May 082016
 

push_and_pullOggi propongo con vero piacere il contributo offerto a ventilab da un caro amico, Gianni Ciabatti di Firenze. Gianni reintepreta in chiave originale il PMI (Pressure musc,index), cioè la differenza tra la pressione di plateau e la pressione applicata dal ventilatore in ventilazione assistita. Il PMI nasce come stima non-invasiva dello sforzo inspiratorio a fine inspirazione: a mio parere Gianni presenta una semplificazione concettuale del PMI, che ci consentirà di utilizzarlo facilmente nella pratica clinica.

Ed ora leggiamoci il post.

_°_°_°_°_°_°_°_°_°_°_°_°_

Quando iniziamo a ventilare un paziente in modalità Pressure Support Ventilation (PSV), ci troviamo ad impostare sul ventilatore una pressione di fine espirazione (PEEP) ed una pressione di supporto (PS); la pressione delle vie aeree (Paw) indica la pressione totale erogata dal ventilatore, che a fine inspirazione dovrebbe coincidere con la somma di PSV e PEEP.

In PSV il paziente può contribuire alla generazione del volume corrente utilizzando la propria muscolatura respiratoria mentre il ventilatore applica il livello di PS impostato. Definiamo Pmus la riduzione della pressione pleurica generata dai muscoli respiratori durante l’inspirazione. In altri termini, mentre il ventilatore “spinge” l’aria nei polmoni, i muscoli del paziente la “tirano dentro”.

Possiamo ora capire che in PSV la pressione generata per vincere il carico soglia (cioè la PEEP intrinseca, PEEPi), resistivo (pressione resistiva, Pres) ed elastico (pressione elastica, Pel), è prodotta in parte dal ventilatore ed in parte dal paziente. Possiamo sintetizzare tutti questi concetti nell’equazione di moto dell’apparato respiratorio (vedi post del 24/06/2011):

Paw + Pmus = PEEP + PEEPi + Pres + Pel

Per semplificare le cose, considereremo la PEEP intrinseca uguale 0. Come abbiamo già visto, la pressione delle vie aeree è, durante l’inspirazione, la somma di PSV e PEEP. NON abbiamo però idea della Pmus, cioè la pressione sviluppata dai muscoli respiratori.

La riduzione inspiratoria della pressione pleurica è stimata con la misurazione della pressione esofagea. La domanda che possiamo farci adesso è: “Senza sondino esofageo, possiamo stimare la pressione generata dalla muscolatura del paziente?”.…Probabilmente si….

Sui nostri ventilatori eseguendo una occlusione delle vie aeree alla fine della inspirazione, possiamo osservare una pressione di plateau (Pplat), anche quando il paziente è in ventilazione assistita.

PMI_attivo

In condizioni statiche (cioè in assenza di flusso), questa pressione a fine inspirazione corrisponde alla somma della PEEP applicata, e della pressione necessaria per immettere il volume corrente nell’apparato respiratorio (pressione elastica), di cui una quota è apportata dal ventilatore(PS) e una dal paziente(Pmus):

Pplat = PEEP + PS + Pmus

La differenza di pressione tra il plateau durante l’occlusione di fine inspirazione e la pressione applicata dal ventilatore (PEEP+PS), ci può fornire una stima (approssimata per difetto, vedi sotto) della pressione sviluppata dal paziente (Pmus), definita anche PMI (Pressure musc,index) (1):

PMI = Pplat – (PS + PEEP)

PMI_attivo_dettaglio

Nelle figure 1 e 2 possiamo vedere un paziente in PSV con impostati 5 cmH2O di PEEP e 7 cmH2O di PS. Durante l’occlusione di fine inspirazione, se il paziente in questa fase rilascia la muscolatura respiratoria, si può osservare un plateau di pressione. Nel caso presentato si vede un chiaro plateau di pressione di 16 cmH2O. Sappiamo che la differenza tra pressione di plateau e PEEP (totale) è la pressione elastica, che corrisponde alla pressione necessaria per immettere i 600 ml di volume corrente nell’apparato respiratorio.

Pel = Pplat – PEEP = 16 cmH2O – 5 cmH2O = 11 cmH2O

Vediamo che degli 11 cmH2O che servono per accogliere i 600 ml di volume corrente, il ventilatore ne eroga solo 7 cmH2O (PS), gli altri 4 cmH2O sono quindi stati generati dal paziente.

Questa differenza di pressione, 4 cmH2O, può quindi essere presa come una stima della pressione generata dalla muscolatura del paziente. Adesso capiamo probabilmente meglio il significato del PMI, che nel nostro esempio è:

PMI= Pplat – (PS + Peep) = 16 cmH2O – ( 5 cmH2O + 7 cmH2O ) = 4 cmH2O

PMI_passivo

In quest’altro paziente (Fig. 3) le pressioni impostate sono: PEEP 5 cmH2O, PS 10 cmH2O, ed eseguendo una pausa di fine inspirazione misuriamo 13 cmH2O di pressione di plateau.

 PMI_attivo_dettaglio

Abbiamo un livello di pressione di plateau inferiore alla somma di PEEP + PS. La nostra pressione di plateau può essere più bassa della somma (PEEP + PS) quando la pressione sviluppata dal paziente (Pmus) è inferiore alla pressione resistiva a fine inspirazione. Come abbiamo imparato nel paziente passivo, il calo di pressione dopo l’occlusione di fine inspirazione è determinato dalla perdita della pressione resistiva (vedi post del 5/12/2011). La pressione resistiva è proporzionale al flusso, quindi nelle ventilazioni pressometriche (che hanno un flusso inspiratorio discendente) essa a fine inspirazione assume valori solitamente bassi. Pertanto è nei pazienti passivi (o quasi) che riusciremo a ottenere una pressione di plateau più bassa del picco, proprio perché la Pmus è inferiore alla pressione resistiva, ed il PMI sarà negativo. Nel paziente in figura 4:

PMI = Pplat – (PS + PEEP) = 13 cmH2O – (10 cmH2O + 5 cmH2O) = -2 cmH2O

A questo punto può essere interessante una riflessione. Ricordiamoci che il vero obiettivo quando impostiamo una pressione di supporto dovrebbe essere quello di trasferire lavoro dal paziente al ventilatore. Spesso si vede nella pratica clinica (e si legge nella letteratura scientifica) che il livello di pressione di supporto è regolato sul raggiungimento di un volume corrente target, generalmente tra i 6-8 ml/kg (di peso ideale). Quanto era il volume corrente/kg nei due casi che abbiamo presentato nel post?

