Jul 142013
 

La sedazione in terapia intensiva è un argomento molto dibattuto, specie negli ultimi 15 anni, da quando si sono andate accumulando in letteratura evidenze riguardanti gli effetti sfavorevoli della sedazione profonda in termini di morbilità (durata della ventilazione meccanica, durata della degenza in terapia intensiva e in ospedale, incidenza di svariate complicanze della terapia intensiva)1 e potenzialmente anche di mortalità dei pazienti,2 con conseguente aumento dei costi delle cure (vedi post del 28 febbraio 2010).

Anche l’asincronia tra paziente e ventilatore è stata associata a maggior durata della ventilazione meccanica e a minore probabilità di successo del weaning.3,4

Pur al di là dei casi in cui la sedazione e la ventilazione controllata siano assolutamente necessarie per motivi clinici, i medici dichiarano di somministrare comunemente sedativi allo scopo di facilitare l’adattamento del paziente alla ventilazione meccanica e migliorare la sincronia tra paziente e ventilatore.5,6

Sedare i pazienti per migliorare l’interazione è una pratica sempre opportuna?

C’è da dubitarne, e infatti un paio di recenti studi osservazionali hanno fornito alcuni interessanti risultati.

Gli Autori del primo studio6 hanno esaminato pazienti ventilati in SIMV+PS, PSV e PCV. Il tasso di asincronie registrato è stato elevato (11% circa del totale degli atti respiratori) e le asincronie di gran lunga più comuni (88% circa) sono risultate gli sforzi inspiratori inefficaci (figura 1). Altre asincronie rilevate con minore frequenza sono state i ciclaggi anticipati, i doppi triggering e i ciclaggi ritardati. Definizioni e descrizioni di queste asincronie sono disponibili in letteratura3 e più volte sono apparsi su www.ventilab.org post e commenti a riguardo.

Lo studio ha rivelato che il tasso di sforzi inspiratori inefficaci (cui l’analisi è stata limitata per ragioni statistiche) era pari a zero nei pazienti svegli e calmi (RASS=zero) ma aumentava linearmente con l’aumento della profondità dello stato di sedazione, fino ad attestarsi intorno al 15% di tutti gli atti respiratori nei pazienti non risvegliabili (RASS=-5); inoltre era superiore nei pazienti comatosi rispetto ai pazienti svegli o in quelli che presentavano delirium. C’è da notare che la quantità di sedativi somministrati nelle 24 ore precedenti l’osservazione non correlava con il tasso di asincronia, sebbene non risulti che il dosaggio dei sedativi sia stato modulato sulla base del livello di sedazione ottenuto.
Lo studio presenta numerosi altri limiti, tuttavia la correlazione tra livello di sedazione e asincronia merita di essere ulteriormente indagata. Gli Autori ipotizzabo che l’aumento degli sforzi inspiratori inefficaci possa essere imputabile al minore sforzo muscolare e quindi al minore flusso inspiratorio generato dai pazienti maggiormente sedati.

Il secondo studio7 è stato condotto su un campione di pazienti ventilati in ACV (volume assistito-controllato) con un volume corrente di 6,7 ml/kg di peso ideale. Il tasso di asincronie riscontrato è stato elevatissimo: il 44 (27-87) % degli atti respiratori erano costituiti da doppi triggering (detti anche in inglese breath-stacking; figura 2). Bisogna rimarcare che il volume corrente insufflato in caso di doppio triggering risulta di regola superiore (fino al doppio!) rispetto al volume corrente impostato: si tratta pertanto di un fenomeno potenzialmente pericoloso, specialmente in particolari categorie di pazienti (es. ARDS, ma non solo). Gli autori hanno voluto verificare quali trattamenti venivano messi in atto dallo staff curante e qual’era l’efficacia di quei trattamenti.

