o impossibile) identificare il flusso a cui si attiva il trigger espiratorio quando il paziente è molto attivo ed il flusso inspiratorio diventa sinusoidale. Possiamo sfruttare questa condizione a nostro vantaggio: il paziente “lavora molto” se non si riconosce sulla onda di flusso il punto in cui si attiva il trigger espiratorio.

Rivediamo nella figura 4, messe insieme, le curve che abbiamo analizzato finora. A questo punto penso che un colpo d’occhio sia sufficiente per capire il differente livello di attività dei muscoli inspiratori nelle tre impostazioni della pressione di supporto. Uno sguardo a questo punto vale più di mille parole.

Figura 4

Figura 4

Ora la domanda è spontanea: quale livello di pressione di supporto scegliere? Questo dipende dagli obiettivi clinici che abbiamo nel momento in cui dobbiamo decidere. Se il nostro obiettivo è quello di far riposare un paziente affaticato (ad esempio dopo il fallimento di un trial di respiro spontaneo), meglio scegliere di mettere a riposo per un po’ di tempo i muscoli inspiratori. Viceversa, se il paziente non presenta dispnea o altri segni clinici che rendano opportuno il riposo, meglio scegliere un livello di pressione di supporto che assicuri una significativa attivazione dei muscoli inspiratori durante l’inspirazione. E magari procedere rapidamente al weaning…

Nel paziente che ho presentato, è stato scelta una pressione di supporto di 10 cmH2O, poiché con livelli più bassi lamentava dispnea. Abbiamo però evitato i 12 cmH2O, perche con questo livello tendeva ad essere inutilmente passivo durante la ventilazione assistita: 2 cmH2O sono un’inezia, ma in qualche caso potrebbero fare la differenza per accelerare il weaning…

In conclusione, riassumiamo brevemente i punti salienti del post di oggi:

1) durante pressione di supporto, la valutazione di frequenza respiratoria e volume corrente è insufficiente per una scelta appropriata dell’assistenza inspirtoria;

2) una semplice analisi della curva di flusso può aiutarci nella scelta: tanto meno il flusso è decrescente, tanto più attivo è il paziente;

3) si deve ricercare una bassa attività del paziente se l’obiettivo clinico è il riposo (quindi se si rilevano segni o sintomi di “fatica”), mentre in tutti gli altri casi è opportuno mantenere una significativa attività muscolare (fino al punto in cui può essere tollerata).

 

Un sorriso a tutti gli amici di ventilab.

May 082016
 

push_and_pullOggi propongo con vero piacere il contributo offerto a ventilab da un caro amico, Gianni Ciabatti di Firenze. Gianni reintepreta in chiave originale il PMI (Pressure musc,index), cioè la differenza tra la pressione di plateau e la pressione applicata dal ventilatore in ventilazione assistita. Il PMI nasce come stima non-invasiva dello sforzo inspiratorio a fine inspirazione: a mio parere Gianni presenta una semplificazione concettuale del PMI, che ci consentirà di utilizzarlo facilmente nella pratica clinica.

Ed ora leggiamoci il post.

_°_°_°_°_°_°_°_°_°_°_°_°_

Quando iniziamo a ventilare un paziente in modalità Pressure Support Ventilation (PSV), ci troviamo ad impostare sul ventilatore una pressione di fine espirazione (PEEP) ed una pressione di supporto (PS); la pressione delle vie aeree (Paw) indica la pressione totale erogata dal ventilatore, che a fine inspirazione dovrebbe coincidere con la somma di PSV e PEEP.

In PSV il paziente può contribuire alla generazione del volume corrente utilizzando la propria muscolatura respiratoria mentre il ventilatore applica il livello di PS impostato. Definiamo Pmus la riduzione della pressione pleurica generata dai muscoli respiratori durante l’inspirazione. In altri termini, mentre il ventilatore “spinge” l’aria nei polmoni, i muscoli del paziente la “tirano dentro”.

Possiamo ora capire che in PSV la pressione generata per vincere il carico soglia (cioè la PEEP intrinseca, PEEPi), resistivo (pressione resistiva, Pres) ed elastico (pressione elastica, Pel), è prodotta in parte dal ventilatore ed in parte dal paziente. Possiamo sintetizzare tutti questi concetti nell’equazione di moto dell’apparato respiratorio (vedi post del 24/06/2011):

Paw + Pmus = PEEP + PEEPi + Pres + Pel

Per semplificare le cose, considereremo la PEEP intrinseca uguale 0. Come abbiamo già visto, la pressione delle vie aeree è, durante l’inspirazione, la somma di PSV e PEEP. NON abbiamo però idea della Pmus, cioè la pressione sviluppata dai muscoli respiratori.

La riduzione inspiratoria della pressione pleurica è stimata con la misurazione della pressione esofagea. La domanda che possiamo farci adesso è: “Senza sondino esofageo, possiamo stimare la pressione generata dalla muscolatura del paziente?”.…Probabilmente si….

Sui nostri ventilatori eseguendo una occlusione delle vie aeree alla fine della inspirazione, possiamo osservare una pressione di plateau (Pplat), anche quando il paziente è in ventilazione assistita.

