Feb 262016
 

fishbowlStress e strain sono due concetti sempre più ricorrenti nella ventilazione protettiva del paziente con Acute Respiratory Distress Syndrome (ARDS). Cerchiamo di capire se e come possono esserci utili nella pratica clinica.

Lo strain in fisica descrive la deformazione di un corpo rispetto alla sua struttura iniziale (figura 1).

Applicato al polmone possiamo intendere lo strain come il rapporto tra la deformazione applicata al polmone (cioè il volume corrente) rispetto al suo volume iniziale (cioè la capacità funzionale residua).

Strain

Figura 1

La figura 2 ci aiuta a ricordare che la Capacità Funzionale Residua (FRC, Functional Redisual Capacity) è il volume del polmone alla fine di una espirazione passiva completa.

functional-residual-capacity

Figura 2

Come sappiamo quando si parla di “capacità” (come nel caso della Capacità Funzionale Residua) in spirometria si intende la somma di volumi polmonari. In particolare la Capacità Funzionale Residua è la somma di Volume di Riserva Espiratoria (nella figura 2 ERV, Expiratory Reserve Volume, cioè il volume che possiamo espirare con un’espirazione massimale) ed il Volume Residuo (RV, residual volume, volume che non possiamo espirare, nemmeno con un’espirazione massimale).

Possiamo considerare la capacità funzionale residua come la dimensione iniziale di un contenitore nel quale andiamo ad aggiungere il volume corrente. A parità di volume corrente, un contenitore (cioè una capacità funzionale residua) più grande subirà una deformazione relativa (cioè uno strain) minore rispetto ad un contenitore di dimensioni minori (figura 3).

lung_volumes

Figura 3

Facciamo un esempio. Gino è un soggetto maschio adulto con un polmone sano (figura 4a) ed una capacità funzionale residua di 2500 ml. Gino ventila con un volume corrente di circa 500 ml, lo strain è quindi pari a 500 ml/2500 ml, cioè 0.2. Ipotizziamo che, sfortunatamente, a Gino una ARDS (figura 4b) determini la riduzione della capacità funzionale residua a 800 ml (di solito la gravità della ARDS è direttamente proporzionale alla riduzione della capacità funzionale residua).

rx torace normale vs ards

Figura 4

Se a Gino continuiamo a somministrare 500 ml di volume corrente (come quando era sano), avremo un rapporto volume corrente/capacità funzionale residua di 500 ml/800 ml, cioè uno strain di circa 0.63. Come a tutti i pazienti con ARDS, applichiamo a Gino anche una PEEP, che inevitabilmente contribuisce ad aumentare ulteriormente il volume polmonare al di sopra della capacità funzionale residua. L’incremento di volume indotto dalla PEEP si somma al volume corrente nella determinazione dello strain. Ipotizziamo di applicare 15 cmH2O di PEEP e che questo aumenti il volume polmonare di fine espirazione di circa 300 ml. In questo caso, se si mantiene costante il volume corrente a 500 ml, lo strain sarà quindi (500 ml + 300 ml)/800 ml, cioè 1.

Gino aveva uno strain di 0.2 quando era sano ed uno strain di 1 con l’ARDS, a parità di volume corrente: ha cioè quintuplicato la deformazione del polmone. Un fenomeno tutt’altro che trascurabile, poiché l’aumento dello strain sopra una soglia critica è un elemento determinante per il danno polmonare indotto dalla ventilazione.

E’ quindi importante misurare la capacità funzionale residua e determinare lo strain nei pazienti con ARDS? No, a mio personale parere: ad oggi non è stata identificato un convincente valore soglia di strain da non superare nella pratica clinica. Ed inoltre sappiamo che lo strain indotto dalla PEEP (definito anche strain statico) è meno dannoso dello strain associato al volume corrente (strain dinamico). Quindi, anche qualora fosse dato un valore soglia allo strain, saremmo in difficoltà a scorporare gli effetti della PEEP da quelli del volume corrente.

Il concetto di strain, anche se per ora sembra povero di chiare implicazioni pratiche, è comunque estremamente interessante dal punto di vista concettuale. Ci dice che il volume corrente deve essere proporzionale al volume del polmone ventilabile nei pazienti con ARDS: il volume corrente deve quindi essere adeguato, oltre che al peso ideale del paziente, anche alla gravità della ARDS.

Possiamo però riconoscere che in fondo un’informazione simile ci è offerta anche dalla cara, vecchia compliance (che caratterizza la ARDS fin dalla sua nascita, vedi post del 31/01/2016). Come sappiamo la compliance esprime la variazione di volume dell’apparato respiratorio per ogni cmH2O di pressione ad esso applicato e si misura dividendo il volume corrente per la differenza di pressione statica (cioè di plateau) tra inspirazione ed espirazione. Gino quando era sano probabilmente aveva una normale compliance dell’apparato respiratorio (circa 100 ml/cmH2O), quindi riusciva a ventilare i suoi 500 ml con 5 cmH2O di differenza di pressione tra inspirazione ed espirazione. Quando gli viene l’ARDS, la compliance si riduce a 30 ml/cmH2O (come quella di molti pazienti con ARDS). Meno di un terzo del normale, una riduzione proporzionalmente simile a quella della capacità funzionale residua, che si era ridotta da 2500 a 800 ml. Già quasi 30 anni fa è stato proposto è stato osservato che il valore di compliance corrisponde all’incirca alla percentuale di polmone rimasto normalmente aerato nei pazienti con ARDS (1). Quindi una compliance di 30 ml/cmH2O potrebbe grossolanamente indicare che il 30% del tessuto polmonare è rimasto normalmente ventilabile.

Pensiamo ora a quello che facciamo quando ventiliamo i pazienti con ARDS facendoci guidare dalla driving pressure (vedi post del 28/02/2015): quando scegliamo una PEEP per ridurre la driving pressure, altro non facciamo che aumentare quanto possibile la compliance. Dopo di questo, se necessario, limitiamo il volume corrente (e quindi la driving pressure) per evitare la comparsa di segni di sovradistensione.

Di solito lo strain è associato allo stress, che altro non è che la driving pressure. Stress e strain sono direttamente proporzionali: stress = k · strain.

Per quanto detto finora, questa equazione, relativamente all’apparato respiratorio, diventa: driving pressure = k ·VT/FRC.

Tradotta in italiano, l’equazione ci dice che tanto più è elevata la driving pressure, tanto maggiore è la deformazione che sta subendo il polmone. E’ stato osservato che il rischio di morte nei pazienti con ARDS aumenta quando la driving pressure supera i 15 cmH2O

Dopo quanto detto finora si può almeno intuire perché la costante di proporzionalità tra stress e strain è l’elastanza specifica, cioè il rapporto tra capacità funzionale residua e compliance. Possiamo quindi scrivere l’equazione nella sua forma finale: driving pressure = FRC/compliance · VT/FRC.

E qui ci fermiamo (almeno per oggi) perché ogni ulteriore approfondimento sarebbe interessantissimo, ma certamente non breve. Notiamo però che la driving pressure (una misura molto semplice) riassume in se tutti gli elementi fondamentali nella ventilazione protettiva.

Un’ultima precisazione. Quando misuriamo la pressione nelle vie aeree per calcolare compliance e driving pressure, ci riferiamo a tutto l’apparato respiratorio, tradizionalmente inteso come la somma di polmone e gabbia toracica. Se vogliamo riportare tutti questi concetti al solo polmone, invece della pressione delle vie aeree dobbiamo utilizzare la differenza tra pressione delle vie aeree e pressione esofagea.

Possiamo concludere che:

1) la scelta del volume corrente nel paziente con ARDS deve tener conto della dimensione del polmone che “accetta volentieri la ventilazione”. Questa può essere definita sia dalla capacità funzionale residua sia dalla compliance (che è simile alla percentuale di polmone rimasto normalmente aerato);

2) lo strain al momento è di difficile determinazione (bisogna misurare la capacità funzionale residua) e di vaga utilità clinica (non disponendo di valori soglia praticamente utilizzabili)

3) la driving pressure contiente in sé l’informazione dello strain, è facile da misurare e disponiamo di una possibile soglia di allarme utilizzabile nella pratica clinica (all’incirca sopra i 15 cmH2O).

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Gattinoni L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6

2) Amato MB et al. Driving pressure and survival in the acute respiratory distress syndrome. New Eng J Med 2015; 372:747-55

Jan 142015
 

ka-egizioL’ARDS è una sindrome caratterizzata da danno alveolare bilaterale acuto di varia gravità. La forma grave* resta tuttora associata a una mortalità del 20-40%, nonostante i progressi registrati negli ultimi quindici anni[1]. Dei pazienti che decedono per ARDS una minoranza (15%) muore per ipossiemia refrattaria alla ventilazione convenzionale[2].

In casi particolarmente gravi di ARDS deve essere considerata l’ossigenazione extracorporea (ECMO). Nell’ultimo decennio il supporto extracorporeo ha conosciuto una diffusione maggiore rispetto al passato, in seguito a miglioramenti tecnologici che hanno reso la tecnica più semplice, più sicura e meno costosa. In occasione della pandemia di influenza payday loans online da virus A H1N1 è stata creata una rete di terapie intensive specializzate nel trattamento avanzato, ECMO inclusa, della ARDS grave. Il trasferimento di pazienti con ipossiemia grave presso tali centri di riferimento sta diventando anche da noi una pratica diffusa[2].
Numerose serie di dati osservazionali recenti[3,4,5] e un singolo trial clinico randomizzato e controllato[6], pur criticabile sul piano metodologico, suggeriscono l’efficacia dell’ECMO nel migliorare la sopravvivenza nell’ARDS. Tuttavia non esistono a oggi evidenze scientifiche conclusive a favore di un utilizzo routinario per tale indicazione: il supporto extracorporeo va ancora considerato come terapia di salvataggio nelle forme gravi di ARDS caratterizzate da ipossiemia o ipercapnia refrattarie alla ventilazione convenzionale, associate a elevato rischio di danno polmonare indotto dalla ventilazione (VILI); quest’ultimo è stimato di solito con la misurazione della pressione delle vie aeree a fine inspirazione (Pplat).