I comportamenti osservati sono stati tre: nessun intervento, aumento della sedazione o modifica delle impostazioni del ventilatore (passaggio a PSV o prolungamento del tempo inspiratorio in ACV). Entrambi gli interventi si sono rivelati efficaci nel ridurre il tasso di asincronia rispetto a nessun intervento (figura 3) ma la modifica delle impostazioni del ventilatore è stata nettamente più efficace rispetto all’aumento della sedazione (figura 4).

 

Le conclusioni che mi sento di proporre agli amici di ventilab sono le seguenti:

– sebbene non esistano a oggi prove definitive che le asincronie tra paziente e ventilatore determinino di per sé effetti negativi sugli esiti clinici rilevanti, è bene acquisire la capacità di riconoscerle attraverso quel prezioso strumento che è il monitoraggio grafico del ventilatore;

– dal momento che protocolli e strategie finalizzate alla “ottimizzazione” (leggi alla riduzione) dell’uso dei sedativi si sono rivelati vantaggiosi per i pazienti, dovremmo tendere a risolvere i problemi di asincronia modificando opportunamente le impostazioni del ventilatore e riservare l’uso dei sedativi solo ai casi di assoluta necessità.

Un caro saluto a tutti, a chi è in vacanza e a chi è ancora al lavoro. A presto.

 

Bibliografia

1. Schweickert WD et al. Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med 2004; 32: 1272–76

2. McGrane S. et al. Sedation in the Intensive Care Unit. Minerva Anestesiol 2012; 78:369-80

3. Thille AW et al. Patient-ventilator asynchrony during mechanical ventilation: Prevalence and risk factors. Intensive Care Med 2006; 32:1515–1522.

4. Chao DC et al. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997; 112:1592–1599

5. Rhoney DH et al. National survey of the use of sedating drugs, neuromuscular blocking, and reversal agents in the intensive care unit. J Intensive Care Med 2003; 18:139–145

6. de Wit M et al. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009; 24: 74–80

7. Chanques G et al. Impact of ventilator adjustment and sedation–analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013 Jun 18; 41 [Epub ahead of print] DOI: 10.1097/CCM.0b013e31828c2d7a

Feb 292012
 

Proseguiamo il commento al post del 20 febbraio. Il metodo “ABC” ci ha consentito una prima analisi della fase inspiratoria: siamo diventati consapevoli che il paziente ha diversi livelli di attività durante le cinque inspirazioni riprodotte sullo schermo del ventilatore.

Ora cerchiamo di approfondire l’interpretazione dell’interazione ventilatore-paziente con la fase “DEF” dell’analisi del monitoraggio grafico della ventilazione.

Nella figura 1 analizziamo la “D“: l’inizio dell’attivazione dei muscoli espiratori durante l’inspirazione. Ricordiamo che i muscoli espiratori sono addominali. Questa avviene se il paziente vuole terminare l’inspirazione prima che il ventilatore glielo consenta.*