PMI_attivo

In condizioni statiche (cioè in assenza di flusso), questa pressione a fine inspirazione corrisponde alla somma della PEEP applicata, e della pressione necessaria per immettere il volume corrente nell’apparato respiratorio (pressione elastica), di cui una quota è apportata dal ventilatore(PS) e una dal paziente(Pmus):

Pplat = PEEP + PS + Pmus

La differenza di pressione tra il plateau durante l’occlusione di fine inspirazione e la pressione applicata dal ventilatore (PEEP+PS), ci può fornire una stima (approssimata per difetto, vedi sotto) della pressione sviluppata dal paziente (Pmus), definita anche PMI (Pressure musc,index) (1):

PMI = Pplat – (PS + PEEP)

PMI_attivo_dettaglio

Nelle figure 1 e 2 possiamo vedere un paziente in PSV con impostati 5 cmH2O di PEEP e 7 cmH2O di PS. Durante l’occlusione di fine inspirazione, se il paziente in questa fase rilascia la muscolatura respiratoria, si può osservare un plateau di pressione. Nel caso presentato si vede un chiaro plateau di pressione di 16 cmH2O. Sappiamo che la differenza tra pressione di plateau e PEEP (totale) è la pressione elastica, che corrisponde alla pressione necessaria per immettere i 600 ml di volume corrente nell’apparato respiratorio.

Pel = Pplat – PEEP = 16 cmH2O – 5 cmH2O = 11 cmH2O

Vediamo che degli 11 cmH2O che servono per accogliere i 600 ml di volume corrente, il ventilatore ne eroga solo 7 cmH2O (PS), gli altri 4 cmH2O sono quindi stati generati dal paziente.

Questa differenza di pressione, 4 cmH2O, può quindi essere presa come una stima della pressione generata dalla muscolatura del paziente. Adesso capiamo probabilmente meglio il significato del PMI, che nel nostro esempio è:

PMI= Pplat – (PS + Peep) = 16 cmH2O – ( 5 cmH2O + 7 cmH2O ) = 4 cmH2O

PMI_passivo

In quest’altro paziente (Fig. 3) le pressioni impostate sono: PEEP 5 cmH2O, PS 10 cmH2O, ed eseguendo una pausa di fine inspirazione misuriamo 13 cmH2O di pressione di plateau.

 PMI_attivo_dettaglio

Abbiamo un livello di pressione di plateau inferiore alla somma di PEEP + PS. La nostra pressione di plateau può essere più bassa della somma (PEEP + PS) quando la pressione sviluppata dal paziente (Pmus) è inferiore alla pressione resistiva a fine inspirazione. Come abbiamo imparato nel paziente passivo, il calo di pressione dopo l’occlusione di fine inspirazione è determinato dalla perdita della pressione resistiva (vedi post del 5/12/2011). La pressione resistiva è proporzionale al flusso, quindi nelle ventilazioni pressometriche (che hanno un flusso inspiratorio discendente) essa a fine inspirazione assume valori solitamente bassi. Pertanto è nei pazienti passivi (o quasi) che riusciremo a ottenere una pressione di plateau più bassa del picco, proprio perché la Pmus è inferiore alla pressione resistiva, ed il PMI sarà negativo. Nel paziente in figura 4:

PMI = Pplat – (PS + PEEP) = 13 cmH2O – (10 cmH2O + 5 cmH2O) = -2 cmH2O

A questo punto può essere interessante una riflessione. Ricordiamoci che il vero obiettivo quando impostiamo una pressione di supporto dovrebbe essere quello di trasferire lavoro dal paziente al ventilatore. Spesso si vede nella pratica clinica (e si legge nella letteratura scientifica) che il livello di pressione di supporto è regolato sul raggiungimento di un volume corrente target, generalmente tra i 6-8 ml/kg (di peso ideale). Quanto era il volume corrente/kg nei due casi che abbiamo presentato nel post?

Il primo (Fig. 1 e 2) è un paziente maschio di 190 cm di altezza (84 kg di peso ideale), che con 7 cmH2O di pressione di supporto sviluppa 590 ml di volume corrente:

590 ml / 85 kg = 7 ml/kg

In questo paziente, osservando il ventilatore (PMI e curva di flusso) possiamo dire che con questo livello di PS abbiamo il trasferimento di una parte del lavoro respiratorio al ventilatore, con il paziente che è comunque molto attivo.

La seconda paziente (Fig. 3 e 4) è una donna alta 167 cm (58 kg di peso ideale), la quale con 10 cmH2O di pressione di supporto genera un volume corrente espiratorio di 415 ml:

415 ml / 59 kg = 7 ml/kg

In questa paziente, osservando la curva di flusso ed il PMI generato, possiamo ragionevolmente pensare ad un trasferimento quasi completo del lavoro respiratorio al ventilatore.

In sintesi, nei nostri due pazienti abbiamo impostato un livello di PS che in entrambi i casi raggiunge il target di volume corrente di 7 ml/kg peso ideale, ma con risultati molto diversi: il raggiungimento di un volume corrente target non ci dice nulla sulla ripartizione del lavoro respiratorio tra paziente e ventilatore.

