Feb 212013
 



Oggi riparliamo di ARDS, una delle malattie polmonari acute in cui una buona ventilazione meccanica può fare la differenza tra la vita e la morte. Sarà con noi la signora Pina, una donna di 68 anni che circa un mese fa è stata ricovera in Terapia Intensiva per una ARDS secondaria ad una polmonite comunitaria (qui di fianco puoi vedere la radiografia del torace al ricovero in Terapia Intensiva).  L’insufficienza respiratoria è grave (PaO2/FIO2 75 mmHg), ma in 48 ore si ottiene un buon miglioramento della funzione polmonare  (PaO2/FIO2 190 mmHg) senza problemi di ventilazione meccanica. Qui però il miglioramento si ferma e dopo circa una settimana vediamo una progressione degli infiltrati polmonari ed una nuova grave ipossiemia. Si cambiano gli antibiotici per coprire i germi ospedalieri e si inizia ventilazione protettiva con PCV-VG (vedi post del 27/11/2011) con volume corrente di 280 ml, frequenza respiratoria 33/min, PEEP 10 cmH2O, FIO2 0.8.  L’emogasanalisi arteriosa è la seguente: PaO2 83 mmHg, pH 7.43, PaCO2 64 mmHg. E come sempre prestiamo attenzione al monitoraggio della pressione delle vie aeree durante una fase di ventilazione a volume controllato: ecco il tracciato.
Osserviamo che durante la breve pausa di fine inspirazione inserita nella ventilazione la pressione delle vie aeree è 25 cmH2O, quindi la pressione di plateau sarà un po’ più bassa, ben al di sotto del limite massimo suggerito di 30 cmH2O. Infatti la pressione di plateau dopo 3 secondi di occlusione delle vie aeree è di 22 cmH2O, come puoi vedere nell’immagine qui sotto.

Tutto bene? Possiamo per valutare se possiamo aumentare la PEEP e quindi favorire una miglior ossigenazione?

Nemmeno per sogno, qui probabilmente dobbiamo ridurre ancora di più le pressioni nelle vie aeree. Infatti durante la ventilazione in volume controllato è quello di osservare la forma della salita della pressione nelle vie aeree. In altre parole si può fare una valutazione “occhiometrica” dello stress index (vedi post del 15/08/2011 e del 28/08/2011). In breve, la pressione delle vie aeree (nei pazienti in volume controllato passivi alla ventilazione) deve crescere linearmente, se invece la pendenza continua ad aumentare durante l’insufflazione dobbiamo temere che ci possa essere iperinflazione e stress. Un occhio allenato può aver già notato una condizione di potenziale pericolo nella signora Pina, nonostante le basse pressioni nelle vie aeree. Questo comportamento è reso più evidente nell’immagine sottostante:

Abbiamo tracciato segmenti lineari (tratteggiati in grigio) sul tracciato di pressione delle vie aeree che hai visto all’inizio del post. La pendenza di questi segmenti è uguale alla pendenza della parte iniziale della salita della pressione delle vie aeree (escluso il primo pezzettino quasi verticale): in questo modo si vede benissimo che la parte finale della salita della pressione ha una pendenza più ripida della parte iniziale. Questo è un possibile segno di sovradistensione polmonare, indipendentemente dal livello di pressione di plateau.

Come sempre, in questi casi abbiamo misurato la pressione esofagea ed ecco cosa ci ha detto:

La pressione esofagea è la traccia grigia, la traccia rossa è la pressione delle vie aeree. La pressione che vedi all’inizio della traccia è la parte finale di un’occlusione di fine espirazione, la pressione verso la fine della traccia è il plateau ottenuto con l’occlusione a fine inspirazione. Vediamo subito che la pressione di plateau delle vie aeree è bassa (i 22 cmH2O già visti sopra), ma è anche molto bassa la pressione esofagea corrispondente (3 cmH2O). La pressione transpolmonare (stimata con la pressione esofagea) è la differenza tra le due, cioè 19 cmH2O. Sappiamo che la pressione esofagea può sovrastimare la pressione pleurica di 5 cmH2O (in media) (1), quindi la pressione transpolmonare “vera” (pressione alveolare – pressione pleurica) potrebbe essere intorno ai 25 cmH2O (vedi post del 07/02/2012). Questi valori di pressione transpolmonare sono tutt’altro che bassi, soprattutto se si associano ad altri segni di sovradistensione (come lo stress index): due indizi fanno una prova. Tralascio (per esigenze di spazio) la valutazione della relazione statica pressione volume e la scelta della best PEEP, ed arriviamo subito alla strategia ventilatoria conseguente alle riflessioni che abbiamo fatto finora.

Per ridurre le pressioni nelle vie aeree non possiamo ridurre ulteriormente il volume corrente, quindi abbiamo agito sulla PEEP (sulla guida della valutazione della driving pressure a diverse PEEP, vedi post del 10/04/2011) riducendola a 6 cmH2O.

Il risultato è stato questo:

una riduzione della pressione di plateau da 22 a 15 cmH2O e riduzione della pressione transpolmonare (stimata con la pressione esofagea) da 19 a 13 cmH2O. Inoltre lo stesso volume corrente è stato ottenuto con una minore differenza di pressione tra fine inspirazione e fine espirazione (driving pressure). Quando avevamo 10 cmH2O di PEEP, per insufflare 275 ml dovevamo fare salire la pressione da 10 cmH2O (il valore di PEEP) a 22 cmH2O (la pressione di plateau): 12 cmH2O di differenza. Con 6 cmH2O di PEEP, questa differenza si riduce a 9 cmH2O (15 – 6 cmH2O): lo stesso volume ottenuto con meno pressione vuol dire miglioramento della compliance con la riduzione della PEEP.

Ed i segni di sovradistensione sulla curva di pressione? Eccome come sono diventati:

Sono praticamente scomparsi: insomma, un successo dal punto di vista della ventilazione protettiva valutata sulla meccanica respiratoria.

E il risultato all’emogasanalisi? Niente di eccezionale: dopo una decina di ore PaO2 77 mmHg, pH 7.46, PaCO2 72 mmHg, FIO0.7. Abbiamo accettato, come sempre, questi valori ampiamente sufficienti per sopravvivere (anche se esteticamente brutti) ed abbiamo continuato sulla nostra strada.

Nella settimana successiva miglioramenti lentissimi, abbiamo sospeso la sedazione passando in APRV e quindi gradualmente in PSV. Quando eravamo già pronti alla tracheotomia (dopo 15 giorni di intubazione), abbiamo fatto un trial di respiro spontaneo che la paziente ha tollerato, pur persistendo una chiara ipossiemia (PaO2/FIO141 mmHg). E’ stato comunque deciso di procedere all’estubazione, proseguendo con ventilazione noninvasiva. Un po’ di bravura, un po’ di fortuna una settimana dopo la paziente è stata dimessa dalla Terapia Intensiva in Riabilitazione…

Questa lunga storia ci ribadisce alcuni punti importanti nella cura dei pazienti con ARDS:

–  la ventilazione deve essere guidata dalla necessità di essere protettivi e non di migliorare l’emogasanalisi (per vivere è più che sufficiente una PaOdi 55 mmHg e l’ipercapnia non è un problema in assenza di gravissima acidosi);

– la pressione di plateau inferiore a 30 cmH2O non è da solo sufficiente sufficiente per gestire la ventilazione protettiva nei pazienti con le forme più gravi di ARDS;

monitoraggio grafico della ventilazione, stress index (misurato o “occhimetrico”), scelta della minor driving pressure  ed eventualmente pressione esofagea sono irrinunciabili come guida della ventilazione nei pazienti con ARDS grave e pressioni di plateau maggiori o uguali a 25 cmH2O.