Figura 1

Vediamo nel respiro 2 e nel respiro 5 che la pressione nelle vie aeree inizia a salire un pochino dopo un breve iniziale plateau (linea “a”) per stabilizzarsi su un nuovo plateau tra i punti “b” e “c”. Il flusso inspiratorio in corrispondenza della linea “a” aumenta la propria pendenza e si azzera rapidamente, mantenendosi poi a zero tra il punto “b” ed il punto “c”. Interpretiamo questi reperti: il breve plateau iniziale nella pressione delle vie aeree è il livello di pressione applicato dal ventilatore per cercare di raggiungere (o avvicinarsi) al volume corrente impostato. Questo si manterrebbe immodificato fino alla fine dell’inspirazione in assenza di attività dei muscoli respiratori (inspiratori o espiratori) del paziente. In questo caso, nelle inspirazioni 2 e 5, in “a” il paziente inizia a contrarre i muscoli espiratori perchè si è “stufato” di inspirare e vuole espirare. La contrazione degli addominali aumenta la pressione endoaddominale e di conseguenza anche le pressioni pleurica ed alveolare. Se aumenta la pressione alveolare, la prima conseguenza (durante le ventilazioni pressometriche) è la riduzione del flusso inspiratorio che è originato proprio dalla differenza di pressione tra ventilatore e alveoli**. In corrispondenza della linea “a” si vede infatti la brusca riduzione del flusso inspiratorio (la “gobba” in prossimità della punta della freccia): questo segna l’inizio dell’attivazione dei muscoli espiratori. La pressione alveolare, aumentata dalla contrazione dei muscoli espiratori, aumenta al punto tale da eguagliare e superare quella raggiunta dal ventilatore all’inizio dell’inspirazione: questo spiega la cessazione del flusso inspiratorio ed il piccolo aumento della pressione nelle vie aeree (come si vede nello spazio tra i punti “b” e “c”). Il flusso cessa quando la pressione alveolare diviene uguale a quella raggiunta dal ventilatore: in assenza di una differenza di pressione non esiste flusso. Se la pressione alveolare poi aumenta oltre, questo aumento si ripercuote nelle vie aeree fino al ventilatore, poichè il flusso espiratorio non può iniziare se non quando è terminato il tempo inspiratorio.

Passiamo ora alla “E” (figura 2): come avviene l’espirazione?

Figura 2.

Negli atti 2 e 5 il flusso espiratorio mostra un decadimento esponenziale che gradualmente si azzera, come caratteristico nell’espirazione passiva (nel respiro 5 l’azzeramento del flusso è ragionevole da prevedere). Quindi possiamo concludere che in queste espirazioni i muscoli espiratori, attivati durante l’inspirazione, non mantengono un’attività rilevante quando viene consentito al paziente di espirare, tendono cioè a rilassarsi rapidamente. Nei respiri 1 e 4 il flusso espiratorio è ancora decrescente (anche se non chiaramente esponenziale) ma sia il picco che la durata dell’espirazione sono ridotti rispetto a quello dei respiri 2 e 5. Questo vuol dire che in queste espirazioni è stato espirato un volume minore rispetto agli altri respiri. E questo è un buon motivo per spiegare perchè nel respiro successivo il paziente ha fretta di espirare già a metà dell’inspirazione: ha ancora nei polmoni una parte del volume corrente precedente e dopo mezza inspirazione è già soddisfatto.

E cosa succede invece nell’espirazione 3? Inizialmente il flusso decresce più o meno in maniera simile all’espirazione 1, ma in corrispondenza della prima freccia bianca è come se iniziasse una seconda espirazione. Nel frattempo, osservando la pressione delle vie aeree, vediamo che il livello di PEEP crolla quasi a zero e così si mantiene per circa un secondo. Evidentemente se cala la PEEP, aumenta improvvisamete la differenza di pressione tra alveoli e ventilatore, e l’espirazione ricomincia da un nuovo livello di flusso. Cosa è successo? Un guasto al ventilatore meccanico! Il ventilatore ha “perso” la PEEP, cosa che non dovrebbe assolutamente fare mai. Per questo motivo il ventilatore è stato rimosso dal paziente ed inviato alla riparazione. In assenza di un’attenta valutazione del monitoraggio grafico della ventilazione non ci saremmo accorti di questo problema!

Infine passiamo alla “F”: quando iniziano ad attivarsi i muscoli inspiratoriPer riconoscere l’inizio dell’attività inspiratoria dobbiamo osservare almeno uno di questi due segni: un rapido azzeramento del flusso espiratorio (segno tipico della PEEP intrinseca) e/o un piccolo calo della pressione delle vie aeree che precede l’insufflazione (segno dell’attivazione del trigger inspiratorio). Ho inserito nella figura 3 una freccia all’inizio di ciascuna inspirazione sia nelle curve di flusso che di pressione.

 

Figura 3.