Conclusioni:

  • Ventilando i pazienti in PSV (come in qualunque altra modalità di ventilazione), la pressione delle vie aeree che vediamo sul ventilatore corrisponde alla pressione erogata dal ventilatore stesso, ma non ci dice nulla sullo sforzo inspiratorio fatto dal paziente.

  • Eseguendo una pausa di fine inspirazione si può osservare una pressione di plateau: sottraendo ad essa PEEP e pressione di supporto inspiratoria, otteniamo una stima (per difetto) di una parte della pressione generata dai muscoli respiratori;

  • Impostare una pressione di supporto avendo un obiettivo di volume corrente (in ml/kg di peso ideale) non fornisce indicazioni sulla quota di lavoro respiratorio che resta a carico del paziente. In pressione di supporto questo può apparire paradossale, se consideriamo che il principale obiettivo di questa modalità di ventilazione è proprio la riduzione del lavoro respiratorio del paziente.

  • Durante la ventilazione in pressione di supporto (come nelle altre modalità di ventilazione), il livello di pressione alveolare a fine inspirazione (quello rilevato durante il plateau) può essere superiore alla pressione applicata dal ventilatore: potrebbero pertanto esserci pazienti a rischio di VILI nonostante rassicuranti valori di pressione delle vie aeree.

Bibliografia.

1) Foti G et al. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 1997;156:1210–1216.

_°_°_°_°_°_°_°_°_°_°_°_°_

Grazie Gianni!

Jan 272013
 

L’autociclaggio (o autotriggering) è la più semplice (ed eclatante) dimostrazione del ruolo insostituibile del monitoraggio grafico della ventilazione meccanica. Ventilab è sempre stato molto sensibile a questo tema, proponendo in passato casi clinici la cui interpretazione poteva essere molto complessa. Oggi ne proporrò uno forse più semplice, ma la cui importanza è decisiva per le sorti di un paziente ventilato.

Qui sotto puoi vedere il monitoraggio grafico di un paziente a cui è stata impostata una ventilazione in pressione di supporto. La schermata ha congelato 10 secondi di ventilazione meccanica in cui compaiono 4 respiri assistiti (quindi una frequenza respiratoria di circa 24/min) con un volume corrente di circa 0.5 l In alto la traccia gialla è la pressione delle vie aeree, in mezzo la traccia verde è il flusso, in basso la traccia azzurra del volume. Ricordiamo che quando il segnale di flusso è al di sopra della linea dello zero (la riga orizzontale bianca) c’è l’inspirazione, mentre al di sotto c’è l’espirazione. All’inizio di ogni inspirazione, la traccia di flusso non è verde ma ha un breve tratto violetto. Questo è il segnale che il nostro ventilatore (un Servo-i Maquet) ci offre per confermarci che il respiro è stato triggerato dal paziente (utilizzando il trigger a flusso). Ma il paziente sta veramente facendo una ventilazione a pressione di supporto? Ti ripresento la stessa immagine che abbiamo appeno visto, con un dettaglio in più.In questa immagine compare anche un’ultima traccia in basso, quella ottenuta dal catetere Edi per la NAVA (Neurally Adjusted Ventilator Assist). La NAVA è una modalità di ventilazione completamente differente da tutte quelle che conosciamo e di cui non abbiamo tempo di parlare oggi (le dedicherò comunque un post a breve). Per ora ci basta sapere che per poterla praticare si utilizza un particolare sondino naso-gastrico (il catetere Edi) nella cui parete è inserita una serie di elettrodi che devono essere posizionati all’altezza del diaframma. Grazie a questi elettrodi è possibile misurare l’attività elettrica del diaframma. Questo catetere consente quindi di avere una sorta di elettromiografia continua del diaframma.

Nell’immagine che vediamo sopra, il paziente ventila, come abbiamo detto, in pressione di supporto ed il catetere Edi ha solo una funzione di monitoraggio. Ma come è l’elettromiografia del diaframma? Piatta! Il diaframma dorme, è fermo, è meno attivo di un muscolo ingessato. Quindi il paziente non sta facendo, come crediamo, una ventilazione assistita ma una vera e propria ventilazione controllata, nonostante sul ventilatore sia stata scelta la modalità “pressione di supporto”. Il trigger non viene attivato dal paziente ma il ventilatore AUTOCICLA: si attiva cioè il trigger in assenza di segni di attività dei muscoli respiratori. Cosa attiva il trigger, se i muscoli respiratori sono fermi?  La causa più frequente è l’oscillazione dell’aria nell’apparato respiratorio determinata dalla trasmissione del battito cardiaco. Qui sotto ti presento un esempio che ho documentato alcuni anni fa.Puoi vedere in alto la traccia di flusso (in blu), in basso la pressione delle vie aeree (in rosso) e la pressione esofagea (in grigio). Anche in questo paziente era impostata sul ventilatore una pressione di supporto.

La fisiologia ci dice che la pressione esofagea si riduce quando si inspira. Qui invece vediamo che durante l’inspirazione la pressione nelle vie aeree aumenta ed insieme ad essa aumenta anche la pressione esofagea: un chiaro segno che il paziente viene insufflato passivamente.

