Thursday, June 30, 2016

Costante di tempo dell'apparato respiratorio

disequilibriumIl concetto di costante di tempo è affascinate ed ostico al tempo stesso. Come è nello stile di ventilab, cercheremo di rendere la costante di tempo facilmente accessibile e pratica, senza per questo toglierle nulla del suo fascino. Per fare questo, iniziamo prima a capire cosa si intende per costante di tempo dell’apparato respiratorio, quindi come utilizzare questo concetto durante la ventilazione meccanica. (Ho specificato che parleremo della costante di tempo dell’apparato respiratorio, perchè la costante di tempo non è esclusiva dell’apparato respiratorio ma è una caratteristica comune a tutti i processi con una cinetica esponenziale)

La costante di tempo descrive il tempo necessario e sufficiente per ottenere il 63% della variazione di volume dell’apparato respiratorio quando gli si applica una pressione di insufflazione costante o quando si ha una espirazione passiva. L’unità di misura della costante di tempo sono i secondi.

Figura 1

Figura 1

Facciamo un esempio per comprendere meglio cosa significa e quali sono i fattori che governano la costante di tempo (figura 1). Immaginiamo di avere un soggetto che ha terminato l’espirazione ed ha raggiunto la capacità funzionale residua. In quel momento nei suoi alveoli c’è una pressione pari a quella atmosferica, cioè 0 cmH2O. Applichiamo ora una pressione positiva continua all’apertura delle vie aeree, ad esempio di 20 cmH2O. La differenza di pressione tra ventilatore ed alveoli genera un flusso di gas, che va dal ventilatore (dove la pressione è più alta) agli alveoli (dove la pressione è più bassa). In questo modo i polmoni si riempiono di gas, aumentano il proprio volume ed inevitabilmente aumenta anche la pressione al loro interno. L’aumento di volume e pressione polmonare termina quando la pressione alveolare diventa uguale a quella applicata alle vie aeree, che nel nostro esempio corrisponde a 20 cmH2O. Di che entità deve essere l’aumento del volume polmonare per fare aumentare la pressione da 0 a 20 cmH2O? Ammettiamo che il soggetto in questione abbia una compliance di 100 ml/cmH2O. Questo significa che il volume polmonare aumenterà di 100 ml per ogni incremento di pressione di 1 cmH2O. A questo punto il calcolo è semplice: dopo l’applicazione di 20 cmH2O, il volume polmonare sarà aumentato di 20 volte la compliance, cioè di 2000 ml. Poichè la costante di tempo è il tempo necessario e sufficiente a far aumentare il volume dell’apparato respiratorio del 63% rispetto alla variazione finale, nel nostro esempio coincide con il tempo necessario per aumentare il volume dell’apparato respiratorio di 1260 ml.

Il tempo per raggiungere questa variazione di volume dipende dalla velocità con la quale il volume di gas si muove verso i polmoni, cioè dal flusso inspiratorio. Poichè il flusso dipende dalla resistenza (flusso= differenza di pressione/resistenza), tanto maggiore è la resistenza, tanto maggiore il tempo per ottenere la variazione di volume, cioè la costante di tempo.

Da quanto abbiamo detto è anche vero che tanto maggiore è la compliance, tanto maggiore la variazione di volume e quindi (a parità di resistenza) il tempo necessario per raggiungere il 63% di essa (cioè la costante di tempo). 

Figura 2

Figura 2

Vediamo ora la costante di tempo applicata all’espirazione. Il volume corrente inspirato (di qualsiasi entità esso sia) genera una pressione alveolare definita dal suo rapporto con la compliance. Siamo abituati a vedere questa pressione come la pressione di fine inspirazione, ma evidentemente la possiamo anche considerare la pressione di inizio espirazione, cioè la pressione alveolare a cui inizia la fase espiratoria. Facciamo l’esempio di un soggetto che ha compliance di 80 ml/cmH2O ed un volume corrente di 400 ml (figura 2). Come abbiamo visto in precedenza, la compliance descrive la variazione di volume associata ad una variazione di pressione di 1 cmH2O. Quindi, 400 ml di variazione di volume in un soggetto con 80 ml/cmH2O di compliance richiedono una variazione di pressione di 5 cmH2O (cioè volume/compliance). La pressione alveolare di inizio espirazione in questo caso sarà di 5 cmH2O (sopra PEEP) e rappresenta la forza che inizialmente “spinge” il flusso espiratorio. Più è alta la compliance, minore la pressione di inizio espirazione, minore la forza per “spingere” l’aria fuori dai polmoni, più lungo il tempo che serve per espirare il 63% del volume corrente, cioè la costante di tempo. Anche in questo caso un aumento della resistenza riduce il flusso espiratorio e quindi, a parità di compliance, aumenta la costante di tempo.