Naturalmente esistono anche cause di gravissima insufficienza respiratoria diverse dall’ARDS per le quali l’ECMO è stata proposta, ad esempio asma grave, embolia polmonare massiva o malattie polmonari croniche in attesa di trapianto.

schema ECMO V-V

Le indicazioni specifiche all’ECMO pubblicate in letteratura differiscono leggermente tra le varie istituzioni[7]. Ne riporto alcune:

  • ELSO (Extracorporeal Life Support Organization): ECMO da considerare in caso di insufficienza respiratoria ipossica con PaO2/FiO2 <150 con FiO2 >90 e LIS* 2-3 (rischio di mortalità ≥50%); indicata in caso di PaO2/FiO2 <80 con FiO2 >90 e LIS* 3-4 o ipercapnia con PaCO2 >80 mmHg o impossibilità di ottenere Pplat <30 cmH2O (rischio di mortalità ≥80%)[8]

  • NSW Dipartimento della Salute (Australia): ipossiemia refrattaria (PaO2/FiO2 <60) o ipercapnia (PaCO2>100 mmHg, con PaO2/FiO2 <100)[9]

  • REVA (Francia): ipossiemia refrattaria con PaO2/FiO2 <50 nonostante alta PEEP (10–20 cmH2O) e FiO2>80% o Pplat >35 cmH2O nonostante riduzione del volume corrente a 4 ml/kg[10]

  • ECMO network (Italia): OI** >30 o PaO2/FiO2 <70 con PEEP15 cmH2O (in http://pharmacyincanadian-store.com/ pazienti già ammessi in un centro ECMOnet) o PaO2/FiO2 <100 con PEEP 10 cmH2O (in pazienti non ancora trasferiti in un centro ECMOnet) o ipercapnia con pH <7.25 per almeno 2 ore nonostante i trattamenti disponibili[4]

Anche sulle controindicazioni all’ECMO vi sono alcune differenze: secondo ELSO (Extracorporeal Life Support Organization) non vi sono controindicazioni assolute ma solo relative in caso di ventilazione con FiO2>0.9 e Pplat> 30 cmH2O per più di 7 giorni, di stato di grave immunosoppressione (conta assoluta di neutrofili <400/ml3) o di emorragia cerebrale recente[8]. Secondo le altre istituzioni citate sono controindicazioni all’ECMO: condizioni neurologiche scadenti e irreversibili, cirrosi epatica in presenza di ascite o encefalopatia o sanguinamento da varici, cancro in progressione, infezione da HIV, peso >120 kg, ipertensione polmonare e l’arresto cardiaco[9]; gravi comorbidità e SOFA >15[10]; sanguinamento intracranico o altre controindicazioni maggiori agli anticoagulanti, preesistente grave disabilità, malattia di base a prognosi infausta[4].

Ma non è tutto. Abbiamo accennato alla prevenzione del VILI come indicazione all’ECMO: valori di Pplat 30 cmH2O sono abitualmente considerati la soglia da non superare per scongiurare il rischio di VILI. In precedenti post su ventilab.org abbiamo però visto che la pressione di plateau delle vie aeree può nascondere delle insidie, sia perché un valore di Pplat 30 cmH2O non ci fa escludere sempre un VILI in atto[11,12] (vedi anche post del 21 febbraio 2013), sia perché in caso di elevata elastanza di parete toracica un valore di Pplat 30 cmH2O può associarsi a insufficienti valori di pressione transpolmonare: in casi simili la PEEP è spesso sottodosata e l’ipossiemia sovrastimata, per cui il ricorso all’ECMO può risultare inappropriato[13]. Per rivelare queste situazioni è dunque imprescindibile la misurazione della pressione transpolmonare, di cui è stato già detto in precedenza*** e sulla quale avremo certamente modo di tornare in futuro.

In conclusione, dobbiamo considerare il ricorso all’ECMO come una possibile terapia di salvataggio in casi di ARDS grave caratterizzati da:

  • grave ipossiemia refrattaria alla FiO2 e alla PEEP

  • ipercapnia associata ad acidosi grave

  • rischio di VILI non eliminabile

 

Un saluto e un augurio di buon anno ai frequentatori del nostro sito.

* vedi post del 24 giugno 2012

** OI (oxygenation index) è dato da FiO2 x 100 x pressione media delle vie aeree / PaO2

*** vedi post del 7 febbraio 2012

Bibliografia

  1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342:1301–1308
  2. Extracorporeal membrane oxygenation in adult patients with acute respiratory distress syndrome. Terragni P et al. Curr Op Crit Care 2014; 20:86-91

  3. The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009; 302:1888–1895

  4. Patroniti N et al. The Italian ECMO network experience during the 2009 influenza A(H1N1) payday loans direct lender pandemic: preparation for severe respiratory emergency. Intensive Care Med 2011; 37:1447–1457

  5. Noah MA et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306:1659–1668

  6. Peek GJ et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009;374:1351-63

  7. Combes A et al. What is the niche for extracorporeal membrane oxygenation in severe acute respiratory distress syndrome? Curr Op Crit Care 2012; 18:527-532

  8. ELSO guidelines, http://www.elso.med.umich.edu/Guidelines.html. [15 maggio 2012]

  9. NSW Indications for ECMO Referral, 2010. http://amwac.health.nsw.gov.au/policies/pd/2010/pdf/PD2010_028.pdf. [15 maggio 2012]
  10. REVA organization, SDRA lié à la grippe A (H1N1)-2009, Recommandations pour l’assistance respiratoire.

    http://www.srlf.org/Data/upload/file/Grippe%20A/reco%20REVA%20SDRA-H1N1.pdf. [15 maggio 2012]

  11. Hager DN et al. Tidal volume reduction in patients with payday loans direct lenders acute lung injury when plateau pressures are not high. Am J Resp Crit Care Med 2005; 172:1241-1245.

  12. Terragni PP et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Resp Crit Care Med 2007; 175:160-166

  13. Grasso S et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 2012; 38:395–403

Dec 052013
 

clintLa ventilazione meccanica in anestesia è un argomento di crescente interesse. Michele Bertelli,  un anestesista rianimatore che lavora assieme a me, ci ha preparato un post su questo argomento. Un grazie a Michele per questo spunto che sarà certamente capace di farci riflettere (e forse di cambiare alcune consuetudini consolidate sulla ventilazione in anestesia).

_°_°_°_°_°_°_°_°_°_°_

Qualche giorno fa mi trovavo in sala operatoria di Chirurgia Generale, io e Roberta, un dottoressa al primo anno di specialità. Primo intervento della mattinata, un laparotomia per un intervento di resezione retto-colica.
La nostra paziente non prevede difficoltà pre-operatorie particolari: ipertesa, diabetica, buone condizioni generali. Posizioniamo un catetere peridurale ed iniziamo l’anestesia generale. Induzione, intubazione oro-tracheale senza problemi e Roberta mi chiede: “Come imposto il ventilatore?” “Fai come se io non ci fossi”.
La paziente pesa 74 kg ed è alta 158 cm. Il ventilatore viene impostato con ventilazione in volume controllato con un volume corrente di 500 ml per 14 atti /minuto, PEEP 0 cmH2O.
Abbiamo una buona saturazione periferica SpO2 99% con FIO2 60%, EtCO2 39-40 mmHg e pressioni di picco intorno a 30 cmH20.
L’intervento è cominciato, è prevista una durata superiore alle 2 ore, nessun problema di emodinamica, la paziente è in lieve Trendelenburg. Chiedo a Roberta il motivo delle impostazioni del ventilatore e iniziamo a discutere. Dal computer della sala operatoria apro la pagina di Ventilab e leggiamo insieme il post del 24 luglio 2010, commentiamo le opinioni PERSONALI di chi ha scritto e modifichiamo i parametri ventilatori:
Calcoliamo il peso ideale (post 18 dicembre 2011): donne = 45.5 + 0.91 x (altezza in cm – 152.4) = 45.5 + 0.91 x (158 – 152.4) = 50 kg. Impostiamo un volume corrente di 5-8 ml/kg di peso corporeo ideale, scegliamo arbitrariamente 7 ml/kg x 50 kg = 350 ml
La paziente non è obesa, quindi PEEP 5 cmH2O. Frequenza respiratoria iniziale di 18 atti/minuto con l’accortezza di non dimenticare EtCO2 e monitoraggio grafico del ventilatore.
Un rapporto inspirazione/espirazione (I:E) tale da garantire un tempo inspiratorio pari a 1 secondo.
Contenti? Io sì, Roberta un po’ meno (giustamente!!!) e ora lei chiede a me “Perché queste impostazioni ti piacciono?”. Esclusa la stima e la completa fiducia di chi ha scritto il post preso come esempio, non so dirle se effettivamente le impostazioni scelte (che sono valide per un paziente in ventilazione meccanica ricoverato in terapia intensiva) possano “far bene” anche alla nostra signora con l’addome aperto.

Oggi però posso tentare di dare una risposta: The New England Journal of Medicine (1) ha pubblicato in agosto un articolo che fa al caso nostro.