Un caro saluto a tutti.

 

Bibliografia.

1) Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34:1389-94

 

PS: sarò assente per una dozzina di giorni, risponderò volentieri ai commenti appena posso.

Sep 122011
 

Posizione di Trendelenburg

Oggi parleremo di PEEP, pressione di plateau, driving pressure, elastanza (o compliance) e stress index come guida alla ventilazione meccanica.

Tutto questo ci può essere realmente utile nella pratica clinica. A prova di questo, condivido con gli amici di ventilab un caso che mi è capitato alcuni mesi fa. Sono convinto che alla fine saremo tutti d’accordo che sono concetti semplici e fondamentali nella vita (professionale) di tutti i giorni. Ero in sala operatoria per dare il cambio ad un collega anestesista. Amo l’anestesia e, nonostante il mio impegno full-time in Terapia Intensiva, concludo volentieri le mie giornate in sala operatoria. L’intervento in corso, iniziato da circa un’ora, era una resezione colica laparoscopica in un paziente settantenne obeso. Questo significa un intervento condotto con il paziente in posizione di Trendelenburg (con il letto operatorio inclinato con la testa in basso ed i piedi in alto) e l’addome insufflato di gas.

Era in corso una ventilazione a volume controllato (flusso inspiratorio costante) con 500 ml di volume corrente, 15/min di frequenza respiratoria, FIO2 0.5 e 5 cmH2O di PEEP. La ETCO2 era 41 mmHg, la SpO2 94%, la pressione di picco 35 cmH2O e quella di plateau (Pplat) 30 cmH2O. La curva di pressione delle vie aeree (Paw) e quella che vedi nella figura 1.

Figura 1

L’intervento sarebbe durato ancora due o tre ore (salvo complicazioni) ed il paziente era a rischio di complicanze respiratorie postoperatorie per età e durata dell’intervento (1). Sappiamo anche che una ventilazione inappropriata può indurre danni anche in un polmone sano (2). Quindi la ventilazione meccanica intraoperatoria potrebbe diventare un elemento importante per l’outcome del paziente. Cosa posso fare con i dati a disposizione?

Rispondiamo a due domande sempre fondamentali.

_°_°_°_°_°_°_°_°_°_

Prima domanda: la Pplat deve preoccuparmi?

In questo paziente l’addome schiaccia i polmoni: l’addome obeso, disteso di gas e più in alto del torace comprime il diaframma contro i polmoni. Possiamo quindi ragionevolmente ritenere di avere un’elevata elastanza (=bassa compliance) dell’apparato respiratorio dovuta alla rigidità della parete toracica (il diaframma va considerato parte della parete toracica). Alta elastanza significa che servono pressioni elevate per dare il volume corrente. Quando l’aumento dell’elastanza è attribuibile alla gabbia toracica sono elevate sia la pressione alveolare che quella pleurica: in questo caso la pressione transpolmonare (=pressione alveolare – pressione pleurica) è bassa e quindi basso è lo stress del polmone (per approfondimenti rivedi il post del 24 giugno 2011). In questo caso si può (a volte si deve) essere tolleranti verso Pplat elevate .

Prima risposta: la Pplat di 30 non mi preoccupa.

_°_°_°_°_°_°_°_°_°_

Seconda domanda: l’analisi grafica delle curva Paw-tempo (figura 1) mi fornisce qualche informazione?

Sono abituato a guardare sempre, come prima cosa, il monitoraggio grafico della ventiazione meccanica. Quel giorno mi aveva subito messo qualche dubbio il profilo arrotondato, con concavità verso il basso, della Paw. Questo potrebbe associarsi ad uno stress index < 1 e la necessità di aumentare la PEEP (vedi post del 15 agosto 2011). In sala operatoria non ho modo di calcolarmi lo stress index, devo quindi accontentarmi del dato qualitativo. Quindi aumento la PEEP a 15 cmH2O. Nella figura 2 puoi vedere cosa cambia (nella parte alta vedi i trendi grafici ed in basso le curve Paw-tempo).