Nella fase espiratoria diventano molto evidenti, sulla traccia di pressione esofagea, le oscillazioni trasmesse dal battito cardiaco. Queste oscillazioni cardiogeniche sono trasmesse, in misura molto più ridotta, anche sulla curva di pressione delle vie aeree sotto forma di piccole increspature (frecce rosse). Un trigger sufficientemente sensibile è in grado di essere attivato dal battito cardiaco. Lo vediamo bene nella figura: l‘ultima di queste oscillazioni innesca il trigger ed inizia l’insufflazione passiva del paziente. Un evidente caso di autociclaggio indotto dalle oscillazioni cardiogeniche.

Possiamo anche osservare un piccolo tranello: una piccola deflessione della pressione delle vie aeree all’iniziodell’insufflazione, che potrebbe essere erroneamente scambiato per un segno di triggeraggio  da parte del paziente, mentre inrealtà è il segno del battito che innesca l’autociclaggio.

Ritorniamo al monitoraggio con catetere Edi. Cosa dobbiamo aspettarci dal monitoraggio dell’attività elettrica diaframmatica durante un respiro realmente triggerato dal paziente? Ecco qui sotto la risposta.

Vediamo in questa schermata che il secondo dei quattro respiri è l’unico effettivamente triggerato dal paziente e non autociclato. Solo in questo respiro il diaframma si depolarizza, come si evidenzia bene sull’onda dell’elettromiografia diaframmatica fornita dal catetere Edi, mentre la traccia resta piatta quando in corrispondenza del primo, terzo e quarto atto respiratorio. Inoltre il secondo è anche l’unico respiro che mostra un segno di possibile triggeraggio sulla curva gialla di pressione delle vie aeree: una piccola incisura nella pressione associata alla immediata insufflazione. Come abbiamo visto nell’esempio precedente, quest’ultimo segno può essere fuorviante in caso di presenza di oscillazioni cardiogeniche trasmesse alle vie aeree.

Nel paziente che abbiamo studiato oggi, grazie al monitoraggio consentito dalla NAVA, abbiamo diagnosticato l’autociclaggio senza difficoltà ed in maniera eclatante.

Quali sono le conseguenze di un autociclaggio sistematico? L’abolizione della semplice attività di trigger è sufficiente a determinare una rilevante disfunzione diaframmatica indotta dalla ventilazione (1), una delle principali cause di svezzamento prolungato o impossibile  (2). Avremo sicuramente modo di riparlarne.

Prima di salutarci, come sempre il messaggio conclusivo:
– cerchiamo sempre l’incisura sulla pressione delle vie aeree all’inizio dell’insufflazione come segno di triggeraggio. Dubitiamo però di questa incisura se fa parte di una serie ritmica con il battito cardiaco;
– verifichiamo che le tracce di flusso e pressione delle vie aeree non appaiano chiaramente passive (vedi post del 8 maggio 2011)
– quando presente, sfruttiamo il monitoraggio dell’attività elettrica diaframmatica con il catetere Edi della NAVA.

Un caro saluto a tutti. A presto.

Bibliografia.

1) Sassoon CS et al. Assist–control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction.  Am J Respir Crit Care Med 2004; 170:626-32

2) Jaber S et al. Ventilator-induced diaphragmatic dysfunction: human studies confirm animal model findings. Crit Care 2011, 15:206

May 302011
 

La ventilazione meccanica può salvare la vita, ma se non attuata correttamente può avere un impatto negativo sulla prognosi dei pazienti. Spesso abbiamo parlato di ventilazione protettiva nella ARDS per prevenire il ventilator-induced lung injury (VILI). Oggi parleremo invece della disfunzione diaframmatica indotta dalla ventilazione meccanica (ventilator-induced diaphragmatic dysfunction, VIDD).

La  VIDD può condizionare in maniera rilevante lo svezzamento dalla ventilazione meccanica ed il trasferimento dei nostri pazienti verso i centri di Riabilitazione.

A questo proposito vorrei condividere con gli amici di ventilab i contenuti di una relazione che ho presentato il 27 maggio presso il Centro di Riabilitazione “E. Spalenza” della Fondazione don Gnocchi di Rovato. Potrai vedere ed ascoltare la presentazione su youtube cliccando i link che trovi nelle righe qui sotto. La relazione è stata suddivisa in 3 parti di circa 8 minuti ciascuna.

Per vedere la prima parte clicca qui: prima parte.

Per vedere la seconda parte clicca qui: seconda parte.

Per vedere la terza parte clicca qui: terza parte.

Se vuoi scaricare il .pdf della presentazione, clicca qui.

Mi farebbe piacere sapere se trovi utile e comoda la modalità audio-video di presentazione dei contenuti o se preferisci il tradizizonale testo scritto. Puoi farlo lasciando un commento qui sotto o inviando una mail a info@ventilab.org.

Un saluto a tutti e grazie per l’attenzione e gli attestati di apprezzamento al lavoro di ventilab. Proposte e suggerimenti sono sempre ben accetti.

May 222011
 

Oggi parliamo di trigger nella ventilazione meccanica.

Il trigger è genericamente un dispositivo che innesca qualcosa. Tipicamente nelle armi da fuoco è il grilletto. Nella ventilazione meccanica il trigger è qualcos’altro.