È uno studio multicentrico francese, condotto in doppio cieco, sono stati studiati 400 pazienti adulti sottoposti a intervento di chirurgia addominale (laparoscopica o no) della durata prevista maggiore di due ore.
I pazienti del gruppo di controllo sono stati ventilati in modalità volume controllato, con volume corrente di 10-12 ml/kg di peso corporeo ideale, con PEEP zero. I pazienti del gruppo di studio sono stati ventilati in modalità volume controllato, con volume corrente di 6-8 ml/kg di peso corporeo ideale, con PEEP 6-8 cmH2O e manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
In entrambi i gruppi si è stati attenti a non superare una pressione di plateau di 30 cmH2O (in media 15 cmH2O nel gruppo con basso volume corrente e PEEP e 16 cmH2O nel gruppo di controllo).
Nella valutazione dell’outcome primario, definito come insorgenza di complicanze polmonari maggiori (polmonite, insufficienza respiratoria con necessità di ventilazione artificiale) o extrapolmonari (sepsi, sepsi grave, shock settico, decesso) nella prima settimana postoperatoria, si è evidenziata una differenza significativa tra i due gruppi: 22 (10.5%) complicanze nel gruppo di pazienti ventilati con basso volume corrente e PEEP e 55 (27.5%) complicanze nel gruppo di controllo (rischio relativo 0.4, CI95% 0.24-0.68, p = 0.001). L’analisi degli outcome secondari ha mostrato una ridotta permanenza in ospedale nei pazienti ventilati con basso volume corrente e PEEP.

Lo studio dimostra come la ventilazione protettiva possa essere più vantaggiosa rispetto alla “ventilazione standard” anche in anestesia. Un’ipotesi (post 26 dicembre 2011) (2) è che questa modalità ventilatoria più “soft” riduca barotrauma (da elevate pressioni), volotrauma (da sovradistensione di aree), atelectrauma (da dereclutamento), biotrauma (danno strutturale da mediatori proinfiammatori locali) e forse anche microaspirazioni di contenuto gastrico (3).

Ogni anno nel mondo circa 230 milioni di pazienti vengono sottoposti a chirurgia addominale maggiore e ventilazione meccanica: le problematiche respiratorie sono seconde solo alla infezioni (4) tra le complicanze post-operatorie. L’anestesista può contribuire a ridurre le complicanze postoperatorie con una appropriata impostazione della ventilazione meccanica.

Conclusioni.

Possiamo concludere che in tutte le condizioni in cui impostiamo una ventilazione meccanica controllata in interventi di chirurgia addominale maggiore dovremmo:
1. stabilire un volume corrente di 6-8 ml/kg di peso corporeo ideale
2. impostare una PEEP di 6-8 cmH2O
3. valutare manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
4. regolare la frequenza respiratoria per mantenere una PaCO2 “ragionevole”
5. mantenere una pressione di plateau inferiore a 30 cmH2O
6. ricordarci che il ventilatore può essere un’arma molto potente, sia in positivo che in negativo.

Grazie per la pazienza.

Bibliografia
1. Futier E et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369:428-37
2. Vidal Melo MF et al. Protect the lungs during abdominal surgery. Anesthesiology 2013; 118: 1254-7
3. Lam SM et al. Intraoperative low-tidal-volume ventilation (letter). N Engl J Med 2013; 369:1861-3
4. Weiser TG et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372:139-44

Oct 202013
 

ObelixSaludaLa ventilazione meccanica in anestesia ci offre talora difficoltà e spunti interessanti. Oggi ho il piacere di condividere con gli amici di ventilab un caso che mi è stato inviato da Chiara. E’ un concentrato di difficoltà: la ventilazione meccanica durante chirurgia laparoscopica  in posizione di Trendelenburg in una paziente obesa. Suggerisco di continuare leggere questo post anche chi non si occupa di anestesia, perchè i problemi che Chiara ha incontrato e le strategie per gestirli appropriatamente sono di interesse generale per tutti coloro che si occupano di ventilazione meccanica.

Ecco il caso di Chiara: “Ho seguito un’anestesia generale in una paziente di 24 anni ma di quasi 100 Kg per 150 cm, Mallampati IV, collo, mammelle e addome voluminosi : habitus “batraciano”; superata la difficoltà ventilatoria all’induzione, l’intubazione tracheale non è stata difficoltosa. Inizio la ventilazione in volume controllato con PEEP 5 –> 7  cmH20 e un volume corrente di circa 600 ml per 14 atti /minuto; saturazione buona, ETCO2 39-40 mmHg e pressioni di picco intorno a 40 cmH20 in Trendelemburg e pneumoperitoneo con pressione media delle vie aeree di 12-13 mmHg; ho osservato però un volume corrente espirato inferiore di 200 ml rispetto a quanto erogato e ho provato a variare il rapporto I:E  che da 1:2 ho corretto come 1,5:1; il risultato è stato un netto miglioramento del volume corrente (600ml erogati e circa 600 ml espirati), una riduzione della ETCOa 35 mmHg ed una lieve riduzione delle pressioni di picco a 37 cmH20; nessun problema al risveglio, dopo 50 minuti di Trendelemburg ; premetto che si trattava di chirurgia pelvica.  A prescindere dal singolo caso, la scelta di variare il rapporto I:E , trattandosi di una paziente con un quadro “restrittivo” può ritenersi valida? Grazie.

Grazie a te Chiara per lo spunto e per avere accettato di farlo discutere su ventilab.

Il problema.

Chiara aveva impostato 600 ml di volume corrente con la ventilazione a volume controllato ma la sua paziente riceveva in realtà 400 ml di volume corrente (ricordo che il volume corrente espiratorio è quello che di norma dobbiamo considerare come volume realmente erogato, indipendentemente da quello impostato). Durante la ventilazione a volume controllato (in assenza di perdite dal circuito) il volume corrente può non essere ottenuto per un solo motivo: la pressione di picco raggiunge il limite massimo consentito nel corso dell’inspirazione. Quindi il ventilatore “protegge” il paziente interrompendo l’insufflazione nel momento in cui la pressione nelle vie aeree diventa superiore al limite prestabilito. Chiara ci dice in effetti che la pressione di picco era 40 cmH2O, un valore a cui spesso si imposta il limite di pressione di insufflazione.

Effetto della variazione del rapporto I:E.

In questo caso si è deciso di aumentare il tempo inspiratorio ed abbreviare il tempo espiratorio  modificando il rapporto inspirazione/espirazione (I:E) da 1:2 a 1.5:1. La frequenza respiratoria era 14/min, quindi ogni ciclo respiratorio durava circa 4.3 secondi (=60/frequenza respiratoria). Quando il rapporto I:E era 1:2, l’inspirazione occupava il 33% del ciclo respiratorio e quindi circa 1.4 secondi ed il restante tempo (circa 2.9 secondi) era lasciato all’espirazione. Impostando un rapporto I:E di 1.5:1, significa che l’inspirazione occupa il 60% del ciclo respiratorio, quindi in questo caso circa 2.6 secondi ed l’espirazione si riduce a 1.7 secondi. Come può questo ridurre le pressioni di picco a 37 cmH2O ed ottenere la completa erogazione dei 600 ml di volume corrente?

pres_flowIl segreto è nella riduzione della pressione resistiva (vedi post del 05/12/2011): il flusso inspiratorio (data dal rapporto tra volume corrente e tempo inspiratorio) passa da circa 430 ml/s (= 600 ml/1.4 s) a circa 230 ml/s (=600 ml/ 2.6 s). Se il flusso inspiratorio si riduce quasi del 50%, la pressione resistiva (= flusso x Resistenza dell’apparato respiratorio) si riduce molto di più, visto che la relazione tra le due è esponenziale (vedi figura a fianco). Quindi se si riduce la pressione resistiva, si riduce anche la pressione di picco, della quale la pressione resistiva è una componente (vedi post del 24/06/2011).

Così facendo abbiamo però ridotto la pressione di picco, ma aumentato la pressione di plateau, cioè quella parte di pressione delle vie aeree che si scarica sui polmoni. Infatti ricordiamo che la pressione di plateau è la somma di pressione elastica e PEEP totale, come possiamo vedere nella figura qui sotto:

pplat26

La pressione elastica è data dal volume corrente per l’elastanza. Immaginando che l’elastanza non si sia modificata, l’aumento del volume corrente del 50 % (da 400 a 600 ml effettivi) avrà determinato un aumento della pressione elastica del 50%.

La PEEP totale (somma di PEEP + PEEP intrinseca) è poi molto probabile che sia aumentata, visto che abbiamo ridotto drasticamente il tempo espiratorio (da 2.9 a 1.7 secondi) e contemporaneamente aumentato il volume corrente.

Quindi il risultato del cambio del I:E non ha certamente migliorato la protezione dei polmoni, pur avendo dato l’illusione di farlo. Anzi potrebbe averli esposti a qualche rischio in più.

Una possibile soluzione alternativa.

Prima di tutto, ripensiamo all’impostazione della ventilazione. La signora, ancorchè obesa, era di bassa statura. Il volume corrente andrebbe deciso sulla base del peso ideale e non di quello effettivo (vedi post del 18/12/2011). Se fai due calcoli, il peso ideale della signora sarebbe circa 45 kg (!). Forse un volume corrente di 350-400 ml (circa 8 ml/kg) poteva essere già sufficiente, provvedendo evidentemente ad associare una buona PEEP (nei gravi obesi si potrebbe iniziare con 10 cmH2O, emodinamica permettendo), con una frequenza respiratoria sufficiente ad avere una dignitosa eliminazione della CO2 (per quanto possa essere contronatura quando facciamo gli anestesisti, ricordiamo che un po’ di ipercapnia acuta non fa male, anzi potrebbe fare bene).