Il primo (Fig. 1 e 2) è un paziente maschio di 190 cm di altezza (84 kg di peso ideale), che con 7 cmH2O di pressione di supporto sviluppa 590 ml di volume corrente:

590 ml / 85 kg = 7 ml/kg

In questo paziente, osservando il ventilatore (PMI e curva di flusso) possiamo dire che con questo livello di PS abbiamo il trasferimento di una parte del lavoro respiratorio al ventilatore, con il paziente che è comunque molto attivo.

La seconda paziente (Fig. 3 e 4) è una donna alta 167 cm (58 kg di peso ideale), la quale con 10 cmH2O di pressione di supporto genera un volume corrente espiratorio di 415 ml:

415 ml / 59 kg = 7 ml/kg

In questa paziente, osservando la curva di flusso ed il PMI generato, possiamo ragionevolmente pensare ad un trasferimento quasi completo del lavoro respiratorio al ventilatore.

In sintesi, nei nostri due pazienti abbiamo impostato un livello di PS che in entrambi i casi raggiunge il target di volume corrente di 7 ml/kg peso ideale, ma con risultati molto diversi: il raggiungimento di un volume corrente target non ci dice nulla sulla ripartizione del lavoro respiratorio tra paziente e ventilatore.

Conclusioni:

  • Ventilando i pazienti in PSV (come in qualunque altra modalità di ventilazione), la pressione delle vie aeree che vediamo sul ventilatore corrisponde alla pressione erogata dal ventilatore stesso, ma non ci dice nulla sullo sforzo inspiratorio fatto dal paziente.

  • Eseguendo una pausa di fine inspirazione si può osservare una pressione di plateau: sottraendo ad essa PEEP e pressione di supporto inspiratoria, otteniamo una stima (per difetto) di una parte della pressione generata dai muscoli respiratori;

  • Impostare una pressione di supporto avendo un obiettivo di volume corrente (in ml/kg di peso ideale) non fornisce indicazioni sulla quota di lavoro respiratorio che resta a carico del paziente. In pressione di supporto questo può apparire paradossale, se consideriamo che il principale obiettivo di questa modalità di ventilazione è proprio la riduzione del lavoro respiratorio del paziente.

  • Durante la ventilazione in pressione di supporto (come nelle altre modalità di ventilazione), il livello di pressione alveolare a fine inspirazione (quello rilevato durante il plateau) può essere superiore alla pressione applicata dal ventilatore: potrebbero pertanto esserci pazienti a rischio di VILI nonostante rassicuranti valori di pressione delle vie aeree.

Bibliografia.

1) Foti G et al. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 1997;156:1210–1216.

_°_°_°_°_°_°_°_°_°_°_°_°_

Grazie Gianni!

Jan 272013
 

L’autociclaggio (o autotriggering) è la più semplice (ed eclatante) dimostrazione del ruolo insostituibile del monitoraggio grafico della ventilazione meccanica. Ventilab è sempre stato molto sensibile a questo tema, proponendo in passato casi clinici la cui interpretazione poteva essere molto complessa. Oggi ne proporrò uno forse più semplice, ma la cui importanza è decisiva per le sorti di un paziente ventilato.

Qui sotto puoi vedere il monitoraggio grafico di un paziente a cui è stata impostata una ventilazione in pressione di supporto. La schermata ha congelato 10 secondi di ventilazione meccanica in cui compaiono 4 respiri assistiti (quindi una frequenza respiratoria di circa 24/min) con un volume corrente di circa 0.5 l In alto la traccia gialla è la pressione delle vie aeree, in mezzo la traccia verde è il flusso, in basso la traccia azzurra del volume. Ricordiamo che quando il segnale di flusso è al di sopra della linea dello zero (la riga orizzontale bianca) c’è l’inspirazione, mentre al di sotto c’è l’espirazione. All’inizio di ogni inspirazione, la traccia di flusso non è verde ma ha un breve tratto violetto. Questo è il segnale che il nostro ventilatore (un Servo-i Maquet) ci offre per confermarci che il respiro è stato triggerato dal paziente (utilizzando il trigger a flusso). Ma il paziente sta veramente facendo una ventilazione a pressione di supporto? Ti ripresento la stessa immagine che abbiamo appeno visto, con un dettaglio in più.In questa immagine compare anche un’ultima traccia in basso, quella ottenuta dal catetere Edi per la NAVA (Neurally Adjusted Ventilator Assist). La NAVA è una modalità di ventilazione completamente differente da tutte quelle che conosciamo e di cui non abbiamo tempo di parlare oggi (le dedicherò comunque un post a breve). Per ora ci basta sapere che per poterla praticare si utilizza un particolare sondino naso-gastrico (il catetere Edi) nella cui parete è inserita una serie di elettrodi che devono essere posizionati all’altezza del diaframma. Grazie a questi elettrodi è possibile misurare l’attività elettrica del diaframma. Questo catetere consente quindi di avere una sorta di elettromiografia continua del diaframma.

Nell’immagine che vediamo sopra, il paziente ventila, come abbiamo detto, in pressione di supporto ed il catetere Edi ha solo una funzione di monitoraggio. Ma come è l’elettromiografia del diaframma? Piatta! Il diaframma dorme, è fermo, è meno attivo di un muscolo ingessato. Quindi il paziente non sta facendo, come crediamo, una ventilazione assistita ma una vera e propria ventilazione controllata, nonostante sul ventilatore sia stata scelta la modalità “pressione di supporto”. Il trigger non viene attivato dal paziente ma il ventilatore AUTOCICLA: si attiva cioè il trigger in assenza di segni di attività dei muscoli respiratori. Cosa attiva il trigger, se i muscoli respiratori sono fermi?  La causa più frequente è l’oscillazione dell’aria nell’apparato respiratorio determinata dalla trasmissione del battito cardiaco. Qui sotto ti presento un esempio che ho documentato alcuni anni fa.Puoi vedere in alto la traccia di flusso (in blu), in basso la pressione delle vie aeree (in rosso) e la pressione esofagea (in grigio). Anche in questo paziente era impostata sul ventilatore una pressione di supporto.