Utilizziamo ogni giorno due tipi di trigger: trigger inspiratorio e trigger espiratorio.

Trigger inspiratorio.

Il trigger inspiratorio è quel dispositivo che consente al ventilatore di iniziare la propria fase inspiratoria un sincronia con l’inizio dell’inspirazione del paziente.

Tipi di trigger.

Sono utilizzati nella pratica clinica tre tipi di trigger inspiratorio:

trigger a pressione: durante l’espirazione la valvola inspiratoria del ventilatore è chiusa. Quando il paziente inizia l’inspirazione successiva, si genera una pressione negativa nel circuito del ventilatore. Infatti, come descritto dalla legge di Boyle, il prodotto di pressione e volume è costante. Quindi se aumenta il volume dei polmoni (=inspirazione) ma non vi entra nuovo gas (valvola inspiratoria chiusa), la pressione diminuisce. Noi possiamo scegliere il livello critico di riduzione della pressione nel circuito respiratorio che il ventilatore identifica con l’inspirazione del paziente: questo è il nostro trigger. Il valore da scegliere dovrebbe essere sempre il più basso possibile, in modo tale da rendere il trigger molto sensibile: questo consentirà una tempestiva assistenza inspiratoria e la riduzione del lavoro del paziente sprecato per attivare l’inspirazione del ventilatore meccanico. Solitamente i valori che conviene impostare sono dell’ordine di -0.5/-1 cmH2O. Il rischio di un trigger troppo sensibile è l’autociclaggio della macchina, cioè l’innesco di atti inspiratori non richiesti dal paziente. Nel post del 8 maggio puoi leggere e vedere come riconoscere quando gli atti inspiratori sono effettivamente richiesti dal paziente

trigger a flusso: le valvole inspiratoria ed espiratoria non si chiudono mai ed il ventilatore eroga un flusso continuo (bias flow o flusso di base). Il flusso di base in alcuni ventilatori è regolabile nel pannello delle impostazioni, in altri è fisso (ad esempio nei ventilatori Siemens/Maquet è di 2 l/min). Quando il paziente finisce l’espirazione, rimarrà nel circuito del ventilatore il flusso di base: esso esce dalla via inspiratoria e rientra inalterato nel ventilatore attraverso la via espiratoria. Se il paziente inizia l’inspirazione, una parte del flusso di base sarà sottratta dal paziente ed al ventilatore rientrerà un flusso minore di quello erogato. Questo è il segnale che il paziente inizia ad inspirare e così sarà innescata l’assistenza inspiratoria. Il trigger a flusso può essere reso più sensibile impostando un basso valore di sensibilità di flusso. La sensibilità di flusso è la differenza tra flusso di base che esce dalla branca inspiratoria ed il flusso che rientra nel ventilatore dalla branca espiratoria. In molti ventilatori è direttamente regolabile: una sensibilità di flusso di 1 l/min imposta un trigger più sensibile rispetto a una sensibilità di flusso di 5 l/min. Nel Servo 300 Siemens la sensibilità di flusso non si esprime in l/min, ma su una scala colorata: sul rosso il trigger è più sensibile e sul verde lo è meno. Nel Servoi Maquet ci sono anche dei numeri da 1 a 10: attenzione, non inidicano i l/min di sensibilità di flusso! 10 è il trigger più sensibile  mentre 1 è il meno sensibile.

trigger neurale: attualmente disponibile nella modalità di ventilazione NAVA (Neurally Adjusted Ventilatory Assist) della Maquet, consente di innescare l’insufflazione quando la inizia la depolarizzazione del diaframma. Richiede il posizionamento di un apposito sondino naso-gastrico dotato di elettrodi che vengono a posizionarsi a livello del diaframma. Prossimamente daremo spazio alla NAVA. Per ora ci basta anticipare che sincronizzare il ventilatore sull’inizio della contrazione diaframmatica (cioè della sua depolarizzazione) può dare la massima sensibilità al trigger, perchè le variazioni di flusso o pressione del circuito sono sicuramente più tardive e soggette a numerose variabili, come ad esempio PEEP intrinseca, resistenze delle vie aeree, compliance, forza muscolare, …

Trigger a pressione o a flusso?

Ventilazione assistita. Nella maggior parte dei pazienti non vi sono differenze clinicamente rilevanti tra un trigger a pressione o uno a flusso, se opportunamente impostati (1,2). Tuttavia, in alcuni pazienti con sforzi inefficaci, la maggior sensibilità del trigger a flusso può migliorare la sincronia ventilatore-paziente, riducendo la frequenza degli sforzi inefficaci. Riprendendo il caso commentato nel post del 8 maggio, vediamo come si modifica la sincronia paziente-ventilatore modificando il trigger. Nella figura 1 vediamo un trigger a pressione di -1 cnH2O e nella figura 2 un trigger a flusso alla minima sensibilità (livello 1 in un Servoi Maquet). Risultato: nessuna differenza tra le due modalità di trigger.

figura 1

figura 2

Ma se rendiamo massima la sensibilità del trigger a flusso (livello 10), la sincronia diventa perfetta (figura 3).

figura 3

figura 4

 Nella figura 4 vediamo invece cosa succede se si riduce un pochino la sensibilità del trigger a pressione rispetto alla figura 1 (da -1 a -2 cmH2O): un disastro, come discusso nel post precedente.