Secondariamente diamo un’occhiata alla pressioni di plateau (quella che arriva nei polmoni), trascurando la pressione di picco. Nei ventilatori da anestesia spesso non possiamo fare la manovra di occlusione di fine inspirazione. E’ però un’ottima abitudine inserire una breve pausa di fine inspirazione nell’impostazione della ventilazione a volume controllato. Avremo il monitoraggio continuo di una pressione di plateau che sarà forse di un paio di cmH2O più alta della pressione di plateau misurata a 3 secondi, ma che consiglio di utilizzare come come soglia da non superare durante la ventilazione: si avvicina alla pressione alveolare delle unità polmonari a bassa costante di tempo (presto dedicherò un post alla costante di tempo, qui non ho lo spazio di approfondire l’argomento). Se la pressione di plateau “va bene” (è cioè inferiore a 30 cmH2O, per dare retta all’opinione comune), non farei nulla anche in presenza di elevate pressioni di picco e non avrei alcun problema ad aumentare il limite della pressione massima delle vie aeree se necessario.

In casi come quello descritto in questo post, se necessario sarei propenso ad accettare anche una pressione di plateau un po’ superiore a 30 cmH2O se non ci fossero di segni di rilevante iperinflazione dinamica. Ci possiamo aspettare che una obesa in Trendelenburg con pneumoperitoneo possa avere pressioni addominali e pleuriche elevate. Quindi la pressione transpolmonare e lo stress dovrebbero essere comunque normali anche con pressione di plateau un po’ più alta di quanto normalmente raccomandate (vedi post del 24/06/2011).

Conclusioni.

Possiamo concludere che, in tutte le condizioni in cui facciamo ventilazione meccanica controllata, dovremmo:

1) stabilire un volume corrente appropriato rispetto al peso ideale (per le corporature standard massimo 500 ml nei maschi e 400 ml nelle femmine);

2) regolare la frequenza respiratoria per mantenere una PaCO2ragionevole” (anche 50 mmHg potrebbero andare benissimo);

3) favorire l’espirazione, quindi utilizzando I:E non troppi alti (misurando se possibile la PEEP intrinseca);

4) monitorare la pressione di plateau (anche su plateau molto brevi) e stare tranquilli se questa è inferiore 30 cmH2O. Se in queste condizioni la pressione di picco è alta, non lasciamoci influenzare, alziamo il limite di pressione massima delle vie aeree;

5) nei pazienti con “molta pancia” (obesi, gravide, pneumoperitoneo, posizione di Trendelenburg) se necessario accettiamo una pressione di plateau anche superiore a 30 cmH2O, a patto che il volume corrente sia ragionevolmente basso e non vi sia una rilevante autoPEEP.

Un sorriso a tutti gli amici di ventilab.

 

 

Oct 062013
 

bart-simpson-tabellineLa scelta della PEEP (Positive End-Expiratory Pressure) nella ARDS (Acute Respiratory Distress Syndrome) è stabilmente, da decenni, uno degli argomenti “caldi” quando si parla di ventilazione meccanica.

Oggi voleve condividere qualche riflessione sulla scelta della PEEP nei pazienti con ARDS.

Negli anni, si sono fatti strada, tra gli altri, due differenti approcci:
1) la scelta della PEEP guidata dalla PaO2;
2) la scelta della PEEP guidata dalla compliance dell’apparato respiratorio.

fio2_peep_table

La PEEP con  la PaO2 come obiettivo.

La scelta della PEEP guidata dalla PaO2 è quella che vedo fare più spesso nella pratica clinica. Ed è, di fatto, quella che è utilizzata anche nei grandi trial sulla ARDS, standardiazzata in tabelline come quella riprodotta a fianco (1). L’utilizzo di questa tabellina è semplice: l’obiettivo è ottenere una PaO2 tra 55 e 80 mmHg, per fare questo si utilizza un’accoppiata predefinita di FIO2 e PEEP come riportata nella tabellina. Se la PaO2 diventa superiore a 80 mmHg, si scala verso accoppiate FIO2/PEEP più basse, se la PaO2 diventa minore di 55 mmHg si va progressivamente verso livelli di FIO2/PEEP più alti. Un compito da bambino di terza elementare…

Che fondamento scientifico ha l’utilizzo di questa tabellina? Nessuno. E’ una scelta arbitraria, senza alcun razionale fisiopatologico alcuna evidenza che ne supporti l’efficacia. Penso quindi possa avere lo stesso valore della scelta empirica di PEEP e dellaFIO2che viene spesso fatta.

LA PEEP con la compliance come obiettivo.

Alcuni studi fondamentali sulla ventilazione protetiva hanno confrontato l’effetto della PEEP scelta sulla PaO2 oppure sul punto di flesso inferiore della curva di compliance (cioè la relazione statica pressione-volume) dell’apparato respiratorio,  (più avanti mi spiego meglio e vedrai che è una cosa in realtà semplicissima) (2-4). Valutando complessivamente l’effetto della ventilazione protettiva (basso volume corrente + PEEP sopra il punto di flesso) rispetto alla ventilazione “convenzionale” (alto volume corrente + PEEP sull’ossigenazione), i tre studi messi insieme hanno ottenuto una riduzione assoluta della mortalità del 25%. Un risultato molto migliore rispetto alla riduzione del 9% ottenuta con la sola riduzione del volume corrente a parità di PEEP scelta con la tabellina (1). Quindi un pesante indizio che una scelta della PEEP guardando la compliance è più efficace rispetto alla scelta della PEEP guardando alla PaO2.

Lo scorso mese è stato pubblicato uno studio che mette a confronto (a parità di volume corrente) le due strategie di scelta della PEEP (5): tabellina FIO2/PEEP o la ricerca della miglior (cioè più elevata) compliance. I risultati sono molto interessanti: scegliere la PEEP cercando la miglior compliance riduce la durata delle disfunzioni d’organo e si associa ad una riduzione della mortalità del 18% (quest’ultimo dato non raggiunge la significatività statistica perchè nello studio sono stati arruolati solo 70 pazienti).

Dobbiamo essere consapevoli che possiamo tranquillamente considerare la stessa cosa scegliere la PEEP sul punto di flesso inferiore e scegliere la PEEP per avere la compliance più elevata. Su questo argomento ci sarebbero moltissime considerazioni fisiopatologiche da fare, ma per necessità di brevità le lascio alle risposte ad eventuali commenti.

Se è vero che due indizi fanno una prova, mi sembra di poter concludere che, allo stato attuale delle conoscenze, sia poco prudente utilizzare la PaO2 come criterio di valutazione della PEEP nella ARDS. Al contrario la prudenza vorrebbe, sia per il razionale fisiopatologico che per le evidenze cliniche,  che la PEEP fosse scelta valutando la compliance dell’apparato respiratorio.

La procedura più semplice per scegliere la PEEP con la miglior compliance.

Esistono molti approcci per cercare la PEEP che si associa alla miglior compliance dell’apparato respiratorio o che sia sopra il punto di flesso inferiore della curva di compliance. A mio parere il metodo utilizzato nello studio della Pintado (5), vecchio di almeno 35 anni (6), è il più semplice di tutti, lo consiglio a tutti coloro che non hanno una particolare familiarità con la meccanica respiratoria e vogliono contemporaneamente iniziare a scegliere una PEEP intelligente ed utile al paziente con ARDS. Personalmente preferisco altri approcci, ma per iniziare questo va benissimo. Eccolo in breve.

La compliance (C) è il rapporto tra la variazione (d) di volume (V) e la variazione di pressione (P):  C = dV/dP. Tradotto in maniera semplice nel nostro apparato respiratorio, è il rapporto tra il volume corrente e la pressione elastica (cioè la differenza di pressione tra la pausa di fine inspirazione e la pausa di fine espirazione) (per una descrizione del modo corretto di misurarla vedi il post del 10/04/2011).

In altre parole, la compliance aumenta (cioè l’apparato respiratorio diventa più facilmente distensibile) quando, a parità di volume corrente, si rileva una minore pressione elastica (o driving pressure). Quindi quello che dobbiamo fare è, a volume corrente costante, provare diverse PEEP e scegliere quella che determina la minor pressione elastica.

Facciamo un esempio. Se ho una paziente con ARDS il cui peso ideale è 55 kg, sceglierò inizialmente un volume corrente di circa 350 ml (cioè 6 ml/kg di peso ideale). A questo punto inizio a ventilarla con 5 cmH2O di PEEP e (con paziente passiva alla ventilazione) misuro la pressione di plateau (con l’occlusione di fine inspirazione, Pplat nella figura qui sotto) e la PEEP totale (con l’occlusione di fine espirazione, auto-PEEP nella figura qui sotto).

occlusions

Ipotizziamo di avere una pressione di plateau di 23 cmH2O ed una PEEP totale di 6 cmH2O: la pressione elastica è 17 cmH2O (=23-6). Questo significa che 23 cmH2O sono necessari per ottenere il volume corrente di 350 ml. A questo punto aumento la PEEP a 7 cmH2O e rilevo 24 e 8 cmH2O di pressione di plateau e PEEP totale = 16 cmH2O di pressione elastica. Aumentando di 2 cmH2O alla volta la PEEP, vedo che la pressione elastica diventa 15 cmH2O a 9 di PEEP, 13 cmH2O a 11 di PEEP, 11 cmH2O a 13 di PEEP, 11 cmH2O a 15 di PEEP, 12 cmH2O a 17 di PEEP, 14 cmH2O a 19 di PEEP. A 13 e 15 cmH2O di PEEP ho la minor pressione elastica, quindi questi valori di PEEP si associano alla miglior compliance: la PEEP è scelta! Personalmente sceglierei 15 cmH2O (2 cmH2O al di sopra della minor PEEP che ottimizza la compliance) se non avessi pressioni di plateau elevate o altri segni di stress o problemi emodinamici. Nello studio della Pintado veniva scelta invece quella con la minor pressione di plateau(5): ragionevole anche questo criterio di scelta.