La fisiologia ci dice che la pressione esofagea si riduce quando si inspira. Qui invece vediamo che durante l’inspirazione la pressione nelle vie aeree aumenta ed insieme ad essa aumenta anche la pressione esofagea: un chiaro segno che il paziente viene insufflato passivamente.

Nella fase espiratoria diventano molto evidenti, sulla traccia di pressione esofagea, le oscillazioni trasmesse dal battito cardiaco. Queste oscillazioni cardiogeniche sono trasmesse, in misura molto più ridotta, anche sulla curva di pressione delle vie aeree sotto forma di piccole increspature (frecce rosse). Un trigger sufficientemente sensibile è in grado di essere attivato dal battito cardiaco. Lo vediamo bene nella figura: l‘ultima di queste oscillazioni innesca il trigger ed inizia l’insufflazione passiva del paziente. Un evidente caso di autociclaggio indotto dalle oscillazioni cardiogeniche.

Possiamo anche osservare un piccolo tranello: una piccola deflessione della pressione delle vie aeree all’iniziodell’insufflazione, che potrebbe essere erroneamente scambiato per un segno di triggeraggio  da parte del paziente, mentre inrealtà è il segno del battito che innesca l’autociclaggio.

Ritorniamo al monitoraggio con catetere Edi. Cosa dobbiamo aspettarci dal monitoraggio dell’attività elettrica diaframmatica durante un respiro realmente triggerato dal paziente? Ecco qui sotto la risposta.

Vediamo in questa schermata che il secondo dei quattro respiri è l’unico effettivamente triggerato dal paziente e non autociclato. Solo in questo respiro il diaframma si depolarizza, come si evidenzia bene sull’onda dell’elettromiografia diaframmatica fornita dal catetere Edi, mentre la traccia resta piatta quando in corrispondenza del primo, terzo e quarto atto respiratorio. Inoltre il secondo è anche l’unico respiro che mostra un segno di possibile triggeraggio sulla curva gialla di pressione delle vie aeree: una piccola incisura nella pressione associata alla immediata insufflazione. Come abbiamo visto nell’esempio precedente, quest’ultimo segno può essere fuorviante in caso di presenza di oscillazioni cardiogeniche trasmesse alle vie aeree.

Nel paziente che abbiamo studiato oggi, grazie al monitoraggio consentito dalla NAVA, abbiamo diagnosticato l’autociclaggio senza difficoltà ed in maniera eclatante.

Quali sono le conseguenze di un autociclaggio sistematico? L’abolizione della semplice attività di trigger è sufficiente a determinare una rilevante disfunzione diaframmatica indotta dalla ventilazione (1), una delle principali cause di svezzamento prolungato o impossibile  (2). Avremo sicuramente modo di riparlarne.

Prima di salutarci, come sempre il messaggio conclusivo:
– cerchiamo sempre l’incisura sulla pressione delle vie aeree all’inizio dell’insufflazione come segno di triggeraggio. Dubitiamo però di questa incisura se fa parte di una serie ritmica con il battito cardiaco;
– verifichiamo che le tracce di flusso e pressione delle vie aeree non appaiano chiaramente passive (vedi post del 8 maggio 2011)
– quando presente, sfruttiamo il monitoraggio dell’attività elettrica diaframmatica con il catetere Edi della NAVA.

Un caro saluto a tutti. A presto.

Bibliografia.

1) Sassoon CS et al. Assist–control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction.  Am J Respir Crit Care Med 2004; 170:626-32

2) Jaber S et al. Ventilator-induced diaphragmatic dysfunction: human studies confirm animal model findings. Crit Care 2011, 15:206

May 302011
 

La ventilazione meccanica può salvare la vita, ma se non attuata correttamente può avere un impatto negativo sulla prognosi dei pazienti. Spesso abbiamo parlato di ventilazione protettiva nella ARDS per prevenire il ventilator-induced lung injury (VILI). Oggi parleremo invece della disfunzione diaframmatica indotta dalla ventilazione meccanica (ventilator-induced diaphragmatic dysfunction, VIDD).

La  VIDD può condizionare in maniera rilevante lo svezzamento dalla ventilazione meccanica ed il trasferimento dei nostri pazienti verso i centri di Riabilitazione.

A questo proposito vorrei condividere con gli amici di ventilab i contenuti di una relazione che ho presentato il 27 maggio presso il Centro di Riabilitazione “E. Spalenza” della Fondazione don Gnocchi di Rovato. Potrai vedere ed ascoltare la presentazione su youtube cliccando i link che trovi nelle righe qui sotto. La relazione è stata suddivisa in 3 parti di circa 8 minuti ciascuna.

Per vedere la prima parte clicca qui: prima parte.

Per vedere la seconda parte clicca qui: seconda parte.

Per vedere la terza parte clicca qui: terza parte.

Se vuoi scaricare il .pdf della presentazione, clicca qui.

Mi farebbe piacere sapere se trovi utile e comoda la modalità audio-video di presentazione dei contenuti o se preferisci il tradizizonale testo scritto. Puoi farlo lasciando un commento qui sotto o inviando una mail a info@ventilab.org.

Un saluto a tutti e grazie per l’attenzione e gli attestati di apprezzamento al lavoro di ventilab. Proposte e suggerimenti sono sempre ben accetti.

May 222011
 

Oggi parliamo di trigger nella ventilazione meccanica.

Il trigger è genericamente un dispositivo che innesca qualcosa. Tipicamente nelle armi da fuoco è il grilletto. Nella ventilazione meccanica il trigger è qualcos’altro.

Utilizziamo ogni giorno due tipi di trigger: trigger inspiratorio e trigger espiratorio.