Risulta ora chiaro perchè la costante di tempo (normalmente definita dalla lettera greca τ, tau) dipenda esclusivamente da compliance (C) e resistenza (R), a tal punto da poter essere calcolata dal loro prodotto:

τ = C R

La costante di tempo è caratteristica di ogni singolo apparato respiratorio, indipendente dalla pressione applicata in inspirazione o dal volume espirato. Dopo 1 costante di tempo come abbiamo visto si raggiunge il 63% della variazione di volume all’equilibrio, dopo 3 costanti di tempo il 95% e dopo 5 costanti di tempo il 99%.

Nella pratica clinica non ci serve tanto sapere di quanti secondi è la costante di tempo di un paziente, ma piuttosto ci è utile una semplice valutazione qualitativa che ci dica se il paziente ha una costante di tempo “lunga” o “breve”, cioè se l’apparato respiratorio “si riempie” e “si svuota” lentamente (τ lunga) o velocemente (τ breve). E se questo processo si svolge in modo omogeneo all’interno dei polmoni.

Impariamo ora a riconoscere i pazienti con costante di tempo “breve” o “lunga”. Una premessa indispensabile: “breve” o “lungo” rispetto a cosa? Da un punto di vista clinico ritengo che il tempo inspiratorio ed il tempo espiratorio siano validi termini di riferimento per la definizione del concetto di “breve” o “lunga” riferito alla costante di tempo inspiratoria ed espiratoria. Una seconda premessa fondamentale è che la costante di tempo descrive solo fenomeni passivi e che quindi può essere valutata solo se il paziente inspira ed espira passivamente.

In inspirazione, la costante di tempo può essere valutata solo nelle ventilazioni pressometriche, anche a target di volume, poichè garantiscono una pressione di insufflazione costante.

I soggetti con costante di tempo “breve” hanno un flusso inspiratorio rapidamente decrescente che si conclude con una fase di zero flusso al termine della inspirazione. In espirazione, la costante di tempo può essere valutata indipendentemente dalla modalità di ventilazione e, come in inspirazione, i soggetti con costante di tempo “breve” hanno un flusso rapidamente decrescente che si azzera facilmente prima dell’inizio dell’inspirazione successiva (ad eccezione dei soggetti con tempo espiratorio molto breve) (Figura 3).

Figura 3

Figura 3

Nei soggetti con costante di tempo “lunga” invece il flusso inspiratorio (in ventilazione pressometrica) ed il flusso espiratorio decrescono lentamente, a tal punto che alla fine dell’inspirazione e dell’espirazione il flusso non si è azzerato (figura 4).

Figura 4

Figura 4

In pazienti con costante di tempo eccezionalmente lunga, il flusso inspiratorio in pressione controllata si riduce talmente lentamente da sembrare costante invece che decrescente, tanto da avere l’apparente paradosso di una ventilazione con onda quadra sia di flusso che di pressione (figura 5). Immagini come queste sono rare e ringrazio l’amico Guido Amodeo del S. Giovanni Bosco di Napoli per averla saputa cogliere, capire ed averla condivisa con me.

Figura 5

Figura 5

Per oggi mi fermo qui, abbiamo già messo molta carne al fuoco. Nel prossimo post cercheremo di capire insieme le implicazioni cliniche delle costanti di tempo nei pazienti sottoposti a ventilazione meccanica.

Come sempre, un sorriso a tutti gli amici di ventilab. E buone vacanze!