Esistono talora pazienti in cui la compliance non si modifica a diverse PEEP: in questi casi (non frequentissimi) direi di farci guidare dalla protezione dallo stress e dall’ossigenazione.

Anche se non sei un esperto di meccanica respiratoria. prova ad utilizzare questo metodo nel prossimo paziente con ARDS: vedrai che riuscirai a trovare la best PEEP in 10 minuti con qualsiasi ventilatore. Se poi ci prendi gusto, si aprirà un mondo meraviglioso dinnanzi a te…

Un sorriso a tutti gli amici di ventilab.

Bibliografia:

1) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

2) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54

3) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61

4) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8

5) Pintado MC et al. Individualized PEEP setting in subjects with ARDS: A randomized controlled pilot study. Respir Care 2013 ;58:1416-23

6) Suter PM et al. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978; 73:158-62

Feb 212013
 



Oggi riparliamo di ARDS, una delle malattie polmonari acute in cui una buona ventilazione meccanica può fare la differenza tra la vita e la morte. Sarà con noi la signora Pina, una donna di 68 anni che circa un mese fa è stata ricovera in Terapia Intensiva per una ARDS secondaria ad una polmonite comunitaria (qui di fianco puoi vedere la radiografia del torace al ricovero in Terapia Intensiva).  L’insufficienza respiratoria è grave (PaO2/FIO2 75 mmHg), ma in 48 ore si ottiene un buon miglioramento della funzione polmonare  (PaO2/FIO2 190 mmHg) senza problemi di ventilazione meccanica. Qui però il miglioramento si ferma e dopo circa una settimana vediamo una progressione degli infiltrati polmonari ed una nuova grave ipossiemia. Si cambiano gli antibiotici per coprire i germi ospedalieri e si inizia ventilazione protettiva con PCV-VG (vedi post del 27/11/2011) con volume corrente di 280 ml, frequenza respiratoria 33/min, PEEP 10 cmH2O, FIO2 0.8.  L’emogasanalisi arteriosa è la seguente: PaO2 83 mmHg, pH 7.43, PaCO2 64 mmHg. E come sempre prestiamo attenzione al monitoraggio della pressione delle vie aeree durante una fase di ventilazione a volume controllato: ecco il tracciato.
Osserviamo che durante la breve pausa di fine inspirazione inserita nella ventilazione la pressione delle vie aeree è 25 cmH2O, quindi la pressione di plateau sarà un po’ più bassa, ben al di sotto del limite massimo suggerito di 30 cmH2O. Infatti la pressione di plateau dopo 3 secondi di occlusione delle vie aeree è di 22 cmH2O, come puoi vedere nell’immagine qui sotto.

Tutto bene? Possiamo per valutare se possiamo aumentare la PEEP e quindi favorire una miglior ossigenazione?

Nemmeno per sogno, qui probabilmente dobbiamo ridurre ancora di più le pressioni nelle vie aeree. Infatti durante la ventilazione in volume controllato è quello di osservare la forma della salita della pressione nelle vie aeree. In altre parole si può fare una valutazione “occhiometrica” dello stress index (vedi post del 15/08/2011 e del 28/08/2011). In breve, la pressione delle vie aeree (nei pazienti in volume controllato passivi alla ventilazione) deve crescere linearmente, se invece la pendenza continua ad aumentare durante l’insufflazione dobbiamo temere che ci possa essere iperinflazione e stress. Un occhio allenato può aver già notato una condizione di potenziale pericolo nella signora Pina, nonostante le basse pressioni nelle vie aeree. Questo comportamento è reso più evidente nell’immagine sottostante:

Abbiamo tracciato segmenti lineari (tratteggiati in grigio) sul tracciato di pressione delle vie aeree che hai visto all’inizio del post. La pendenza di questi segmenti è uguale alla pendenza della parte iniziale della salita della pressione delle vie aeree (escluso il primo pezzettino quasi verticale): in questo modo si vede benissimo che la parte finale della salita della pressione ha una pendenza più ripida della parte iniziale. Questo è un possibile segno di sovradistensione polmonare, indipendentemente dal livello di pressione di plateau.

Come sempre, in questi casi abbiamo misurato la pressione esofagea ed ecco cosa ci ha detto:

La pressione esofagea è la traccia grigia, la traccia rossa è la pressione delle vie aeree. La pressione che vedi all’inizio della traccia è la parte finale di un’occlusione di fine espirazione, la pressione verso la fine della traccia è il plateau ottenuto con l’occlusione a fine inspirazione. Vediamo subito che la pressione di plateau delle vie aeree è bassa (i 22 cmH2O già visti sopra), ma è anche molto bassa la pressione esofagea corrispondente (3 cmH2O). La pressione transpolmonare (stimata con la pressione esofagea) è la differenza tra le due, cioè 19 cmH2O. Sappiamo che la pressione esofagea può sovrastimare la pressione pleurica di 5 cmH2O (in media) (1), quindi la pressione transpolmonare “vera” (pressione alveolare – pressione pleurica) potrebbe essere intorno ai 25 cmH2O (vedi post del 07/02/2012). Questi valori di pressione transpolmonare sono tutt’altro che bassi, soprattutto se si associano ad altri segni di sovradistensione (come lo stress index): due indizi fanno una prova. Tralascio (per esigenze di spazio) la valutazione della relazione statica pressione volume e la scelta della best PEEP, ed arriviamo subito alla strategia ventilatoria conseguente alle riflessioni che abbiamo fatto finora.

Per ridurre le pressioni nelle vie aeree non possiamo ridurre ulteriormente il volume corrente, quindi abbiamo agito sulla PEEP (sulla guida della valutazione della driving pressure a diverse PEEP, vedi post del 10/04/2011) riducendola a 6 cmH2O.

Il risultato è stato questo:

una riduzione della pressione di plateau da 22 a 15 cmH2O e riduzione della pressione transpolmonare (stimata con la pressione esofagea) da 19 a 13 cmH2O. Inoltre lo stesso volume corrente è stato ottenuto con una minore differenza di pressione tra fine inspirazione e fine espirazione (driving pressure). Quando avevamo 10 cmH2O di PEEP, per insufflare 275 ml dovevamo fare salire la pressione da 10 cmH2O (il valore di PEEP) a 22 cmH2O (la pressione di plateau): 12 cmH2O di differenza. Con 6 cmH2O di PEEP, questa differenza si riduce a 9 cmH2O (15 – 6 cmH2O): lo stesso volume ottenuto con meno pressione vuol dire miglioramento della compliance con la riduzione della PEEP.

Ed i segni di sovradistensione sulla curva di pressione? Eccome come sono diventati:

Sono praticamente scomparsi: insomma, un successo dal punto di vista della ventilazione protettiva valutata sulla meccanica respiratoria.

E il risultato all’emogasanalisi? Niente di eccezionale: dopo una decina di ore PaO2 77 mmHg, pH 7.46, PaCO2 72 mmHg, FIO0.7. Abbiamo accettato, come sempre, questi valori ampiamente sufficienti per sopravvivere (anche se esteticamente brutti) ed abbiamo continuato sulla nostra strada.

Nella settimana successiva miglioramenti lentissimi, abbiamo sospeso la sedazione passando in APRV e quindi gradualmente in PSV. Quando eravamo già pronti alla tracheotomia (dopo 15 giorni di intubazione), abbiamo fatto un trial di respiro spontaneo che la paziente ha tollerato, pur persistendo una chiara ipossiemia (PaO2/FIO141 mmHg). E’ stato comunque deciso di procedere all’estubazione, proseguendo con ventilazione noninvasiva. Un po’ di bravura, un po’ di fortuna una settimana dopo la paziente è stata dimessa dalla Terapia Intensiva in Riabilitazione…

Questa lunga storia ci ribadisce alcuni punti importanti nella cura dei pazienti con ARDS:

–  la ventilazione deve essere guidata dalla necessità di essere protettivi e non di migliorare l’emogasanalisi (per vivere è più che sufficiente una PaOdi 55 mmHg e l’ipercapnia non è un problema in assenza di gravissima acidosi);

– la pressione di plateau inferiore a 30 cmH2O non è da solo sufficiente sufficiente per gestire la ventilazione protettiva nei pazienti con le forme più gravi di ARDS;

monitoraggio grafico della ventilazione, stress index (misurato o “occhimetrico”), scelta della minor driving pressure  ed eventualmente pressione esofagea sono irrinunciabili come guida della ventilazione nei pazienti con ARDS grave e pressioni di plateau maggiori o uguali a 25 cmH2O.

Un caro saluto a tutti.

 

Bibliografia.

1) Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34:1389-94

 

PS: sarò assente per una dozzina di giorni, risponderò volentieri ai commenti appena posso.

Dec 132012
 

Bentrovati a tutti, oggi propongo un tema di rilevanza pratica non immediata ma che penso possa essere egualmente interessante: le correlazioni tra eziopatogenesi, alterazioni anatomopatologiche, meccanica del sistema respiratorio e possibili effetti della terapia ventilatoria nella ARDS (acute respiratory distress syndrome).