Trigger inspiratorio.

Il trigger inspiratorio è quel dispositivo che consente al ventilatore di iniziare la propria fase inspiratoria un sincronia con l’inizio dell’inspirazione del paziente.

Tipi di trigger.

Sono utilizzati nella pratica clinica tre tipi di trigger inspiratorio:

trigger a pressione: durante l’espirazione la valvola inspiratoria del ventilatore è chiusa. Quando il paziente inizia l’inspirazione successiva, si genera una pressione negativa nel circuito del ventilatore. Infatti, come descritto dalla legge di Boyle, il prodotto di pressione e volume è costante. Quindi se aumenta il volume dei polmoni (=inspirazione) ma non vi entra nuovo gas (valvola inspiratoria chiusa), la pressione diminuisce. Noi possiamo scegliere il livello critico di riduzione della pressione nel circuito respiratorio che il ventilatore identifica con l’inspirazione del paziente: questo è il nostro trigger. Il valore da scegliere dovrebbe essere sempre il più basso possibile, in modo tale da rendere il trigger molto sensibile: questo consentirà una tempestiva assistenza inspiratoria e la riduzione del lavoro del paziente sprecato per attivare l’inspirazione del ventilatore meccanico. Solitamente i valori che conviene impostare sono dell’ordine di -0.5/-1 cmH2O. Il rischio di un trigger troppo sensibile è l’autociclaggio della macchina, cioè l’innesco di atti inspiratori non richiesti dal paziente. Nel post del 8 maggio puoi leggere e vedere come riconoscere quando gli atti inspiratori sono effettivamente richiesti dal paziente

trigger a flusso: le valvole inspiratoria ed espiratoria non si chiudono mai ed il ventilatore eroga un flusso continuo (bias flow o flusso di base). Il flusso di base in alcuni ventilatori è regolabile nel pannello delle impostazioni, in altri è fisso (ad esempio nei ventilatori Siemens/Maquet è di 2 l/min). Quando il paziente finisce l’espirazione, rimarrà nel circuito del ventilatore il flusso di base: esso esce dalla via inspiratoria e rientra inalterato nel ventilatore attraverso la via espiratoria. Se il paziente inizia l’inspirazione, una parte del flusso di base sarà sottratta dal paziente ed al ventilatore rientrerà un flusso minore di quello erogato. Questo è il segnale che il paziente inizia ad inspirare e così sarà innescata l’assistenza inspiratoria. Il trigger a flusso può essere reso più sensibile impostando un basso valore di sensibilità di flusso. La sensibilità di flusso è la differenza tra flusso di base che esce dalla branca inspiratoria ed il flusso che rientra nel ventilatore dalla branca espiratoria. In molti ventilatori è direttamente regolabile: una sensibilità di flusso di 1 l/min imposta un trigger più sensibile rispetto a una sensibilità di flusso di 5 l/min. Nel Servo 300 Siemens la sensibilità di flusso non si esprime in l/min, ma su una scala colorata: sul rosso il trigger è più sensibile e sul verde lo è meno. Nel Servoi Maquet ci sono anche dei numeri da 1 a 10: attenzione, non inidicano i l/min di sensibilità di flusso! 10 è il trigger più sensibile  mentre 1 è il meno sensibile.

trigger neurale: attualmente disponibile nella modalità di ventilazione NAVA (Neurally Adjusted Ventilatory Assist) della Maquet, consente di innescare l’insufflazione quando la inizia la depolarizzazione del diaframma. Richiede il posizionamento di un apposito sondino naso-gastrico dotato di elettrodi che vengono a posizionarsi a livello del diaframma. Prossimamente daremo spazio alla NAVA. Per ora ci basta anticipare che sincronizzare il ventilatore sull’inizio della contrazione diaframmatica (cioè della sua depolarizzazione) può dare la massima sensibilità al trigger, perchè le variazioni di flusso o pressione del circuito sono sicuramente più tardive e soggette a numerose variabili, come ad esempio PEEP intrinseca, resistenze delle vie aeree, compliance, forza muscolare, …

Trigger a pressione o a flusso?

Ventilazione assistita. Nella maggior parte dei pazienti non vi sono differenze clinicamente rilevanti tra un trigger a pressione o uno a flusso, se opportunamente impostati (1,2). Tuttavia, in alcuni pazienti con sforzi inefficaci, la maggior sensibilità del trigger a flusso può migliorare la sincronia ventilatore-paziente, riducendo la frequenza degli sforzi inefficaci. Riprendendo il caso commentato nel post del 8 maggio, vediamo come si modifica la sincronia paziente-ventilatore modificando il trigger. Nella figura 1 vediamo un trigger a pressione di -1 cnH2O e nella figura 2 un trigger a flusso alla minima sensibilità (livello 1 in un Servoi Maquet). Risultato: nessuna differenza tra le due modalità di trigger.

figura 1

figura 2

Ma se rendiamo massima la sensibilità del trigger a flusso (livello 10), la sincronia diventa perfetta (figura 3).

figura 3

figura 4

 Nella figura 4 vediamo invece cosa succede se si riduce un pochino la sensibilità del trigger a pressione rispetto alla figura 1 (da -1 a -2 cmH2O): un disastro, come discusso nel post precedente.

CPAP. Non ho dubbi: trigger a flusso ad elevata sensibilità. In CPAP non si triggera nessuna assistenza inspiratoria, quindi nessun problema di autociclaggio del ventilatore.

Trigger espiratorio.

Un aspetto spesso trascurato. Nella ventilazione a pressione di supporto il flusso inspiratorio è decrescente (se il paziente non ha una intensa attività dei propri muscoli inspiratori). L’inspirazione termina quando il flusso inspiratorio, riducendosi progressivamente, raggiunge un valore critico. Nei ventilatori più recenti il trigger espiratorio è regolabile ed il livello di flusso inspiratorio che triggera l’espirazione è espressa come % del massimo flusso inspiratorio. Nelle macchine più datate (es. Servo 300 Siemens) il trigger espirartorio è invece fisso e non compare tra le opzioni di impostazione.