Figura 2

E succede una cosa interessantissima: la Pplat resta esattamente uguale a prima, circa 30 cmH2O, (riga tratteggiata blu nella figura 2) pur mantenedo invariata la ventilazione (freccia viola). E scompare il profilo arrotondato con concavità verso il basso nella curva Paw-tempo, che diventa rettilinea (segno compatibile con uno stress index di circa 1) (vedi post del 15 agosto 2011).

Cosa può essere successo? A parità di volume corrente abbiamo ridotto la driving pressure, cioè la variazione di pressione attribuibile al volume corrente che è la differenza tra Pplat (la pressione con il volume corrente nei polmoni) e la PEEP totale (la pressione senza volume corrente nei polmoni). E questo si spiega con il miglioramento dell’elastanza (cioè una sua riduzione) con l’applicazione della PEEP. Infatti con PEEP 5 (il paziente non aveva PEEP intrinseca) e Pplat 30 l’elastanza era 50 cmH2O/l, con 15 di PEEP l’elastanza è diventata 30 cmH2O/l. E sappiamo che utilizzare la PEEP che riduce la driving pressure (e l’elastanza) può essere una efficace misura per ridurre il VILI (ventilator-induced lung injury), oltre a ridurre la mortalità nei pazienti con ARDS (vedi post del 10 aprile 2011).

Seconda risposta: il monitoraggio grafico mi fa intuire uno stress index < 1 e mi suggerisce un aumento della PEEP. Il monitoraggio grafico e il semplice calcolo della driving pressure (Pplat-PEEP) mi confermano di aver fatto la scelta giusta.

_°_°_°_°_°_°_°_°_°_

Questo caso fa capire come anche nella nostra routine la comprensione dei principi fondamentali su cui si fonda la ventilazione meccanica sia una preziosa risorsa. Molte altre considerazioni si potrebbero fare, ma siamo ormai arrivati a 850 parole: il buon senso mi suggerisce quindi di salutare e dare appuntamento a presto. Non prima però di avere riassunto i punti fondamentali di questo post:

1) il significato della Pplat dipende dalla pressione che l’addome esercita sul diaframma

2) è raccomandabile aumentare la PEEP quando si vede la Paw con una concavità verso il basso (ventilazione a flusso inspiratorio costante)

3) può essere opportuno scegliere il valore di PEEP che si associa alla minor driving pressure (a parità di volume corrente)

Bibliografia.

1) Shander A et al. Clinical and economic burden of postoperative pulmonary complications: Patient safety summit on definition, risk-reducing interventions, and preventive strategies. Crit Care Med 2011; 39:2163-72

2) Pinheiro de Oliveira R et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Critical Care 2010, 14:R39

Aug 282011
 

Nel post di Ferragosto abbiamo afforntato in maniera molto sintetica i fondamenti teorici dello stress index. Oggi passiamo dalla teoria alla pratica: vedremo un utilizzo clinico dello stress index e ne analizzeremo anche i limiti.

Vediamo nella figura 1 il tracciato della pressione delle vie aeree (Paw) di un paziente con ARDS durante ventilazione controllata  con 6 ml/kg di volume corrente (volume controllato con flusso inspiratorio costante). Il quesito a cui vogliamo rispondere è: con questa ventilazione stiamo danneggiando i polmoni, gia gravemente ammalati, del nostro paziente?