Nella curva di flusso non si vedono evidenti rapidi azzeramenti del flusso espiratorio (si potrebbe discutere dell’espirazione 5, ma preferisco non complicare ulteriormente la vita…). Notiamo che all’inizio dell’inspirazione 5, sulla curva di pressione, è evidente un piccolo calo della pressione (sotto il livello della PEEP, linea tratteggiata rossa) prima dell’insufflazione: questo è un chiaro segno che questa inspirazione è iniziata dall’attivazione dei muscoli inspiratori. E’ minimo, quasi impercettibile, il triggeraggio sugli atti 2 e 3.

Le inspirazioni 1 e 4 non mostrano invece nessun segno di attivazione del trigger, quindi fanno parte dei 20 atti di frequenza respiratoria impostati sul ventilatore ed erogati automaticamente. Notiamo che questi due atti controllati anticipano di poco le inspirazioni 2 e 5, triggerate dal paziente: queste sono troppo ravvicinate alle precedenti, tanto che il paziente ne ha già abbastanza a metà inspirazione (come abbiamo già discusso sopra).

Si potrebbe aggiungere qualche altra considerazione su questo monitoraggio grafico, ma penso che così sia più che sufficiente.

L’analisi delle curve del monitoraggio grafico ci ha offerto molti spunti di riflessione sull’interazione paziente-ventilatore (e sul malfunzionamento del ventilatore meccanico). Un occhio esperto coglie in pochi istanti tutto quello che siamo detti in questi ultimi due post. Proviamo a pensare quanto possa essere efficace nella gestione clinica saper vedere tutte le informazioni che le curve pressione-tempo e flusso-tempo possono darci: è gratis e si può fare senza fatica tutti i giorni, più volte al giorno, su tutti i nostri pazienti ventilati, con un solo colpo d’occhio, in pochi secondi.

Tutti convinti di quello che ho scritto? Ci sono dubbi o incertezze? Servono approfondimenti? Sono a disposizione di tutti gli amici di ventilab per cercare di chiarire i lati oscuri o che si possono prestare ad interpretazioni alternative. E prometto che settimana prossima cambierò argomento!

Ciao.

Note:

*La PCV-VG è una ventilazione ciclata a tempo, cioè l’inspirazione termina quando è trascorso il tempo inspiratorio programmato dal ventilatore. Nel nostro caso l’inspirazione dura 1 secondo: infatti la frequenza respiratoria impostata è di 20/min, quindi ogni ciclo respiratorio dura 3 secondi. Il rapporto I:E è 1:2, ne deriva che l’inspirazione ha la durata fissa di 1 secondo. L’espirazione invece non ha una durata fissa: se il paziente non triggera dura 2 secondi, come previsto dal I:E, ma se il paziente ativa il trigger inspiratorio prima di questo tempo, l’espirazione si interrompe (vedi anche il post del 01/03/2011).
**Volendo essere pignoli si dovrebbe parlare della differenza di pressione tra ventilatore e bronchioli terminali, dove normalmente termina il flusso convettivo. Parliamo sempre di alveoli perchè, a mio parere, è più semplice da capire. Ed anche perchè tra alveoli e bronchioli terminali non vi sono differenze di pressione (il flusso è normalmente diffusivo).

Feb 202012
 

Oggi analizziamo la ventilazione a pressione controllata a target di volume (pressure control ventilation-volume guaranteed o PCV-VG) (GE), definita anche come pressure-regulated volume-controlled ventilation (PRVC) (Siemens/Maquet) o attivabile con la funzione AutoMode IPPV AutoFlow (guarda questo commento) su Draeger. Cercheremo di capirla meglio e di analizzare l’interazione paziente-ventilatore utilizzando un’immagine che un nostro infermiere ha fotografato con il telefonino. La qualità delle immagini non è eccelsa, ma ampiamente sufficiente per la nostra chiacchierata tra amici. Mi permetto un piccolo inciso: gli infermieri che lavorano nella mia Terapia Intensiva sono veramente bravi e l’attenzione che alcuni di loro hanno al monitoraggio della ventilazione meccanica è solo la punta dell’iceberg.