Vediamo un esempio nella figura 5. Se scegliamo come trigger espiratorio il 50% del picco di flusso inspiratorio (parte sinistra della figura) vediamo che quando si dimezza il picco di flusso inspiratorio, l’inspirazione termina ed inizia l’espirazione. Quando  si sceglia un trigger espiratorio del 5% (parte destra della figura), l’effetto è quello di prolungare la durata dell’inspirazione: infatti ci vuole più tempo per raggiungere il valore critico di flusso che consente di passare all’espirazione. Quindi un trigger espiratorio basso aumenta la durata dell’inspirazione (esistono frequenti eccezioni che però meritano un post tutto per sè).

figura 5

 Come regolare il trigger espiratorio?

Nei pazienti con PEEP intrinseca un trigger espiratorio del 40-50% riduce l’iperinflazione dinamica e lavoro respiratorio e migliora l’interazione paziente ventilatore (3,4).  A mio parere, un trigger espiratorio ridotto (10-20%) è preferibile invece nei pazienti senza PEEPi se sono ipossiemici, se hanno inspirazioni brevi o se hanno bisogno di un pieno supporto dei muscoli inspiratori.

Anche oggi abbiamo messo parecchia carne al fuoco. Per necessità di sintesi non ho approfondito molti aspetti relativi al triggeraggio inspiratorio ed espiratorio: se hai qualche dubbio o suggerimento, non esitare a lasciare un commento nello spazio sottostante.

Un saluto a tutti gli amici di ventilab.

Bibliografia.

1) Tutuncu AS et al. Comparison of pressure- and flow-triggered pressure-support ventilation on weaning parameters in patients recovering from acute respiratory failure. Crit Care Med 1997; 25:756-60.

2) Goulet R et al. Pressure vs. flow triggering during pressure support ventilation. Chest 1997; 111:1649-53.

3) Chiumello D et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 2007; 35:2547-52

4) Tassuax D et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172:1283-9.

May 082011
 

Eccomi qua per il analizzare il monitoraggo grafico della ventilazione meccanica proposto nel post del 25 aprile. Prima di iniziare, un vivo ringraziamento agli amici che hanno lasciato un commento al post.

Iniziamo analizzando l’impostazione “A” (figura 1).

Figura 1

Ripropongo il consueto schema ABCDEF (vedi post 20/08/2010 e 29/08/2010).

A) identifichiamo le curve di pressione delle vie aeree (in giallo nella figura) e flusso (in verde). Ignoriamo tutto il resto del monitoraggio perchè non aggiunge nulla alle informazioni contenute in queste due curve del monitoraggio grafico della ventilazione meccanica.

B) cerchiamo l’inspirazione sulla traccia di flusso, individuata dalla curva al di sopra della linea dello zero. Il flusso inspiratorio, dopo un picco iniziale, diventa decrescente. Il flusso inspiratorio decrescente è il marker delle ventilazioni pressometriche con paziente passivo durante l’inspirazione. Vediamo 3 onde di flusso inspiratorio nei 10 secondi di registrazione delle curve: la frequenza respiratoria sarà quindi di 18 atti/minuto.

C) la pressione nelle vie aeree aumenta rapidamente durante l’inspirazione, quindi raggiunge un plateau. E’ approssimativamente un’onda quadra di pressione. Anche questo è un marker di una ventilazione pressometrica con paziente passivo.

D) la pressione delle vie aeree non aumenta alla fine dell’inspirazione. Non c’è quindi segno di attivazione dei muscoli espiratori prima che l’inspirazione termini: il paziente è ben sincrono con il termine della fase inspiratoria del ventilatore. Altro segno di paziente passivo.

E) il flusso espiratorio, al di sotto della linea dello zero, inizia con un picco e successivamente decresce esponenzialmente. In altre parole ha l’aspetto di una curva con la concavità verso il basso. Questo è il tipico aspetto di una espirazione passiva. Ma come è passivo questo paziente!

F) cerchiamo alla fine dell’espirazione una riduzione della pressione delle vie aeree o una decelezione del flusso come segno dell’inizio dell’attività dei muscoli respiratori per l’inspirazione successiva. In altre parole vediamo se il paziente si attiva per il respiro successivo (cioè se triggera). In questo caso vediamo una quasi impercettibile riduzione della pressione delle vie aeree associata ad una minima decelerazione (=avvicinamento più rapido verso la linea dello zero) del flusso espiratorio. Unico segno di attività del paziente è questa minima, quasi impercettibile attività di triggeraggio.

In sintesi abbiamo una ventilazione pressometrica con paziente passivo durante inspirazione ed espirazione. Gli atti respiratori sono triggerati. Abbiamo due possibilità: una ventilazione assistita controllata pressometrica (APCV) o una ventilazione a pressione di supporto con pieno supporto della funzione ventilatoria. In realtà il paziente aveva una pressione di supporto di 12 cmH2O con 5 cmH2O di PEEP ed un trigger a flusso molto sensibile (10 su Servoi Maquet).

Ed ora passiamo alla più complessa analisi dell’impostazione “B”. Facciamo il ABCDEF anche in questo caso, quindi scegliamo solo le curve di pressione e flusso (A).

Quindi identifichiamo l’inspirazione sulla curva di flusso (B) (figura 2).

Figura 2

Qui vediamo cinque atti inspiratori nei dieci secondi di monitoraggio grafico della schermata. Cinque respiri in 10 secondi sono 30 respiri/minuto. Ora analizziamo la forma della curva di flusso durante l’inspirazione. Per ora escluiamo dall’analisi il respiro 1. Nei respiri dal 2 al 5 vediamo chiaramente un flusso decrescente, tipico delle ventilazioni pressometriche.

La curva di pressione delle vie aeree (C) aumenta durante l’inspirazione. In particolare il valore di pressione di picco (o quasi) è spesso raggiunto nella prima parte dell’inspirazione, e poi si assesta su un un plateau più o meno regolare, caratteristica propria delle ventilazioni pressometriche.