La ARDS non è determinata da una causa eziopatogenetica definita, ma rappresenta una risposta aspecifica a svariati insulti patogeni, caratterizzata da insorgenza acuta, ipossiemia, infiltrati polmonari bilaterali, aumento dell’elastanza del sistema respiratorio e riduzione della capacità funzionale residua (per la definizione di ARDS vedi post del 24 giugno 2012).[1]

Schematicamente, la ARDS è detta primitiva (o primaria, o polmonare, ARDSp) se la noxa colpisce direttamente il parenchima polmonare (per esempio in caso di polmonite, aspirazione di contenuto gastrico, semi-annegamento, contusioni polmonari, inalazione di tossici, ecc.); si parla invece di ARDS secondaria (o extrapolmonare, ARDSexp) se la noxa agisce indirettamente sui polmoni, attraverso una reazione infiammatoria sistemica acuta (per esempio in caso di sepsi grave, trauma maggiore, by-pass cardiopolmonare, trasfusioni massive, pancreatite acuta, ecc.).[1]

Spesso la differenziazione tra le due diverse modalità di lesione è facile, come nel caso di polmoniti primarie, oppure di pancreatite; talvolta però l’identificazione del meccanismo è più dubbia, come in caso di traumi o di chirurgia cardiaca.[2]

La distinzione tra i due tipi di ARDS non è solo speculativa: a partire dagli anni ’90 sono state identificate alcune caratteristiche anatomopatologiche, morfologiche e fisiopatologiche che spesso differenziano le due forme, almeno nelle fasi iniziali (cioè nella prima settimana dall’insorgenza)*, e che possiamo così sintetizzare:

  • anatomia patologica:

– ARDSp: la struttura primariamente danneggiata è l’epitelio alveolare, con aumento della sua permeabilità, attivazione di macrofagi, riduzione di surfattante e inondamento intraalveolare da parte di essudato ricco in fibrina, collagene, aggregati neutrofilici: si ha tendenza precoce e al consolidamento delle aree colpite e alla fibrosi. Il liquido di lavaggio bronco-alveolare (BAL) è ricco di citokine infiammatorie.
– ARDSexp: i mediatori della flogosi, prodotti a livello extrapolmonare, raggiungono per via ematica e danneggiano primariamente l’endotelio dei capillari alveolari, con incremento della permeabilità, attivazione di monociti, neutrofili e piastrine, formazione di microtrombi, congestione capillare e edema interstiziale; gli spazi intraalveolari sono relativamente risparmiati ma il maggior peso dell’interstizio imbibito causa secondariamente collasso e atelettasia delle aree del polmone sottoposte alla forza di gravità (quelle posteriori, se il paziente è allettato). Il BAL è relativamente povero di citokine.[3]

  • radiologia:

– ARDSp: prevalente coinvolgimento multifocale e asimmetrico dei polmoni, con più o meno estese aree di consolidamento parenchimale (opacità molto dense) miste a zone di addensamento tipo vetro smerigliato (meno dense).
– ARDSexp: distribuzione più simmetrica e uniforme di aree di addensamento a vetro smerigliato (come risultato di un danno interstiziale diffuso) associata a zone dorsali di consolidamento da atelettasia.[4]

  • meccanica respiratoria:

– ARDSp: l’aumentata elastanza del sistema respiratorio è attribuibile prevalentemente all’aumentata rigidità dei polmoni.
– ARDSexp: l’aumentata elastanza del sistema respiratorio è attribuibile più spesso all’aumentata rigidità della parete toracica, in particolare al diaframma e all’aumentata pressione intraaddominale. [5]

 

Ma quali ricadute pratiche può avere questa diversità tra le due condizioni?

Sebbene numerosi studi, sia clinici, sia su modelli animali, suggeriscano che in caso di ARDSexp i polmoni siano più facilmente reclutabili in seguito all’applicazione della pressione positiva (PEEP, manovre di reclutamento, sospiri intermittenti) o in seguito alla pronazione del paziente rispetto alla ARDSp, altre osservazioni non confermano queste conclusioni. Schematicamente, la PEEP favorirebbe la riapertura di alveoli collassati atelettasici nell’ARDSexp, mentre nell’ARDSp non sarebbe sufficiente a riespandere le aree consolidate e rischierebbe di determinare sovradistensione delle unità già areate. Le ragioni della incongruenza di risultati tra i diversi studi possono essere molte: difficoltà ad attribuire con certezza molti casi di ARDS ad una delle due categorie, eterogeneità del livello di gravità e della fase di evoluzione della malattia, uso di farmaci vasoattivi o impatto della gittata cardiaca sugli scambi gassosi, differenze in pressione transpolmonare ottenuta a parità di pressione applicata nelle vie aeree, solo per citarne alcune.[6] Probabilmente per analoghi motivi anche i dati sulla mortalità delle due forme di ARDS sono sostanzialmente incongruenti nel rilevare differenze.[6]

In conclusione, indipendentemente dal meccanismo eziopatogenetico che pensiamo di aver individuato[7], nel trattamento dell’ARDS dobbiamo per ora continuare ad attenerci ai criteri della ventilazione protettiva ricavabili dalla letteratura accreditata, individualizzando per quanto possibile la ventilazione alle caratteristiche del paziente che stiamo curando.
Se la risposta clinica del paziente ai trattamenti corroborerà la nostra ipotesi patogenetica, questo post avrà forse raggiunto il suo scopo.

Un caro saluto a tutti.

 

* L’evoluzione successiva è grosso modo comune alle due forme e consiste in progressiva proliferazione fibroblastica e distruzione lobulare, con esito finale in fibrosi associata a rarefazione interstiziale.

Bibliografia

  1. Bernard GR, et al. The American-European Consensus Conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818-24

  2. Pelosi P, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J 2003; 22: Suppl. 42, 48s-56s

  3. Rocco PR, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 2005; 11:10-17

  4. Goodman LR et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlation. Radiology 1999; 213:545-552

  5. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes? Am J Respir Crit Care Med 1998; 158:3-11

  6. Rocco PR et al. Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality? Curr Opin Crit Care 2008; 14:50–55

  7. Thille AW et al. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome. Anesthesiology 2007; 106:212-217

Apr 012012
 

Riprendiamo il post sulla ventilazione in anestesia del 22 marzo. Oggi vedremo come si sono realmente svolte le cose, interpreteremo gli eventi e li analizzeremo anche alla luce dei commnenti ricevuti. Infine, come abitudine, termineremo alcune raccomandazioni pratiche sulla ventilazione meccanica in anestesia.

Prima di iniziare, i risultati del sondaggio: perfetta parità tra le due risposte. Un motivo di più per ragionare sul caso e cercare di esplicitare bene i problemi da gestire.

I fatti: la fine della storia.

Arrivato in sala operatoria, con la collega facciamo queste cose:

-Cerchiamo di ottimizzare il posizionamento della maschera laringea Proseal. Introduciamo un sondino gastrico tramite la via gastrica della ProSeal, sgonfiamo la cuffia della maschera, la estraiamo parzialmente la ProSeal e quindi la facciamo scorrere fino a fine corsa (cioè contro lo sfintere esofageo superiore) sulla guida della sonda gastrica. Insuffliamo la cuffia della Proseal introducendo tutta l’aria che serve per ridurre al minimo le perdite dalla maschera mentre riprendiamo la ventilazione.

– Impostiamo la ventilazione meccanica. Iniziamo una ventilazione a volume controllato con 500 ml di volume corrente e portiamo a 80 cmH2O il limite delle pressione nelle vie aeree. Tutto questo non cambia molto: otteniamo ancora pressioni di insufflazione molto elevate ed il volume corrente è praticamente nullo.

– Rivediamo il piano di anestesia. Approndiamo l’anestesia con un bolo di propofol e potenziamo la miorisoluzione con un nuovo bolo di mivacurium. Stiamo ormai veleggiando verso gli 82% di SpO2, ma in breve tempo si ricomincia a vedere il volume corrente sulla spirometria del ventilatore e le pressioni di picco si abbassano a circa 60 cmH2O, ricompare il tracciato capnografico. Si rileva ancora qualche perdita aerea dalla LMA, ma otteniamo facilmente un volume corrente sempre superiore a 300 ml. Iniziamo a respirare tutti (paziente ed anestesisti). Non so quanto tempo sia passato, probabilmente un paio di minuti dal mio arrivo.

– Progressivamente la pressione di picco si assesta intorno ai 50 cmH2O, il volume corrente espirato aumenta fino a circa 450 ml. Ora non abbiamo più significative perdite dalla maschera laringea ProSeal. L’introduzione di una breve pausa di fine inspirazione fa vedere che la pressione dal picco di 50 cmH2O scende a 30 cmH2O prima di iniziare l’espirazione. In altre parole, nonostante l’elevata pressione di picco, la pressione di plateau sarà sicuramente inferiore a 30 cmH2O. A questo punto decidiamo di mettere 10 cmH2O di PEEP e vediamo che le pressioni non si modificano. La saturazione sale sopra il 95% anche riducendo la FIO2 sotto 0.5.

E così concludiamo l’intervento, con la paziente che si sveglia al termine tutta soddisfatta, lamentando solo un lieve mal di gola… Beh, signora, va bene così…

L’interpretazione dei fatti.

Premetto che ho non ho presentato questo caso per mostrare una gestione esemplare (non voglio cioè dire che sia stato fatto tutto il meglio che si potesse fare), ma semplicemente per ragionare su come e perchè è accaduto quel che è accaduto.

– Gestione delle vie aeree.
Innanzitutto un complimento alla collega che, quando si è trovata in difficoltà, ha chiamato aiuto: questa è sempre la prima cosa da fare, chiaramente indicata anche nelle linee guida SIAARTI sulle vie aeree difficili (1).

E’ stato discusso l’utilizzo della ProSeal come scelta iniziale. Nella discussione al post precedente sono emerse anche due opzioni diverse da quella scelta nel nostro caso: intubazione fibroscopica in sedazione o intervento in analgosedazione. La mia opinione personale è che sia l’utilizzo della maschera laringea ProSeal, sia l’intubazione fibroscopica, sia l’analgosedazione come tecnica di anestesia possano essere scelte ragionevoli. Molto spesso in medicina non ci sono scelte giuste e scelte sbagliato, piuttosto esistono decisioni ragionevoli e decisioni irragionevoli: a volte lo stesso problema può essere risolto brillantemente anche con approcci diversi se si usa il cervello (alla faccia dei protocolli!).