CPAP. Non ho dubbi: trigger a flusso ad elevata sensibilità. In CPAP non si triggera nessuna assistenza inspiratoria, quindi nessun problema di autociclaggio del ventilatore.

Trigger espiratorio.

Un aspetto spesso trascurato. Nella ventilazione a pressione di supporto il flusso inspiratorio è decrescente (se il paziente non ha una intensa attività dei propri muscoli inspiratori). L’inspirazione termina quando il flusso inspiratorio, riducendosi progressivamente, raggiunge un valore critico. Nei ventilatori più recenti il trigger espiratorio è regolabile ed il livello di flusso inspiratorio che triggera l’espirazione è espressa come % del massimo flusso inspiratorio. Nelle macchine più datate (es. Servo 300 Siemens) il trigger espirartorio è invece fisso e non compare tra le opzioni di impostazione.

Vediamo un esempio nella figura 5. Se scegliamo come trigger espiratorio il 50% del picco di flusso inspiratorio (parte sinistra della figura) vediamo che quando si dimezza il picco di flusso inspiratorio, l’inspirazione termina ed inizia l’espirazione. Quando  si sceglia un trigger espiratorio del 5% (parte destra della figura), l’effetto è quello di prolungare la durata dell’inspirazione: infatti ci vuole più tempo per raggiungere il valore critico di flusso che consente di passare all’espirazione. Quindi un trigger espiratorio basso aumenta la durata dell’inspirazione (esistono frequenti eccezioni che però meritano un post tutto per sè).

figura 5

 Come regolare il trigger espiratorio?

Nei pazienti con PEEP intrinseca un trigger espiratorio del 40-50% riduce l’iperinflazione dinamica e lavoro respiratorio e migliora l’interazione paziente ventilatore (3,4).  A mio parere, un trigger espiratorio ridotto (10-20%) è preferibile invece nei pazienti senza PEEPi se sono ipossiemici, se hanno inspirazioni brevi o se hanno bisogno di un pieno supporto dei muscoli inspiratori.

Anche oggi abbiamo messo parecchia carne al fuoco. Per necessità di sintesi non ho approfondito molti aspetti relativi al triggeraggio inspiratorio ed espiratorio: se hai qualche dubbio o suggerimento, non esitare a lasciare un commento nello spazio sottostante.

Un saluto a tutti gli amici di ventilab.

Bibliografia.

1) Tutuncu AS et al. Comparison of pressure- and flow-triggered pressure-support ventilation on weaning parameters in patients recovering from acute respiratory failure. Crit Care Med 1997; 25:756-60.

2) Goulet R et al. Pressure vs. flow triggering during pressure support ventilation. Chest 1997; 111:1649-53.

3) Chiumello D et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 2007; 35:2547-52

4) Tassuax D et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172:1283-9.

May 082011
 

Eccomi qua per il analizzare il monitoraggo grafico della ventilazione meccanica proposto nel post del 25 aprile. Prima di iniziare, un vivo ringraziamento agli amici che hanno lasciato un commento al post.

Iniziamo analizzando l’impostazione “A” (figura 1).

Figura 1

Ripropongo il consueto schema ABCDEF (vedi post 20/08/2010 e 29/08/2010).

A) identifichiamo le curve di pressione delle vie aeree (in giallo nella figura) e flusso (in verde). Ignoriamo tutto il resto del monitoraggio perchè non aggiunge nulla alle informazioni contenute in queste due curve del monitoraggio grafico della ventilazione meccanica.

B) cerchiamo l’inspirazione sulla traccia di flusso, individuata dalla curva al di sopra della linea dello zero. Il flusso inspiratorio, dopo un picco iniziale, diventa decrescente. Il flusso inspiratorio decrescente è il marker delle ventilazioni pressometriche con paziente passivo durante l’inspirazione. Vediamo 3 onde di flusso inspiratorio nei 10 secondi di registrazione delle curve: la frequenza respiratoria sarà quindi di 18 atti/minuto.

C) la pressione nelle vie aeree aumenta rapidamente durante l’inspirazione, quindi raggiunge un plateau. E’ approssimativamente un’onda quadra di pressione. Anche questo è un marker di una ventilazione pressometrica con paziente passivo.

D) la pressione delle vie aeree non aumenta alla fine dell’inspirazione. Non c’è quindi segno di attivazione dei muscoli espiratori prima che l’inspirazione termini: il paziente è ben sincrono con il termine della fase inspiratoria del ventilatore. Altro segno di paziente passivo.

E) il flusso espiratorio, al di sotto della linea dello zero, inizia con un picco e successivamente decresce esponenzialmente. In altre parole ha l’aspetto di una curva con la concavità verso il basso. Questo è il tipico aspetto di una espirazione passiva. Ma come è passivo questo paziente!