 

Sunday, May 8, 2016

PMI (Pressure musc,index): come stimare facilmente l'attività dei muscoli respiratori in ventilazione assistita.

push_and_pullOggi propongo con vero piacere il contributo offerto a ventilab da un caro amico, Gianni Ciabatti di Firenze. Gianni reintepreta in chiave originale il PMI (Pressure musc,index), cioè la differenza tra la pressione di plateau e la pressione applicata dal ventilatore in ventilazione assistita. Il PMI nasce come stima non-invasiva dello sforzo inspiratorio a fine inspirazione: a mio parere Gianni presenta una semplificazione concettuale del PMI, che ci consentirà di utilizzarlo facilmente nella pratica clinica.

Ed ora leggiamoci il post.

_°_°_°_°_°_°_°_°_°_°_°_°_

Quando iniziamo a ventilare un paziente in modalità Pressure Support Ventilation (PSV), ci troviamo ad impostare sul ventilatore una pressione di fine espirazione (PEEP) ed una pressione di supporto (PS); la pressione delle vie aeree (Paw) indica la pressione totale erogata dal ventilatore, che a fine inspirazione dovrebbe coincidere con la somma di PSV e PEEP.

In PSV il paziente può contribuire alla generazione del volume corrente utilizzando la propria muscolatura respiratoria mentre il ventilatore applica il livello di PS impostato. Definiamo Pmus la riduzione della pressione pleurica generata dai muscoli respiratori durante l’inspirazione. In altri termini, mentre il ventilatore “spinge” l’aria nei polmoni, i muscoli del paziente la “tirano dentro”.

Possiamo ora capire che in PSV la pressione generata per vincere il carico soglia (cioè la PEEP intrinseca, PEEPi), resistivo (pressione resistiva, Pres) ed elastico (pressione elastica, Pel), è prodotta in parte dal ventilatore ed in parte dal paziente. Possiamo sintetizzare tutti questi concetti nell’equazione di moto dell’apparato respiratorio (vedi post del 24/06/2011):

Paw + Pmus = PEEP + PEEPi + Pres + Pel

Per semplificare le cose, considereremo la PEEP intrinseca uguale 0. Come abbiamo già visto, la pressione delle vie aeree è, durante l’inspirazione, la somma di PSV e PEEP. NON abbiamo però idea della Pmus, cioè la pressione sviluppata dai muscoli respiratori.

La riduzione inspiratoria della pressione pleurica è stimata con la misurazione della pressione esofagea. La domanda che possiamo farci adesso è: “Senza sondino esofageo, possiamo stimare la pressione generata dalla muscolatura del paziente?”.…Probabilmente si….

Sui nostri ventilatori eseguendo una occlusione delle vie aeree alla fine della inspirazione, possiamo osservare una pressione di plateau (Pplat), anche quando il paziente è in ventilazione assistita.

PMI_attivo

In condizioni statiche (cioè in assenza di flusso), questa pressione a fine inspirazione corrisponde alla somma della PEEP applicata, e della pressione necessaria per immettere il volume corrente nell’apparato respiratorio (pressione elastica), di cui una quota è apportata dal ventilatore(PS) e una dal paziente(Pmus):

Pplat = PEEP + PS + Pmus

La differenza di pressione tra il plateau durante l’occlusione di fine inspirazione e la pressione applicata dal ventilatore (PEEP+PS), ci può fornire una stima (approssimata per difetto, vedi sotto) della pressione sviluppata dal paziente (Pmus), definita anche PMI (Pressure musc,index) (1):

PMI = Pplat – (PS + PEEP)

PMI_attivo_dettaglio

Nelle figure 1 e 2 possiamo vedere un paziente in PSV con impostati 5 cmH2O di PEEP e 7 cmH2O di PS. Durante l’occlusione di fine inspirazione, se il paziente in questa fase rilascia la muscolatura respiratoria, si può osservare un plateau di pressione. Nel caso presentato si vede un chiaro plateau di pressione di 16 cmH2O. Sappiamo che la differenza tra pressione di plateau e PEEP (totale) è la pressione elastica, che corrisponde alla pressione necessaria per immettere i 600 ml di volume corrente nell’apparato respiratorio.