Torniamo alla PCV-VG: la sigla utilizzata da GE è quella che meglio descrive la ventilazione. Essa è infatti una pressione controllata che ha l’obiettivo di garantire il volume corrente prescelto. Quindi ventilazione pressometrica (caratterizzata dal flusso inspiratorio decrescente) con l’impostazione però del volume corrente, che è il nostro obiettivo. Il ventilatore, respiro per respiro (o quasi), deciderà la pressione di insufflazione necessaria (vedi anche il post del 27/11/2011).

Analizziamo ora la ventilazione che nella fotografia in alto. Per avere un approccio ordinato, procediamo con l’ABC del monitoraggio grafico (vedi post del 13/08/2010 e del 20/08/2010).

Vediamo riprodotto qui sotto il risultato di questo approccio.

Prima di tutto (A), identifichiamo la curva di pressione (in alto) e di flusso (in mezzo), trascurando qualsiasi altro dato: vedremo che sarà più che sufficiente. Quindi identifichiamo le fasi inspiratorie (B) ricercando sulla curva di flusso la al di sopra della linea dello zero. Nella schermata abbiamo 5 inspirazioni identificate dai numeri gialli: la prima inspirazione a sinistra (la 5) è l’ultima effettuata, mentre l’inspirazione 1 è la più “vecchia” della serie. Infine (lettera C) associamo le variazioni di pressione alle rispettive insufflazioni.

Diamo uno sguardo ora ai numeri: il volume corrente programmato è 450 ml, come si può vedere sulla barra dei comandi sotto i grafici. I dati sulla parte destra dello schermo si riferiscono ai dati rilevati: il ventilatore ha in realtà erogato 10.8 l/min di volume con una frequenza respiratoria di 22/min. Il volume corrente medio è quindi 490 ml, vicino ai 450 ml posti come obiettivo. Se vediamo l‘ultimo volume corrente rilevato questo è di soli 171 ml.

Perchè questà variabilità di risultato? Cerchiamo di capirlo sia dalla valutazione dei dati numerici che dall’analisi del monitoraggio grafico. Vedremo ora quanto il secondo ci dia informazioni del tutto precluse al primo.

I dati numerici ci fanno vedere che la frequenza impostata è 20/min (barra dei comandi sotto i grafici) mentre quella realmente rilevata è 22/min (numeri laterali ai grafici). Da questo possiamo dedurre che il pazientetriggera alcuni atti e che quindi sta facendo una ventilazione assistita-controllata.

Molti di più i dati che ci offre il monitoraggio grafico della ventilazione.

Vediamo che la forma dei flussi inspiratori è molto diversa tra un’inspirazione e l’altra. Nelle ventilazioni pressometriche il flusso inspiratorio dipende principalmente da quattro fattori: elastanza, resistenza, pressioneapplicata ed attività respiratoria del paziente. Elastanza e resistenza le possiamo considerare costanti tra un respiro e l’altro e quindi non giustificano le variazioni del flusso. La pressione applicata influsice fondamentalmente sul picco di flusso inspiratorio mentre l’attività respiratoria del paziente modifica sia il picco che la forma del flusso inspiratorio. Negli atti 2 e 5 il flusso decresce rapidamente e rimane per un breve periodo a zero, prima di espirare. Negli altri atti respiratori il flusso invece non si stabilizza mai sullo zero prima dell’espirazione e la pendenza del flusso decrescente è diversa in ogni respiro. Quindi: forme di flusso inspiratorio diverse = diversa attività respiratoria del paziente tra respiro e respiro. Quindi la variabilità della ventilazione è dovuta alla variabilità dell’attività respiratoria del paziente.