F) cerchiamo alla fine dell’espirazione una riduzione della pressione delle vie aeree o una decelezione del flusso come segno dell’inizio dell’attività dei muscoli respiratori per l’inspirazione successiva. In altre parole vediamo se il paziente si attiva per il respiro successivo (cioè se triggera). In questo caso vediamo una quasi impercettibile riduzione della pressione delle vie aeree associata ad una minima decelerazione (=avvicinamento più rapido verso la linea dello zero) del flusso espiratorio. Unico segno di attività del paziente è questa minima, quasi impercettibile attività di triggeraggio.

In sintesi abbiamo una ventilazione pressometrica con paziente passivo durante inspirazione ed espirazione. Gli atti respiratori sono triggerati. Abbiamo due possibilità: una ventilazione assistita controllata pressometrica (APCV) o una ventilazione a pressione di supporto con pieno supporto della funzione ventilatoria. In realtà il paziente aveva una pressione di supporto di 12 cmH2O con 5 cmH2O di PEEP ed un trigger a flusso molto sensibile (10 su Servoi Maquet).

Ed ora passiamo alla più complessa analisi dell’impostazione “B”. Facciamo il ABCDEF anche in questo caso, quindi scegliamo solo le curve di pressione e flusso (A).

Quindi identifichiamo l’inspirazione sulla curva di flusso (B) (figura 2).

Figura 2

Qui vediamo cinque atti inspiratori nei dieci secondi di monitoraggio grafico della schermata. Cinque respiri in 10 secondi sono 30 respiri/minuto. Ora analizziamo la forma della curva di flusso durante l’inspirazione. Per ora escluiamo dall’analisi il respiro 1. Nei respiri dal 2 al 5 vediamo chiaramente un flusso decrescente, tipico delle ventilazioni pressometriche.

La curva di pressione delle vie aeree (C) aumenta durante l’inspirazione. In particolare il valore di pressione di picco (o quasi) è spesso raggiunto nella prima parte dell’inspirazione, e poi si assesta su un un plateau più o meno regolare, caratteristica propria delle ventilazioni pressometriche.

Nelle ventilazioni pressometriche, tanto più il paziente è passivo, tanto più il flusso inspiratorio è esponenzialmente decrescente e la pressione durante l’insufflazione rimane prevalentemente sul livello della pressione di picco. Nel nostro paziente l’inspirazione 3 è passiva dal momento in cui inizia il flusso, nelle altre inspirazioni il paziente invece sembra un po’ più attivo.

L’inspirazione 1 è molto strana: il flusso è decrescente fino a circa metà dell’inspirazione, quindi aumenta e decresce nuovamente. Contemporaneamente la pressione scende e poi risale al valore di picco. Cosa è successo? Mentre il paziente stava smettendo di inspirare (flusso decrescente) ha effettuato una nuova inspirazione (il flusso è risalito). Questa inspirazione in realtà si associa a due atti inspiratori dei muscoli respiratori del paziente. Ne consegue che gli atti inspiratori dei muscoli respiratori sono 6 e non cinque come avevamo dedotto da una prima analisi. La frequenza respiratoria (dei muscoli respiratori del paziente) è quindi di 36 atti al minuto, e non 30 come misurato dal ventilatore .

Nella figura 4 vediamo le ultime tre fasi (D-E-F) dell’analisi.

Figura 3

Con la D analizziamo se c’è una sufficiente sincronia tra l’espirazione del paziente ed il ciclaggio del ventilatore, cioè se le pressioni delle vie aeree a fine inspirazione sono simili alla somma di PS più PEEP (linea azzurra). Mi sembra che non ci siano grossolane differenze tra pressioni misurate ed attese: l’inspirazione del paziente e del ventilatore sono sincrone.

Vediamo ora l’espirazione (E). Nelle prime due espirazioni e nell’ultima il flusso espiratorio è grossolanamente decrescente: non sembrano esserci quindi ostruzione bronchiale né espirio forzato. Nella terza espirazione vediamo che il flusso espiratorio prima si azzera, resta sula linea dello zero per circa mezzo secondo, quindi ricomincia l’espirazione da dove si era interrotta. Questo è uno sforzo inefficace. Il paziente ha terminato la propria inspirazione quando questa ha toccato la linea dello zero. In effetti la durata di questa espirazione non sarebbe stata molto diversa dalla precedente e dalla successiva. Ma quando ha tentato di inspirare non è riuscito a triggerare l’inspirazione successiva. Questo avviene in caso di PEEP intrinseca e/o trigger poco sensibile. Dopo il tentativo fallito di inspirazione, il paziente riprende l’espirarzione, riducendo la PEEP intrinseca. Al termine di questa doppia espirazione riesce finalmente ad attivare l’inspirazione successiva. Anche lo sforzo inefficace deve essere considerato un’inspirazione dal punto di vista muscolare: i muscoli respiratori hanno inspirato, purtroppo senza riuscire a fare entrare gas nei polmoni. Quindi anche questo sforzo inefficace va aggiunto alla frequenza respiratoria dei muscoli respiratori del paziente. Gli atti inspiratori “muscolari” sono quindi 7 (e non 6) nei dieci secondi, per una frequenza di 42 al minuto, contro i 30 misurati dal monitoraggio del ventilatore. Non è proprio la stessa cosa!