 

Figura 1

primo step: guardiamo il valore della pressione di picco. Sappiamo benissimo (come ripetiamo fino alla nausea nel Corso di Ventilazione Meccanica), che la pressione di picco non ci offre indicazioni precise sul valore della pressione alveolare. E sappiamo che è la pressione negli alveoli una delle due variabili che determina lo stress del polmone a fine inspirazione (l’altra variabile è la pressione pleurica). Ma sappiamo anche che normalmente la pressione di picco è più elevata della pressione alveolare: quindi se la pressione di picco è già bassa (meno di 25-30 cmH2O) non dovremmo avere problemi di stress perchè la pressione alveolare sarà ancora più bassa. Nel nostro caso la pressione di picco si avvicina ai 40 cmH2O e quindi ci lascia il dubbio di un possibile stress plomonare a fine inspirazione. Vediamo dopo il picco un primo calo di pressione: questo è la conseguenza di una breve pausa di fine inspirazione inserita nella ventilazione: il valore che la pressione raggiunge in questa prima riduzione resta sempre superiore a 30 cmH2O. Durante una breve pausa di fine inspirazione il valore di pressione si avvicina a quello della pressione che mediamente troviamo negli alveoli, senza tuttavia raggiungerla. In questo caso il valore di questo breve plateau è ancora troppo elevato (> 30 cmH2O) per toglierci il dubbio di un possibile VILI (ventilator-induced lung injury) da stress.

secondo step: facciamo una occlusione di fine inspirazione di tre secondi (vedi post del 10 aprile 2011) (figura 2). Vediamo che la pressione di plateau si assesta su un valore inferiore a 30 cmH2O, il limite che viene suggerito per ridurre il rischio di stress polmonare. E potremmo mantenere quindi la nostra ventilazione immodificata. Ma…

Figura 2

terzo step: …ma conosciamo il concetto dello stress index e sappiamo che una curva di Paw (con paziente passivo e flusso inspiratorio costante) deve avere una ascesa lineare verso il picco, dopo una breve salita quasi verticale iniziale (vedi post precedente). E rivedendo bene la salita della Paw nelle figure 1 e 2 invece notiamo un accenno ad una salita non lineare con una sfumata concavità verso l’alto. Se calcoliamo lo stress index in questo paziente è 1.22. Ricordo che valori superiori a 1 identificano la presenza della concavità verso l’alto nella curva e che lo stress index > 1.1 viene proposto come segno di possibile sovradistensione polmonare a fine espirazione (1). In questo paziente quindi lo stress index ci suggerirebbe di ridurre il volume corrente (se la PEEP è già ottimale) nonostante la pressione di plateau sia tranquillizzante.

La scelta che faremo deve tenere conto di punti di forza e limiti dello stress index. Vediamone i pro e contro.

Pro:

– uno solo ma importante. Anche con la ventilazione protettiva una parte dei pazienti va incontro a sovradistensione polmonare durante l’erogazione del volume corrente. Non bastono quindi i 6 ml/kg e la pressione di plateau < 30 cmH2O per metterci al riparo dal VILI. Lo stress index è un dato aggiuntivo che può metterci in guardia (o rassicurarci) in situazioni borderline (2,3).

Contro:

– lo stress index presuppone che le resistenze dell’apparato respiratorio siano costanti durante l’erogazione del volume corrente, dato tutt’altro che scontato nei pazienti con ARDS (4) . Peraltro un flusso inspiratorio perfettamente costante non è sempre ottenuto dal ventilatore meccanico durante la ventilazione a volume controllato, come puoi vedere anche in figura 2;

– ammesso che il flusso e le resistenze siano costanti, stress index tra 0.9 e 1.1 significa che la relazione pressione-volume statica dell’apparato respiratorio è lineare durante l’erogazione del volume corrente. In altre parole stiamo ventilando tra il punto di flesso inferiore e superiore il paziente. Ma il significato della curva pressione-volume è ancora discutibile definitivamente e possono esserci dubbi sul fatto che rimanere sulla parte lineare della curva sia un obiettivo indispensabile (5,6);

la relazione statica pressione-volume (cioè la cossiddetta curva di compliance) dell’apparato respiratorio è la somma delle curve del polmone e della gabbia toracica. Ed i punti di flesso che troviamo possono essere causati sia da non linearità del polmone che della gabbia toracica (7). Evidentemente se il punto di flesso (e quindi lo stress index > 1.1) sono causati da una non linearità della gabbia toracica, non si può certo dire che questo sia segno di stress del polmone;

– in presenza di versamenti pleurici, frequenti nella ARDS, lo stress index non è affidabile (8);

– la miglior (= più bassa) elastanza sembra più accurata dello stress index nell’individuare reclutamento e sovradistensione nella ARDS (9).