Inoltre anche il picco di flusso inspiratorio varia da respiro a respiro: questo può essere dovuto sia all’attività del paziente sià perchè il ventilatore aumenta progressivamente la pressione applicata dall’inspirazione 1 alla 5. Questo accade perchè il ventilatore rileva che i volumi correnti ottenuti in questa fase sono inferiori al volume prefissato e quindi aumenta la pressione di insufflazione per raggiungere il volume corrente impostato.

Una ventilazione così “varia” non è certo un male per il paziente, sarebbe probabilmente peggio una ventilazione monotona con paziente completamente passivo. Il montitoraggio grafico però ci fa vedere con chiarezza l’interazione ventilatore-paziente e ci spiega chiaramente cosa sta succedendo. Cosa che sfugge completamente alla sola osservazione dei dati numerici.

In questo post abbiamo descritto i messaggi principali dell’approccio “ABC” alla ventilazione in questo particolare caso di ventilazione assistita controllata in PCV-VG. Ma molte altre importantissime informazioni possono essere svelate dalle curve immortalate da Enrico con il suo telefonino (aveva ben ragione ad essere perplesso). Ma queste le vedremo nel prossimo post, in cui continueremo l’analisi con il passo successivo, il “DEF” (vedi post del 29/08/2010).

I commenti sono ben accetti sia per chiedere spiegazioni su ciò che non risulta chiaro (sicuramente ho dato per scontate cose che non lo sono) che per aggiungere altre considerazioni su quanto finora descritto.

In attesa di ritrovarci, ciao ai tanti amici di ventilab.

Mar 122011
 

Nel precedente post abbiamo analizzato l’importanza del tempo inspiratorio nell’impostazione della ventilazione assistita controllata.

Oggi commentiamo il monitoraggio grafico dei due casi proposti. Per farlo cerchiamo di applicare il semplice approccio sistematico suggerito nei post del 20 agosto e del 29 agosto 2010.

Consideriamo la prima impostazione proposta nel post della scorsa settimana che determinava un tempo inspiratorio di 1 secondo. Qui sotto sono riprodotte le curve del monitoraggio grafico.

Il primo passo (A) richiede la selezione delle curve di pressione (pressione-tempo) e flusso (fusso-tempo). Ricordiamo che grazie a queste due semplici curve possiamo ottenere almeno il 99% delle informazioni che il monitoraggio grafico può offrire.

Nello step successivo (B) identifichiamo la fase inspiratoria sulla traccia di flusso, che si caratterizza come la parte di curva che rimane al di sopra della la linea dello zero. Includiamo anche la parte di curva che resta sulla linea dello zero prima dell’espirazione: questa rappresenta una pausa di fine inspirazione.

Ora vediamo cosa succede alla curva di pressione durante l’inspirazione (C): in questo caso la pressione, dopo un piccolo calo, aumenta rapidamente. La breve riduzione iniziale della pressione è il segno del triggeraggio del paziente, come ci attendiamo in tutte le ventilazioni assistite. Dopo il segno del trigger, identifichiamo un’assistenza inspiratoria con l’aumento della pressione nelle vie aeree. In questo caso si verifica immediatamente dopo il trigger. Quindi deduciamo che il paziente viene assistito efficacemente fin dalle prime fasi dell’inspirazione. L’analisi dell’onda di pressione è molto più articolata di quanto non sia proposto oggi. Ne parleremo in altre occasioni. Sono sicuro che gli amici che hanno frequentato il nostro Corso di Ventilazione Meccanica avranno riconosciuto tutte le caratteristiche di una ventilazione volumetrica con paziente poco attivo dopo la fase di trigger.

In questo grafico non riconosciamo nessun aumento di pressione verso la fine dell’inspirazione (D). Deduciamo quindi che il paziente non attiva i muscoli espiratori già durante l’inspirazione. Un segno di buon adattamento al ciclaggio (cioè al passaggio dall’inspirazione all’espirazione) programmato dal ventilatore.