Non entro nel merito del confronto delle tre possibilità (il post è già abbastanza lungo e ricco di spunti), cercherò solo di spiegare il razionale della maschera laringea. Premetto che nel nostro ospedale si fa un uso ampio della maschera laringea (oltre il 50% degli interventi in anestesia generale vengono eseguiti con essa) ed abbiamo molta esperienza nel suo uso. L’utilizzo della maschera laringea nelle linee guida per la gestione delle vie aeree difficili è confinato alla drammatica condizione di impossibilità di ventilazione (1). Tuttavia l’utilizzo della maschera laringea fin dall’inizio nei casi di intubazione difficile normalmente evita qualunque problema anestesiologico: si ottiene una ventilazione efficace e sicura senza dover fare la laringoscopia e si possono somministrare i miorilassanti solo dopo avere verificato la ventilabilità del paziente. Sicuramente per poter usare la maschera laringea in situazioni potenzialmente difficili, si deve prima acquisire una grande esperienza con lo strumento in condizioni elettive.

La maschera laringea ProSeal in particolare garantisce normalmente una tenuta anche a pressioni superiori ai 30 cmH2O (2) ed anche nei  pazienti obesi con PEEP consente una ventilazione ottimale senza perdite aeree (3). Inoltre la ProSeal consente di drenare lo stomaco, evitando così il rischio di aspirazione polmonare.

Gestione della ventilazione.

Chiediamoci perchè possiamo avere alte pressioni di picco. La risposta è sempre nell’equazione di moto dell’apparato respiratorio: pressione di picco = pressione elastica + pressione resistiva + PEEPtotale (vedi post del 24/006/2011). Se si capisce questa semplice equazione, si capisce tutta la ventilazione meccanica.

Due di queste tre pressioni distendono i polmoni (pressione elastica e PEEPtotale) e ci potrebbero preoccupare come possibile causa di danno polmonare da ventilazione (VILI, ventilato-induced ling injury), mentre la pressione resistiva si dissipa lungo le vie aeree e normalmente non deve essere considerata una possibile causa di VILI (vedi post del 5/12/2011).

La pressione elastica (prodotto di elastanza e volume corrente) potrebbe essere elevata per l’elevata elastanza dell’apparato respiratorio dovuta all’obesità (4). Ma in questo caso, essendo l’elevata elastanza dovuta ad una causa extrapolmonare, la pressione transpolmonare dovrebbere essere bassa, cioè senza rischio di VILI da sovradistensione. Non dimentichiamo poi che la paziente (purtroppo) non sta ventilando: no volume corrente, no pressione elastica. La PEEPtotale anch’essa è ragionevolmente bassa: non abbiamo PEEP e non abbiamo ventilazione.

L’alta pressione di picco è quindi spiegata dalla pressione resistiva, che ci serve solo a spingere l’aria nei polmoni: se serve tanta pressione quindi bisogna dare tanta pressione. Ecco perchè infischiarsene delle pressioni di picco e guardare invece il volume corrente. In anestesia penso questa dovrebbe essere una regola generale: abbiamo normalmente a che fare con polmoni senza ALI/ARDS, quindi concentriamoci sul volume corrente erogato. Se il volume corrente è basso o normale, non può esserci VILI (in assenza di elevati valori di autoPEEP). Questo è il motivo per il quale in anestesia per me esiste (quasi) sempre una sola ventilazione: il volume controllato. Nel nostro caso, se avessimo insistito con la pressione controllata avremmo avuto qualche chance in più di fare andare male le cose.

A questo punto chiediamoci perchè ci sono elevate resistenze. Abbiamo tre cause: obesità (4), maschera laringea e vie aeree. 

Per l’obesità non possiamo fare molto, se non eventualmente dare un po’ di antiTrendelemburg.

Le resistenze della maschera laringea dipendono in maniera rilevante dal corretto posizionamento (5), e quindi la posizione della ProSeal deve essere ottimizzata. Per fare questo è molto utile utilizzare una sonda gastrica inserita nel tubo gastrico della ProSeal. La sonda gastrica che arriva fino allo stomaco (oltre a consentirci di svuotare lo stomaco!!!) diventa una guida straordinaria al corretto posizionamento della ProSeal, se la si usa come mandrino facendo scorrere su di essa la ProSeal fino a fine corsa. A questo punto abbiamo la maschera contro lo sfintere esofageo superiore, la miglior posizione possibile per la maschera laringea.

Infine l’ultima causa di aumentata pressione resistiva: le vie aeree. Con la maschera laringea il punto veramente critico sono le corde vocali. Basta infatti che, per una riduzione del piano di anestesia e della miorisoluzione, queste si mettano in adduzione (cioè che si chiudano), che la ventilazione può diventare difficile o impossibile. L’unica soluzione è approfondire l’anestesia e la miorisoluzione.

Facendo tutto questo, la situazione è migliorata e ci siamo anche potuti permettere il lusso di una PEEP, raccomandabile negli obesi (6).

Se le cose non fossero andate a posto, avremmo sicuramente tentato l’intubazione e, in caso di fallimento, la scelta sarebbe stata tra il risveglio della paziente con assistenza in maschera e cricotiroidotomia d’urgenza. Ma per fortuna non abbiamo dovuto arrivare fino a questo punto nel nostro racconto…

Conclusioni.

Questo caso ci insegna quattro cose sulla ventilazione in anestesia, da ricordare soprattutto quando ci sono difficoltà:

1) la ventilazione a volume controllato può essere l’unica modalità di ventilazione in anestesia (la pressione controllata in questo contesto è un’amica molto, molto falsa);

2) in anestesia il VILI da sovradistensione polmonare non esiste se non si generano volumi correnti superiori al normale (6-8 ml/kg) o autoPEEP (a meno che non si debba fare l’anestesia ad un paziente con ARDS)

3) i limiti di allarme delle pressioni delle vie aeree devono sempre essere aumentati (e non rispettati!) in caso di difficoltà di ventilazione

4) una breve pausa di fine inspirazione inserita nella ventilazione ci può confermare che non stiamo combinando guai se già nel breve accenno di plateau abbiamo una pressione non superiore a 30-35 cmH2O.

Un saluto a tutti.

Bibliografia
1) Accorsi A et al. Recommendations for airway control and difficult airway management. Minerva Anestesiol 2005;71:617-57
2) Keller C et al. Mucosal pressure and oropharyngeal leak pressure with the ProSeal versus laryngeal mask airway in anaesthetized paralysed patients
Br J Anaesth 2000; 85:262-6
3) Natalini G et al. Comparison of the standard laryngeal mask airway and the ProSeal laryngeal mask airway in obese patients. Br J Anaesth 2003; 90: 323-6
4) Pelosi P et al. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996;109:144-51
5) Natalini G et al.Resistive load of Laryngeal Mask Airway and ProSeal Laryngeal Mask airway in mechanically ventilated patients. Acta Anaesthesiol Scand 2003; 47:761-4
6) Pelosi P et al. Positive End-expiratory Pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 1999; 91:1221-31

Feb 072012
 

Una delle cause di ventilator-induced lung injury (VILI) è lo stress, definito come la forza applicata alle pareti alveolari alla fine dell’inspirazione.

I cardini della ventilazione protettiva sono volti a limitare lo stress: ridurre il volume corrente è la premessa per ridurre la forza che agisce sugli alveoli. Questa forza è usualmente stimata dalla pressione di plateau a fine inspirazione: il limite di 30 cmH2O è ritenuto un’approssimazione dello stress massimo tollerabile dai  polmoni (1). Ricordiamo che la pressione di plateau si misura nelle vie aeree e si ottiene con un’occlusione di fine inspirazione di circa 3 secondi in un paziente passivo.

La pressione transpolmonare è la differenza tra la pressione interna agli alveoli (mediamente uguale alla pressione di plateau) e la pressione che si trova all’esterno degli alveoli (cioè la pressione pleurica durante l’occlusione di fine inspirazione) (2). Nella figura 1 puoi visualizzare il concetto: PALV è la pressione alveolare, PPL la pressione pleurica e PTPla pressione transpolmonare.

Figura 1.

Riassumendo: lo stress è la pressione transpolmonare che otteniamo sottraendo alla pressione di plateau misurata nelle vie aeree (cioè dentro gli alveoli) la pressione rilevata nella pleura durante l’occlusione di fine inspirazione.

Poichè la pressione pleurica non è facile da misurare, si è deciso di sostituirla con la pressione di una struttura che contigua alla pleura, cioè l’esofago toracico. La pressione in esofago è simile ma non è uguale a quella pleurica: mediamente, in un soggetto supino, è più elevata di circa 5 cmH2O (3).

Sembrerebbe tutto semplice, se non fosse che alcuni identificano lo stress con la variazione di pressione transpolmonare tra fine inspirazione e fine espirazione (4,5). A questo scopo si misura la pressione transpolmonare a fine espirazione (PEEP totale meno la pressione esofagea durante un’occlusione di fine espirazione) e la si sottrae alla pressione transpolmonare di fine inspirazione (vedi figura 2). In altre parole si valuta la variazione di pressione traspolmonare associata alla insufflazione.

 

Figura 2.


Quando si sente parlare di stress e ventilazione meccanica, bisogna capire bene a quale stress si fa riferimento: al valore della pressione transpolmonare a fine inspirazione o alla variazione inspiratoria della pressione transpolmonare.

Quale stress scegliere per ottimizzare la ventilazione nel paziente con ARDS?

Come sempre, cercherò di essere pragmatico e di giungere alla conclusione più utile nella pratica clinica.