In conclusione, cosa ce ne facciamo dello stress index? Dato che per il momento non ci sono evidenze chiare, posso offrirvi la mia personale opinione: nei pazienti con ARDS, la traccia della Paw deve sempre essere analizzata durante un ciclo (anche breve) di ventilazione a volume controllato a flusso costante. Se si visualizza una concavità verso l’alto e/o si misura con lo stress index > 1.1, dobbiamo certamente approfondire lo studio del paziente nonostante si stia facendo ventilazione protettiva (pressione di plateau < 30 cmH2O, volume corrente 6 ml/kg, PEEP appropriata). Approfondire lo studio del paziente per me vuol dire misurare la pressione esofagea. Se invece stiamo facendo ventilazione protettiva e lo stress index è tra 0.9 e 1.1 (o ispettivamente la salita della Paw è bella lineare) potremmo anche accontentarci e “benedire” il setting della ventilazione che abbiamo scelto.

Un saluto a tutti (in particolare ai colleghi che stanno iniziando la FAD del Corso di Ventilazione Meccanica).

 

Bibliografia.

1) Grasso S et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32:1018-27

2) Grasso S et al. Effects of high versus low Positive End-Expiratory Pressures in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2005; 171:1002-8

3) Terragni PP et al. Tidal hyperinflation during low tidal volume ventilation in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2007; 175:160-6

4) Eissa NT et al. Effects of Positive end-Expiratory Pressure, lung volume, and inspiratory flow on interrupter resistance in patients with Adult Respiratory Distress Syndrome. Am Rev Respir Dis 1991; 144-538-43

5) Hickling KG. The Pressure–Volume Curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 1998; 158:194–202

6) Hickling KG. Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 2002, 8:32-8

7) Mergoni M et al. Impact of Positive End-expiratory Pressure on chest wall and lung pressure–volume curve in Acute Respiratory Failure. Am J Respir Crit Care Med 1997; 156:846-54

8 ) Formenti B et al. Non-pulmonary factors strongly influence the stress index. Intensive Care Med 2011; 37:594–600

9) Carvalho AL et al. Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration. Intensive Care Med 2008: 34:2291–9

Stress index.

 Posted by on 15/08/2011  2 Responses »
Aug 152011
 

Qualche tempo fa una collega di Torino mi ha chiesto se è possibile calcolarsi da soli lo stress index o se è indispensabile affidarsi al calcolo effettuato dai software.

Prima di dare la risposta, cerchiamo di definire bene cosa è lo stress index e quale è il suo razionale di utilizzo.

Lo stress index è un numero che fornisce informazioni sulla forma della curva di pressione delle vie aeree (Paw)-tempo durante la ventilazione a volume controllato con flusso inspiratorio costante (onda quadra di flusso) (figura 1). Lo stress index può esserci utile nell’impostare una ventilazione protettiva nei pazienti con ALI/ARDS.

Figura 1.Curve di pressione e flusso durante ventilazione a flusso inspiratorio costante

Vediamo di seguito le tre premesse su cui si fonda lo stress index.

1) Iniziamo ricordando che in ogni istante il valore della Paw è definito dall’equazione di moto dell’apparato respiratorio (vedi post del 24/06/2011):

Paw = E x V + R x V’ + PEEP totale – Pmus                       (1)

dove E è l’elastanza dell’apparato respiratorio, V il volume, R le resistenze, V’ il flusso e Pmus la pressione sviluppata da muscoli respiratori del paziente. Se il paziente è passivo, Pmus = 0: durante l’insufflazione Paw dipende solo da E x V e da R x V’.