Il flusso espiratorio (E) è decrescente ed accenna ad avere una concavità rivolta verso il basso, come avviene nelle espirazioni passive.

L’inizio dell’attivazione dei muscoli inspiratori (F) determina come una brusca interruzione dell’espirazione, se questa non è già stata completata. In questo caso vediamo che quando il flusso espiratorio si interrompe quando è tra 0 e -0,2 l/s. Un segnale indiretto di espirazione incompleta ed iperinflazione dinamica (PEEP intrinseca).

Ora analizziamo con lo stesso approccio il monitoraggio grafico con 1.5 secondi di tempo inspiratorio. Lo rivediamo qui sotto.

Dopo aver scelto le curve pressione e volume (A) ed identificato il periodo inspiratorio (B), vediamo cosa succede alla pressione durante l’inspirazione (C). Questa sale solo dopo la metà dell’inspirazione, e dopo essere scesa sotto il livello di PEEP (linea tratteggiata). La mancata o ritardata salita della pressione durante l’inspirazione (o addirittura la sua riduzione sotto il livello di PEEP) sono un segno evidente di insufficiente supporto dell’inspirazione da parte del ventilatore. Nelle ventilazioni volumetriche questo avviene perchè il flusso inspiratorio è troppo basso rispetto al flusso generato attivamente dall’attività inspiratoria del paziente.

Vediamo che quando inizia la breve pausa di fine inspirazione, la pressione nelle vie aeree scende un istante e poi risale subito (D). Questo è un segno di attivazione dei muscoli espiratori durante l’inspirazione: il paziente inizia ad espirare quando ancora il ventilatore è in fase inspiratoria.

Il flusso espiratorio è passivo (E) ed anche in questo caso l’espirazione viene interrotta ed è incompleta (F) per l’attivazione dei muscoli inspiratori. Il flusso espiratorio si interrompe a circa -0.2 l/s, un valore più elevato rispetto al caso precedente.

Possiamo osservare come in questo caso il tempo inspiratorio sia più lungo del tempo espiratorio (nonostante avessimo impostato un I:E di 1:2). Questo favorisce sicuramente le asincronie ed il peggioramento dei segni di espirazione incompleta che abbiamo notato.

Riassumendo, è da preferire (in questo specifico caso) la prima impostazione (tempo inspiratorio di 1 secondo) perchè:

  • durante l’inspirazione il paziente viene supportato in maniera più efficace
  • il paziente non ha asincronia con il ventilatore nel passaggio tra inspirazione ed espirazione
  • il ridotto tempo inspiratorio lascia più tempo per lespirazione che, seppur incompleta, lo è in maniera ridotta rispetto al tempo inspiratorio di 1.5 secondi

Quello che abbiamo visto oggi è solo un piccolo esempio delle tante informazioni che il monitoraggio grafico della ventilazione ci fornisce ogni giorno per ventilare meglio i nostri pazienti. Ce l’abbiamo sotto gli occhi e spesso non lo utilizziamo tutte le sue potenzialità. Gli amici che seguono ventilab avranno sempre più spesso spunti e stimoli per arrivare a padroneggiare anche questo strumento.

Ciao a tutti.

Mar 012011
 

La ventilazione assistita controllata è la ventilazione controllata con il trigger. La finalità di questa modalità di ventilazione è di erogare inspirazioni di dimensione e durata prefissate, lasciando al paziente la scelta della frequenza respiratoria. E’ la modalità di ventilazione più utilizzata nel mondo (1) ed è quella utilizzata nei principali trial clinici sulla ventilazione protettiva nella ARDS (2,3). Infatti consente di erogare un volume corrente fisso (ad esempio di 6ml/kg) anche ai pazienti con drive respiratorio conservato.