Finalmente andiamo all’ultimo step (F), l’attivazione dei muscoli inspiratori. Questa si evidenzia come una rapida riduzione del flusso espiratorio ed una consensuale caduta della pressione nelle vie aeree (frecce tratteggiate). Il paziente ha una attività molto intensa per attivare il trigger.

In sintesi, il nostro paziente con l’impostazione “B” aumenta la frequenza respiratoria (30/min quella apparente, 42/min quella dei muscoli respiratori), presenta fenomeni di asincronia sia inspiratoria che espiratoria, ha una marcata attività per triggerare l’inspirazione, è meno passivo durante l’inspirazione.

L’unica modifica dell’impostazione del ventilatore è il trigger. Il trigger a flusso molto sensibile è stato sostituito da un trigger a pressione di -2 cmH2O. Le due curve sono state registrate a pochi minuti l’una dall’altra.

Per oggi mi sono dilungato fin troppo. Ci rivediamo su ventilab per parlare un po’ di trigger.

Un saluto a tutto. E tanti auguri alle mamme.

Jan 292011
 

Nel post del 7 gennaio abbiamo analizzato le variazioni di bicarbonati nei pazienti con acidosi metabolica. Oggi prendiamo in considerazione l’aspetto opposto del problema: nei pazienti con acidosi metabolica, come interpretiamo il valore di PaCO2?

Consideriamo il caso di un paziente diabetico di 75 anni che si presenta in Pronto Soccorso con 38.8 °C di temperatura. Da tre giorni, oltre alla febbre, sono presenti vomito e diarrea. Il paziente è sveglio, collaborante, ha una lieve dispnea, è ipoteso ed oligurico. La radiografia del torace mostra sfumati addensamenti su entrambi i campi polmonari. L’emogasanalisi arteriosa (eseguita con 5 l/min di O2 in maschera) è la seguente: pH 7.21, PaCO2 41 mmHg, HCO3- 16 mmol/l, PaO2 42 mmHg.

Le cose da fare sono molte: una di queste è il supporto della funzione respiratoria del paziente. Il medico del Pronto Soccorso decide di iniziare una CPAP noninvasiva per trattare la grave ipossiemia. Non ritiene necessario un supporto inspiratorio perchè l’acidosi è esclusivamente metabolica (la PaCO2 è nel range di normalità).

Sei d’accordo con questa scelta?

Certamente la PaCO2 è nel range di normalità (35-45 mmHg). E’ normale avere la PaCO2 entro i limiti fisiologici se ci si trova in una situazione non fisiologica? Sappiamo bene che l’incremento della concentrazione degli idrogenioni liquorali induce un aumento della ventilazione stimolando i centri bulbari (vedi post del 21/11/2010). Nell’acidosi metabolica il pH liquorale è ridotto perchè è in equilibrio con il pH arterioso. Quindi ci dobbiamo aspettare che un’acidosi metabolica determini un’iperventilazione. E infatti tutti abbiamo studiato ed osservato che i pazienti con acidosi metabolica iperventilano e che la riduzione della PaCO2 riavvicina il pH al valore normale.

Quanto iperventila un paziente con acidosi metabolica? Osservazioni empiriche su umani ci indicano che mediamente ad ogni riduzione di 1 mmol/l di bicarbonato si associa il calo di PaCO2 di circa 1.2 mmHg (1).

Il paziente che abbiamo descritto ha una PaCO2 normale in presenza di acidosi metabolica: questo è un dato patologico. E possiamo anche stimare di quanto dovrebbe essere la PaCO2 se avesse messo in atto un normale compenso respiratorio dell’acidosi metabolica. I bicarbonati sono diminuiti di circa 8 mmol/l rispetto al normale (24 mmol/l). Ne consegue che dovremmo aspettarci una PaCO2 di circa 30 mmHg (dal valore normale di 40 mmHg togliamo 8 x 1.2 mmHg). Il paziente ha in realtà 11 mmHg di PaCO2 più del valore appropriato nella condizione in cui si trova. In realtà la sua acidosi deve essere considerata mista perchè sia i bicarbonati che la PaCO2 non sono normali. E se la PaCO2 è più alta di quello che dovrebbe essere, la spiegazione è semplice: una insufficienza della pompa respiratoria. E quando c’è una insufficienza di pompa respiratoria bisogna fornire al paziente un supporto inspiratorio e non una CPAP. Quindi, a mio parere, l’ideale sarebbe stato fare una ventilazione assistita (pressione di supporto, bipap, controllata/assistita).

Per riassumere possiamo concludere che:

1) quando c’è acidosi metabolica, la PaCO2 deve essere inferiore al valore normale nella misura di 1.2 mmHg per ogni riduzione di 1 mmol/l di bicarbonato;

2) se la PaCO2 misurata è significativamente superiore al valore atteso, è presente un’insufficienza conclamata della pompa respiratoria;

3) se è presente insufficienza della pompa respiratoria, è necessario il supporto inspiratorio (che la CPAP non può dare) con una ventilazione assistita.

Un caro saluto a tutti gli amici di ventilab.

Reference:

1) Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York 2004, 5th ed. Cap. 17: Introduction to simple and mixed acid-base balance disorders. Pagg. 535-550.