Senza nulla togliere alla variazione inspiratoria di pressione transpolmonare (che peraltro è interessante perchè legata al concetto di  strain, un altro fattore che sembra essere coinvolto nel VILI), ritengo che allo stato attuale delle conoscenze si possa fare riferimento, nella pratica clinica, al solo stress identificato dalla pressione transpolmonare di fine inspirazione. Ci sono almeno quattro buoni motivi per fare questa scelta:

  1. la strategia di ventilazione meccanica che limita la pressione di plateau, identificata come stima dello stress, è efficace nel ridurre la mortalità nei pazienti con ALI/ARDS (1) . La pressione transpolmonare di fine inspirazione altro non è che il miglior modo per misurare la pressione di plateau;
  2. esiste un trial clinico che dimostra un miglioramento della funzione polmonare (e di fatto anche della mortalità) nei pazienti che affidano la limitazione dello stress alla pressione transpolmonare di fine inspirazione (6);
  3. la pressione transpolmonare di fine inspirazione, a differenza della variazione inspiratoria della pressione transpolmonare, include anche lo stress preinsufflazione, cioè il valore di pressione transpolmonare prima che inizi l’insufflazione (2);
  4. ultimo, ma non meno importante, la pressione transpolmonare a fine inspirazione è più semplice sia da calcolare e che da capire. E sappiamo che nella pratica clinica più le cose sono semplici, più è facile che siano realmente implementate.

E quale è il valore limite accettabile della pressione transpolmonare a fine inspirazione? Nel trial clinico sui pazienti con ARDS il limite massimo accettato era di 25 cmH2O. A mio parere questa soglia dovrebbe essere precauzionalmente abbassata: nella pratica clinica utilizziamo la pressione esofagea in sostituzione della pressione pleurica. Ma ricordiamo che la pressione esofagea è una sovrastima (vedi sopra) imprecisa della pressione pleurica (3,7); inoltre nella pleura vi sono differenti valori regionali di pressione: in posizione supina, a livello ventrale la pressione è più bassa di quella dorsale. Quindi per limitare efficacemente lo stress soprattutte nelle zone ventrali del polmone (dove si annida l’iperinflazione e con la più bassa pressione pleurica) ritengo sia prudente ridurre la soglia di pressione transpolmonare accettabile a 15-20 cmH2O.

Restano molte altre cose da dire sulla pressione transpolmonare, ma molte ne abbiamo già dette. Prossimamente approfondiremo ancora questo argomento, magari focalizzando l’attenzione su ciò che gli amici di ventilab riterrano più interessante.

Ciao a tutti ed a presto!

Bibliografia.

1) Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301–8

2) Loring SH et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 2010; 108: 515–22

3) Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34:1389-94

4) Gattinoni L et al. The concept of “baby lung”. Intensive Care Med 2005; 31:776–84

5) Chiumello D et al. Lung stress and strain during mechanical ventilation for Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2008, 178:346–55

6) Talmor D et al. Mechanical ventilation guided by esophageal pressure in Acute Lung Injury. N Engl J Med 2008; 359:2095-104

7) Washko GR et al. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol 2006; 100: 753-8

Dec 262011
 

Concludiamo oggi l’argomento introdotto da Nadia sulla ventilazione dei pazienti con polmoni sani.

La ventilazione protettiva ha l’obiettivo di prevenire il danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) agendo su due meccanismi che lo favoriscono: la sovradistensione dei polmoni e i ciclici collasso e riapertura delle strutture alveolari durante l’insufflazione.

Gli strumenti della ventilazione protettiva sono tre: 1) basso volume ; 2) pressione di plateau inferiore a 30 cmH2O; 3) PEEP.

La ventilazione protettiva riduce infiammazione e mortalità nei pazienti con Acute Respiratory Distress Syndrome/Acute Lung Injury (ARDS/ALI). E nei polmoni sani?

Prima di rispondere a questa domanda, facciamo qualche considerazione sul significato fisiologico della ventilazione protettiva nei polmoni sani.

Volume corrente. Un volume corrente può essere considerato basso (quindi protettivo) fino a 7-8 ml/kg di peso ideale (1). In un individuo adulto medio possiamo stimare un peso ideale di circa 70 kg. Quindi una ventilazione protettiva richiederebbe un volume corrente di circa 500 ml. Se apriamo un libro di fisiologia, vediamo che una persona normale ha un volume corrente di 500 ml (2). Nel soggetto sano, il volume corrente della ventilazione protettiva altro non è che il fisiologico volume corrente.

Pressione di plateau inferiore a 30 cmH2O. In un soggetto sano in anestesia generale l’elastanza dell’apparato respiratorio è circa 20 cmH2O/l (3). Questo significa che con un litro di volume corrente otteniamo 20 cmH2O di pressione di plateau. Nei polmoni sani quindi la pressione di plateau non è di fatto un limite alla ventilazione.

PEEP. I polmoni sani, quando sono ventilati in anestesia mostrano precocemente la comparsa di atelectasie basali (4). Queste atelettasie sono reversibli con l’applicazione di una PEEP (vedi figura a lato). In altre parole la PEEP elimina un effetto collaterale della ventilazione controllata.

Da queste considerazioni possiamo giungere ad una prima conclusione: la ventilazione protettiva nei polmoni normali altro non è che la ventilazione fisiologica. Tutto ciò che non è “protettivo” è antifisiologico. Dovrebbe quindi essere capovolta la domanda: esiste qualche buona ragione per non fare la ventilazione protettiva nei polmoni sani?

Non esiste alcuno studio clinico che ci mostri che la ventilazione con alti volumi correnti sia superiore alla ventilazione protettiva nei polmoni sani. Viceversa esistono alcune prove del contrario.

E infatti ben documentato che l’utilizzo di un volume corrente di 10-12 ml/kg (rispetto a 5-7 ml/kg) aumenta l’infiammazione polmonare (5,6) ed aumenta la probabilità di sviluppare ALI quando utilizzati in polmoni sani (5).

Uno studio osservazionale ha mostrato come un basso volume corrente (fino a 8 ml/kg) riduce il rischio di sviluppare ALI nei pazienti (1). Lo stesso gruppo, dopo un avere adottato la ventilazione a basso volume corrente in tutti i pazienti ventilati, ha documentato una riduzione dell’incidenza della ALI (7).

Quindi ventilazione protettiva per tutti? Finchè siamo in ventilazione controllata, la risposta è sì, ed i problemi sono pochi. Certamente sono il primo a togliere la PEEP se ho un paziente ipoteso con shock emorragico (la rimetto subito appena la pressione arteriosa me lo consente) e so bene che in un trauma cranico grave con ipertensione endocranica potrebbe essere necessario aumentare il volume corrente oltre i limiti suggeriti dalla ventilazione protettiva (anche se non ricordo l’ultima volta in cui l’ho dovuto fare veramente…). Ma di solito i polmoni sani stanno benissimo con la ventilazione protettiva in ventilazione controllata.

I problemi di solito arrivano quando siamo in ventilazione assistita: esistono pazienti che cercano un volume corrente più alto. Quando sono in pressione di supporto lo ottengono facilmente, quando invece ventilano in assistita-controllata mostrano fastidiose asincronie con il ventilatore. Che fare?

A questo punto propongo la mia opinione. Identifichiamo tre casi di elevato volume corrente in pressione di supporto (tralasciamo per semplicità le assistite-controllate):

  • respiro profondo e tranquillo, espirazione passiva, nessuna attivazione dei muscoli inspiratori accessori, frequenza respiratoria bassa (< 15 minuto), flusso inspiratorio decrescente (a scivolo) (vedi post del 8 maggio 2011): il paziente è probabilmente sovrassistito, riduco il livello di pressione di supporto;

  • respiro profondo e tranquillo, espirazione passiva, nessuna attivazione dei muscoli inspiratori accessori, frequenza respiratoria media (< 25/min), flusso inspiratorio non passivamente decrescente: lo lascio respirare come desidera, perchè probabilmente le pressioni transpolmonari restano basse. Mi vengono in mente, ad esempio, alcuni pazienti che senza affanno compensano una acidosi metabolica;

  • tachipnea (> 25/min), utilizzo muscoli inspiratori accessori, espirazione forzata: oltre a cercare di risolvere le cause di un eventuale aumento del metabolismo (febbre, sepsi), mi pongo il problema se sedare un po’ il paziente. L’obiettivo non è, ovviamente, di “stenderlo”, ma di avere un paziente calmo e tranquillo e con una drive respiratorio (e quindi pressioni transpolmonari) ridotto. Gli oppioidi rappresentano il farmaco principale della sedazione con queste finalità.

In conclusione, ventilazione protettiva per tutti perchè è fisiologica, non esistono evidenze che sia migliore la ventilazione con alti volumi correnti, esistono studi che invece suggeriscono che un basso volume corrente (con PEEP) sia realmente protettivo nei polmoni sani.

Se il paziente è attivo e non fa la ventilazione protettiva, dipende: se la respirazione è tranquilla, possiamo accettarla anche se il volume corrente è > 7-8 ml/kg. Viceversa dobbiamo valutare una blanda sedazione.

Un sicero augurio di Buone Feste e Buon Anno a tutti gli amici di Ventilab.

Bibliografia.

1) Gajic O et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32:1817-24

2) Pulmonary ventilation. In Guyton AC, Hall JE. Textbook of medical physiology. Chapt. 37, pp 432-443. WB Saunders Company, Philadelphia, 2000.

3) Behrakis PK et al. Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 1983; 55: 1085-92

4) Tokics L et al. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology1987; 66:157-67

5) Determann RM et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Critical Care 2010, 14:R1

6) Pinheiro de Oliveira R et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Critical Care 2010, 14:R39

7) Yilmaz M et al. Toward the prevention of acute lung injury: Protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit Care Med 2007; 35:1660-6