L’impostazione del ventilatore nella ventilazione assistita controllata può essere semplice ed insidiosa al tempo stesso. La ventilazione può essere volumetrica (assisted control ventilation, ACV), pressometrica (assited pressure controlled ventilation, APCV) o pressometrica a target di volume. E fino a qui tutto semplice.

La frequenza respiratoria che impostiamo definisce la frequenza respiratoria minima del paziente, che diventa operativa in assenza di triggeraggio. Inoltre, assieme al rapporto inspirazione/espirazione (I:E), identifica la durata del tempo inspiratorio. E qui iniziano le insidie. E’ infatti scorretto ragionare in termini di I:E nella ventilazione assistita controllata. Cerchiamo di chiarire il perchè con un esempio. Impostiamo una frequenza respiratoria di 12/min ed un I:E di 1:1: la durata di un ciclo respiratorio sarà di 5 secondi (60/frequenza respiratoria) ed il tempo inspiratorio sarà uguale al tempo espiratorio, cioè entrambi avranno la durata di 2.5 secondi. Ma questo sarebbe vero se facessimo una ventilazione controllata, cioè con la frequenza respiratoria decisa dal ventilatore e non dal paziente. Quando invece il paziente inizia a triggerare, perdiamo il controllo della durata della espirazione, che terminerà quando il paziente deciderà di iniziare l’inspirazione successiva. La nostra impostazione però ci mantiene il controllo della durata dell’inspirazione, che nell’esempio che abbiamo fatto rimarrà di 2.5 secondi. Vediamo allora cosa succederebbe se quindi il nostro paziente assumesse il controllo della frequenza respiratoria con 20 atti al minuto. In questo caso la durata media di un ciclo respiratorio diventerà di 3 secondi (60/20): essendo l’inspirazione di 2.5 secondi, all’espirazione resterà solo mezzo secondo (I:E reale di 5:1 invece dell’impostato 1:1). Un ottimo modo per mettersi nei guai!

La raccomandazione è quindi di utilizzare il rapporto I:E solo per ottenere un tempo inspiratorio appropriato (solo quest’ultimo resterà sempre costante), non prestando attenzione al valore impostato di I:E, poichè il I:E reale si modifica al variare della frequenza respiratoria del paziente.

Ma come stabilire quale è la durata ottimale del tempo inspiratorio? Sappiamo che il tempo inspiratorio fisiologico è nell’ordine di 1-1.5 secondi. Questo può orientarci nella scelta del tempo inspiratorio, ma non è per nulla sufficiente. Dobbiamo necessariamente valutare il monitoraggio grafico per comprendere l’interazione paziente-ventilatore.

Affrontiamo concretamente il problema. Vogliamo erogare ad un paziente 420 ml di volume corrente. Proviamo ad impostare una frequenza respiratoria di 12/min ed un I:E di 1:4. Ne risulterà un tempo inspiratorio di 1 secondo (ciclo respiratorio 60/12= 5 secondi; 1/5 del ciclo respiratorio in inspirazione= 1 secondo). Il paziente triggera 24 atti al minuto e qui di seguito sono riprodotte le curve pressione-tempo e flusso-tempo corrispondenti:

Valutiamo ora l’effetto dell’allungamento del tempo inspiratorio a circa 1,5 secondi (ottenuto con una frequenza respiratoria di 13 ed un I:E di 1:2). La frequenza respiratoria del paziente è sempre 24/min ed il monitoraggio grafico diventa come riportato qui sotto:

Quali informazioni ci offre il monitoraggio grafico? Quale delle due impostazioni ci induce a scegliere? Perchè?

Questo è il compito della settimana per gli oltre 2300 amici che seguono ventilab regolarmente. La prossima settimana darò la mia lettura del monitoraggio. Nel frattempo mi farebbe piacere ricevere pareri e commenti.

Un sorriso a tutti.

References.

1) Esteban A et al. How Is Mechanical Ventilation Employed in the Intensive Care Unit? Am J Respir Crit Care Med 2000; 161:1450-8.

2) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

3) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8