Nelle ventilazioni pressometriche, tanto più il paziente è passivo, tanto più il flusso inspiratorio è esponenzialmente decrescente e la pressione durante l’insufflazione rimane prevalentemente sul livello della pressione di picco. Nel nostro paziente l’inspirazione 3 è passiva dal momento in cui inizia il flusso, nelle altre inspirazioni il paziente invece sembra un po’ più attivo.

L’inspirazione 1 è molto strana: il flusso è decrescente fino a circa metà dell’inspirazione, quindi aumenta e decresce nuovamente. Contemporaneamente la pressione scende e poi risale al valore di picco. Cosa è successo? Mentre il paziente stava smettendo di inspirare (flusso decrescente) ha effettuato una nuova inspirazione (il flusso è risalito). Questa inspirazione in realtà si associa a due atti inspiratori dei muscoli respiratori del paziente. Ne consegue che gli atti inspiratori dei muscoli respiratori sono 6 e non cinque come avevamo dedotto da una prima analisi. La frequenza respiratoria (dei muscoli respiratori del paziente) è quindi di 36 atti al minuto, e non 30 come misurato dal ventilatore .

Nella figura 4 vediamo le ultime tre fasi (D-E-F) dell’analisi.

Figura 3

Con la D analizziamo se c’è una sufficiente sincronia tra l’espirazione del paziente ed il ciclaggio del ventilatore, cioè se le pressioni delle vie aeree a fine inspirazione sono simili alla somma di PS più PEEP (linea azzurra). Mi sembra che non ci siano grossolane differenze tra pressioni misurate ed attese: l’inspirazione del paziente e del ventilatore sono sincrone.

Vediamo ora l’espirazione (E). Nelle prime due espirazioni e nell’ultima il flusso espiratorio è grossolanamente decrescente: non sembrano esserci quindi ostruzione bronchiale né espirio forzato. Nella terza espirazione vediamo che il flusso espiratorio prima si azzera, resta sula linea dello zero per circa mezzo secondo, quindi ricomincia l’espirazione da dove si era interrotta. Questo è uno sforzo inefficace. Il paziente ha terminato la propria inspirazione quando questa ha toccato la linea dello zero. In effetti la durata di questa espirazione non sarebbe stata molto diversa dalla precedente e dalla successiva. Ma quando ha tentato di inspirare non è riuscito a triggerare l’inspirazione successiva. Questo avviene in caso di PEEP intrinseca e/o trigger poco sensibile. Dopo il tentativo fallito di inspirazione, il paziente riprende l’espirarzione, riducendo la PEEP intrinseca. Al termine di questa doppia espirazione riesce finalmente ad attivare l’inspirazione successiva. Anche lo sforzo inefficace deve essere considerato un’inspirazione dal punto di vista muscolare: i muscoli respiratori hanno inspirato, purtroppo senza riuscire a fare entrare gas nei polmoni. Quindi anche questo sforzo inefficace va aggiunto alla frequenza respiratoria dei muscoli respiratori del paziente. Gli atti inspiratori “muscolari” sono quindi 7 (e non 6) nei dieci secondi, per una frequenza di 42 al minuto, contro i 30 misurati dal monitoraggio del ventilatore. Non è proprio la stessa cosa!

Finalmente andiamo all’ultimo step (F), l’attivazione dei muscoli inspiratori. Questa si evidenzia come una rapida riduzione del flusso espiratorio ed una consensuale caduta della pressione nelle vie aeree (frecce tratteggiate). Il paziente ha una attività molto intensa per attivare il trigger.

In sintesi, il nostro paziente con l’impostazione “B” aumenta la frequenza respiratoria (30/min quella apparente, 42/min quella dei muscoli respiratori), presenta fenomeni di asincronia sia inspiratoria che espiratoria, ha una marcata attività per triggerare l’inspirazione, è meno passivo durante l’inspirazione.

L’unica modifica dell’impostazione del ventilatore è il trigger. Il trigger a flusso molto sensibile è stato sostituito da un trigger a pressione di -2 cmH2O. Le due curve sono state registrate a pochi minuti l’una dall’altra.

Per oggi mi sono dilungato fin troppo. Ci rivediamo su ventilab per parlare un po’ di trigger.

Un saluto a tutto. E tanti auguri alle mamme.

Jan 292011
 

Nel post del 7 gennaio abbiamo analizzato le variazioni di bicarbonati nei pazienti con acidosi metabolica. Oggi prendiamo in considerazione l’aspetto opposto del problema: nei pazienti con acidosi metabolica, come interpretiamo il valore di PaCO2?

Consideriamo il caso di un paziente diabetico di 75 anni che si presenta in Pronto Soccorso con 38.8 °C di temperatura. Da tre giorni, oltre alla febbre, sono presenti vomito e diarrea. Il paziente è sveglio, collaborante, ha una lieve dispnea, è ipoteso ed oligurico. La radiografia del torace mostra sfumati addensamenti su entrambi i campi polmonari. L’emogasanalisi arteriosa (eseguita con 5 l/min di O2 in maschera) è la seguente: pH 7.21, PaCO2 41 mmHg, HCO3- 16 mmol/l, PaO2 42 mmHg.

Le cose da fare sono molte: una di queste è il supporto della funzione respiratoria del paziente. Il medico del Pronto Soccorso decide di iniziare una CPAP noninvasiva per trattare la grave ipossiemia. Non ritiene necessario un supporto inspiratorio perchè l’acidosi è esclusivamente metabolica (la PaCO2 è nel range di normalità).

Sei d’accordo con questa scelta?

Certamente la PaCO2 è nel range di normalità (35-45 mmHg). E’ normale avere la PaCO2 entro i limiti fisiologici se ci si trova in una situazione non fisiologica? Sappiamo bene che l’incremento della concentrazione degli idrogenioni liquorali induce un aumento della ventilazione stimolando i centri bulbari (vedi post del 21/11/2010). Nell’acidosi metabolica il pH liquorale è ridotto perchè è in equilibrio con il pH arterioso. Quindi ci dobbiamo aspettare che un’acidosi metabolica determini un’iperventilazione. E infatti tutti abbiamo studiato ed osservato che i pazienti con acidosi metabolica iperventilano e che la riduzione della PaCO2 riavvicina il pH al valore normale.