2) Postuliamo che le resistenze (R) dell’apparato respiratorio siano costanti durante l’insufflazione. Se anche il flusso inspiratorio è costante (come nella ventilazione a volume controllato con onda quadra di flusso), necessariamente il prodotto R x V’ sarà costante durante l’insufflazione. In questa particolare condizione possiamo allora semplificare la nostra equazione di moto come segue:

Paw= E x V + k                (2)

dove k comprende sia PEEP totale che R x V’.

3) Se il paziente ventila con flusso inspiratorio costante, il volume corrente necessariamente aumenta in maniera lineare durante l’insufflazione: nel primo quarto dell’inspirazione è erogato un quarto del volume corrente, a metà inspirazione metà del volume corrente, a tre quarti dell’inspirazione tre quarti del volume corrente e così via (figura 2). Quindi l’aumento della Paw durante il flusso inspiratorio costante sarà lineare se E è costante(equazione 2).

Figura 2

E qui arriva il nostro stress index. Lo stress index esprime matematicamente la forma dell’incremento della Paw: uno stress index =1 ci dice che Paw aumenta linearmente durante l’insufflazione, quindi E è costante (figura 3, a sinistra). Uno stress index > 1 indica che la Paw non aumenta linearmente: con il procedere dell’insufflazione è necessaria sempre più pressione (concavità rivolta verso l’alto) (figura 3, al centro). Anche uno stress index < 1 indica un aumento non costante della Paw, ma di segno opposto al precedente: man mano che l’insufflazione procede, serve sempre meno pressione per ottenere il volume corrente (concavità verso il basso) (figura 3, a destra).

Figura 3

 

Se riportiamo queste informazioni sulla relazione statica pressione-volume (la curva di compliance) dell’apparato respiratorio, capiamo bene il significato dello stress index. Quando è > 1, vuol dire che durante l’erogazione del volume corrente superiamo il punto di flesso superiore, condizione generalmente associata ad una condizione di sovradistensione polmonare, quindi di possibile VILI (ventilator-induced lung injury) da stress. Se lo stress index è < 1, ciò significa che durante l’insufflazione superiamo il punto di flesso inferiore: si pensa che in questa condizione vi possa essere un’insufficiente capacità funzionale residua, quindi possibilità di VILI da atelettrauma (ripetitiva apertura e chiusura di alveoli) (figura 4).

Figura 4.

Il messaggio clinico quindi potrebbe essere:

1) stress index > 1: ridurre volume corrente e/o PEEP

2) stress index < 1: aumentare PEEP.

Per oggi penso vi siano già molti spunti su cui riflettere. In caso di dubbi, utilizziamo questa settimana ferragostana per discuterne insieme. Nel prossimo post vedremo un’applicazione pratica dello stress index e ne analizzeremo limiti e punti di forza.

Concludo rispondendo a Nadia: puoi calcolare anche da sola lo stress index, cioè senza l’ausilio di software a questo adibiti, ma non è molto semplice. Comunque la strada è questa: devi acquisire il segnale di Paw ad una buona frequenza di campionamento (100-200 Hz) e scegliere un intervallo di Paw durante flusso inspiratorio costante (scartando i primi e gli ultimi 50 msec). Quindi con un programma di statistica o di curve fitting devi calcolare i coefficienti della seguente formula: Paw=a *tempo^b+c. Il coefficiente b (l’esponente del tempo) è il nostro stress index. Senza tutto questo, l’unica cosa che puoi fare è una valutazione qualitativa della curva Paw-tempo (figura 3): se vedi, durante la fase di insufflazione a flusso inspiratorio costante, la curva di pressione che accenna una concavità verso l’alto, il tuo stress index è certamente > 1. Se osservi invece un accenno di concavità verso il basso, allora lo stress index è < 1. E via ad aggiustare volume corrente e PEEP…

Buon Ferragosto a tutti gli amici di ventilab.