Quanto iperventila un paziente con acidosi metabolica? Osservazioni empiriche su umani ci indicano che mediamente ad ogni riduzione di 1 mmol/l di bicarbonato si associa il calo di PaCO2 di circa 1.2 mmHg (1).

Il paziente che abbiamo descritto ha una PaCO2 normale in presenza di acidosi metabolica: questo è un dato patologico. E possiamo anche stimare di quanto dovrebbe essere la PaCO2 se avesse messo in atto un normale compenso respiratorio dell’acidosi metabolica. I bicarbonati sono diminuiti di circa 8 mmol/l rispetto al normale (24 mmol/l). Ne consegue che dovremmo aspettarci una PaCO2 di circa 30 mmHg (dal valore normale di 40 mmHg togliamo 8 x 1.2 mmHg). Il paziente ha in realtà 11 mmHg di PaCO2 più del valore appropriato nella condizione in cui si trova. In realtà la sua acidosi deve essere considerata mista perchè sia i bicarbonati che la PaCO2 non sono normali. E se la PaCO2 è più alta di quello che dovrebbe essere, la spiegazione è semplice: una insufficienza della pompa respiratoria. E quando c’è una insufficienza di pompa respiratoria bisogna fornire al paziente un supporto inspiratorio e non una CPAP. Quindi, a mio parere, l’ideale sarebbe stato fare una ventilazione assistita (pressione di supporto, bipap, controllata/assistita).

Per riassumere possiamo concludere che:

1) quando c’è acidosi metabolica, la PaCO2 deve essere inferiore al valore normale nella misura di 1.2 mmHg per ogni riduzione di 1 mmol/l di bicarbonato;

2) se la PaCO2 misurata è significativamente superiore al valore atteso, è presente un’insufficienza conclamata della pompa respiratoria;

3) se è presente insufficienza della pompa respiratoria, è necessario il supporto inspiratorio (che la CPAP non può dare) con una ventilazione assistita.

Un caro saluto a tutti gli amici di ventilab.

Reference:

1) Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York 2004, 5th ed. Cap. 17: Introduction to simple and mixed acid-base balance disorders. Pagg. 535-550.

Nov 212010
 

Riprendiamo il caso proposto nell’ultimo post del 12 novembre. Il problema principale era quello di far aumentare la PaCO2 in una paziente con trauma cranico che ventila in pressure support.

Una prima riflessione:  l’ipocapnia di Marinella è davvero un problema? Nel suo caso dobbiamo veramente temere il rischio di favorire lo sviluppo di aree ischemiche? Diversamente da quanto rappresentato nel grafico del precedente post,  il flusso ematico cerebrale è regolato dal pH liquorale piuttosto che dalla PCO2 arteriosa (1). E il pH del liquor è determinato da CO2 e bicarbonati liquorali. La PCO2 liquorale è in equilibrio con quella arteriosa (normalmente è circa 10 mmHg più alta). Se varia la PaCO2 si osserva acutamente una parallela variazione della PCO2 del liquor e quindi del pH liquorale. Quest’ultima è in prima linea responsabile della modifica del flusso ematico cerebrale. Ma entro poche ore il pH del liquor tende a riportarsi comunque verso il suo valore di equilibrio (nel liquor circa 7.33) per la variazione dei bicarbonati liquorali. E il flusso ematico cerebrale torna nella norma. E’ stato documentato che il pH liquorale è costante a fronte di ampie variazioni croniche (cioè della durata di qualche ora) della PaCO2. Quindi ci possiamo aspettare un flusso ematico cerebrale normale in un paziente con PaCO2 stabilizzata (1).

Nonostante queste considerazioni, accettiamo comunque che un aumento dell PaCO2 potesse essere favorevole per Marinella. Come ottenerlo?

Iniziamo a chiederci perchè Marinella aveva una PaCO2 bassa. E’ assai improbabile che ciò possa essere imputato alla ventilazione con un pressure support troppo alto. Infatti sappiamo bene che con questa modalità di ventilazione solo il paziente può iniziare l’inspirazione. Ed il paziente inizierà l’inspirazione solo quando i  neuroni respiratori bulbari la attiveranno. Ed i neuroni bulbari sono sottoposti a numerose afferenze, ma lo stimolo piu’ efficace nel modularne l’attività è il pH liquorale (2). E’ quindi probabile che Marinella abbia un basso pH liquorale. E questo basso pH liquorale attiva il centro del respiro e l’iperventilazione di Marinella ne è la conseguenza.

Questo avviene frequentemente quando sono presenti lesioni emorragiche cerebrali (3). Oppure potrebbe esserci stata una lesione traumatica del tronco con una disregolazione del generatore centrale del pattern respiratorio (GCP). In entrambi i casi, modificare il livello di pressione di supporto cambia ma solo il lavoro respiratorio necessario per mantenere la ventilazione generata dal livello di attivazione del GCP.

Quando un paziente ha quindi un’iperentilazione centrale, non dobbiamo cercare di risolvere il problema aumentando il suo lavoro respiratorio. Ho visto a volte non solo ridurre il PSV ma addirittura rendere meno sensibile il trigger inspiratorio, portando il trigger a pressione a – 5-6 cmH2O. In questo modo otteniamo solo lavoro respiratorio e stress maggiori per il paziente, che ridurrà la sua ventilazione solo quando lo si porterà alla fatica dei muscoli respiratori. Cosa che noi non vogliamo certamente.

Quale la soluzione? O accettare l’iperventilazione o agire su GCP. Come? Deprimendone l’attivita’. Ed in questo gli oppioidi sono fantastici (2).

Noi abbiamo scelto per Marinella di accettare l’ipocapnia. Dopo poche ore abbiamo avuto un peggioramento del GCS (fino a 1+4+1), abbiamo eseguito una TC encefalo che evidenziava edema e ed alcune petecchie cerebrali. Abbiamo subito iniziato il monitoraggio della pressione intracranica che evidenziava una moderata ipertensione endocranica, trattata con sedazione ed osmotici. Ovviamente siamo passati ad una ventilazione controllata. Dopo circa una settimana siamo riusciti a sospendere sedativi ed osmotici, Marinella si è svegliata ed è stata trasferita ieri dalla Terapia Intensiva con un GCS di 15 e svezzata dalla tracheotomia.

I messaggi di questa esperienza sono:

1) le variazioni di PaCO2 si associano a variazioni del flusso ematico cerebrale solo acutamente. Già dopo alcune ore il flusso ematico cerebrale tende a tornare verso la normalità se  la PaCO2 si stabilizza sui nuovi valori.

2) le variazioni del livello di pressione di supporto (e di trigger!) non modificano la PaCO2 se il paziente non ha esaurito la forza dei muscoli respiratori. Se vogliamo aumentare la PaCO2 possiamo ridurre l’attività dei neuroni respiratori bulbari con la sedazione. Ma non dobbiamo ridurre il livello di pressione di supporto o la sensibilità del trigger.

Come sempre, infine, esiste sempre la specificità del singolo paziente. Quindi dobbiamo cercare di verificare sempre le nostre ipotesi su ciascuna delle tante nostre Marinelle.

I commenti ricevuti al post precedente contengono anche altri spunti interessanti su cui discutere ed imparare tutti insieme. Ma per oggi mi sembra basti così. Ne riparleremo certamente in futuro.

Un saluto a tutti.

References.

1) Raichle ME, Stone HL. Cerebral blood flow autoregulation and graded hypercapnia. Eur Neurol 1971-1972; 6:1-5.

2) Lumb AB. Nunn’s Applied Respiratory Physiology. Chapter 5: Control of breathing, pp. 61-82. Churchill Livingstone, 7th edition (2010).

3) Froman C et al. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage. Lancet. 1966; 1(7441):780-2.

Mar 252010
 

Riprendo il post del 17 febbraio, ringraziando gli amici che hanno mandato un commento. Se non vedi interamente l’immagine, clicca qui per aprirla in un’altra finestra.

Leggiamo insieme i dati che ci offre il monitoraggio grafico. Il paziente ventila in PSV 15 cmH2O con 10 cmH2O di PEEP. In tutte le ventilazioni pressometriche l’insufflazione ha due caratteristiche nei pazienti passivi: 1) la pressione nelle vie aeree (Paw) è costante per tutta l’insufflazione ed uguale alla somma di PEEP e pressione applicata; 2) il flusso inspiratorio è decrescente.

Nel nostro caso non si verifica nessuna delle due condizioni:

  1. Paw arriva a 25 cmH2O (somma di PSV e PEEP) solo alla fine dell’inspirazione (punto 1 nella figura).
  2. Il flusso inspiratorio (la parte positiva della curva “Flus”) è sinusoidale (punto 2 nella figura) e non decrescente come sarebbe in un paziente passivo (linea gialla tratteggiata).

Inoltre vediamo una marcata riduzione della Paw (almeno 3 cmH2O sotto PEEP) che precede l’assistenza inspiratoria (punto 3 nella figura), segno di una marcata attivazione del drive respiratorio.

Tutti questi segni indicano un paziente con una elevata attività inspiratoria spontanea che non è soddisfatta dai 15 cmH2O di pressure support.

Analizziamo ora l’espirazione. L’espirazione è forzata e nonostante ciò incompleta.

I segni di espirazione attiva sono evidenti: dopo il picco iniziale, il flusso espiratorio (la parte negativa della curva “Flus”) si mantiene elevato (punto 4 in figura) e non decresce esponenzialmente come nei pazienti che espirano passivamente (linea tratteggiata arancione). Questo si associa al mantenimento in espirazione di una Paw superiore alla PEEP, segno che il paziente “soffia” con grande intensità (punto 5 in figura).

L’espirazione incompleta, nonostante l’elevato flusso espiratorio, si evidenzia facilmente perchè l’espirazione si tronca bruscamente all’inizio dell’inspirazione successiva (punto 6 in figura).

Riassumiamo: il paziente è polipnoico (28 respiri al minuto di circa 0.6 litri ciascuno), inspira talmente tanto da non riuscire ad espirare completamente ciò che ha inspirato. L’assistenza inspiratoria (PSV 15 cmH2O) non gli basta per soddisfare la richiesta di inspirazione. La causa di tutto questo non dipende da alterazioni dei gas arteriosi.

Personalmente assimilo questo paziente ad un bambino che fa i capricci e vuole sempre di più di quello che gli si offre. Pensiamo forse di risolvere il problema dandogli sempre di più? Allo stesso modo pensiamo di migliorare la ventilazione del paziente supportandolo di più? Ritengo invece si debba cercare di “convincere” il paziente (come il bambino) a pretendere di meno. Come?

Prima di tutto dobbiamo considerare (e trattare) le possibili cause metaboliche dell’elevata richiesta ventilatoria, come ad esempio una sepsi non ancora risolta.

Possiamo inoltre ridurre il drive respiratorio del paziente, cioè l’intensità dello stimolo a respirare. A questo proposito l’uso di bassi dosaggi di oppioidi facilmente modulabili (con una breve emivita contesto-sensibile) può consentire di ridurre notevolmente la ventilazione minuto senza alterare lo stato di coscienza e senza indurre acidosi respiratoria. Prossimamente approfondiremo questo approccio.

Quindi rivalutazione del trattamento antimicrobico ed infusione di remifentanil.*

In questo caso specifico tenterei di adattare il paziente al ventilatore e non il ventilatore al paziente.  Non mi perderei in questa fase in ragionamenti su PSV o ACV, PEEP su PEEPi, trigger  inspiratorio, trigger espiratorio, rampa, … RICORDIAMOCI PERO’ CHE NON E’ SEMPRE COSI’, PIU’ SPESSO E’ UTILE ADATTARE IL VENTILATORE AL PAZIENTE.

Sicuramenteil mio commento puo’ non trovare tutti d’accordo. Con piacere potremo ancora discuterne insieme.

A presto

*Non ho nessun conflitto di interessi con remifentanil e chi lo produce.