Pel = Pplat – PEEP = 16 cmH2O – 5 cmH2O = 11 cmH2O

Vediamo che degli 11 cmH2O che servono per accogliere i 600 ml di volume corrente, il ventilatore ne eroga solo 7 cmH2O (PS), gli altri 4 cmH2O sono quindi stati generati dal paziente.

Questa differenza di pressione, 4 cmH2O, può quindi essere presa come una stima della pressione generata dalla muscolatura del paziente. Adesso capiamo probabilmente meglio il significato del PMI, che nel nostro esempio è:

PMI= Pplat – (PS + Peep) = 16 cmH2O – ( 5 cmH2O + 7 cmH2O ) = 4 cmH2O

PMI_passivo

In quest’altro paziente (Fig. 3) le pressioni impostate sono: PEEP 5 cmH2O, PS 10 cmH2O, ed eseguendo una pausa di fine inspirazione misuriamo 13 cmH2O di pressione di plateau.

 PMI_attivo_dettaglio

Abbiamo un livello di pressione di plateau inferiore alla somma di PEEP + PS. La nostra pressione di plateau può essere più bassa della somma (PEEP + PS) quando la pressione sviluppata dal paziente (Pmus) è inferiore alla pressione resistiva a fine inspirazione. Come abbiamo imparato nel paziente passivo, il calo di pressione dopo l’occlusione di fine inspirazione è determinato dalla perdita della pressione resistiva (vedi post del 5/12/2011). La pressione resistiva è proporzionale al flusso, quindi nelle ventilazioni pressometriche (che hanno un flusso inspiratorio discendente) essa a fine inspirazione assume valori solitamente bassi. Pertanto è nei pazienti passivi (o quasi) che riusciremo a ottenere una pressione di plateau più bassa del picco, proprio perché la Pmus è inferiore alla pressione resistiva, ed il PMI sarà negativo. Nel paziente in figura 4:

PMI = Pplat – (PS + PEEP) = 13 cmH2O – (10 cmH2O + 5 cmH2O) = -2 cmH2O

A questo punto può essere interessante una riflessione. Ricordiamoci che il vero obiettivo quando impostiamo una pressione di supporto dovrebbe essere quello di trasferire lavoro dal paziente al ventilatore. Spesso si vede nella pratica clinica (e si legge nella letteratura scientifica) che il livello di pressione di supporto è regolato sul raggiungimento di un volume corrente target, generalmente tra i 6-8 ml/kg (di peso ideale). Quanto era il volume corrente/kg nei due casi che abbiamo presentato nel post?

Il primo (Fig. 1 e 2) è un paziente maschio di 190 cm di altezza (84 kg di peso ideale), che con 7 cmH2O di pressione di supporto sviluppa 590 ml di volume corrente:

590 ml / 85 kg = 7 ml/kg

In questo paziente, osservando il ventilatore (PMI e curva di flusso) possiamo dire che con questo livello di PS abbiamo il trasferimento di una parte del lavoro respiratorio al ventilatore, con il paziente che è comunque molto attivo.

La seconda paziente (Fig. 3 e 4) è una donna alta 167 cm (58 kg di peso ideale), la quale con 10 cmH2O di pressione di supporto genera un volume corrente espiratorio di 415 ml:

415 ml / 59 kg = 7 ml/kg

In questa paziente, osservando la curva di flusso ed il PMI generato, possiamo ragionevolmente pensare ad un trasferimento quasi completo del lavoro respiratorio al ventilatore.

In sintesi, nei nostri due pazienti abbiamo impostato un livello di PS che in entrambi i casi raggiunge il target di volume corrente di 7 ml/kg peso ideale, ma con risultati molto diversi: il raggiungimento di un volume corrente target non ci dice nulla sulla ripartizione del lavoro respiratorio tra paziente e ventilatore.

Conclusioni:

  • Ventilando i pazienti in PSV (come in qualunque altra modalità di ventilazione), la pressione delle vie aeree che vediamo sul ventilatore corrisponde alla pressione erogata dal ventilatore stesso, ma non ci dice nulla sullo sforzo inspiratorio fatto dal paziente.

  • Eseguendo una pausa di fine inspirazione si può osservare una pressione di plateau: sottraendo ad essa PEEP e pressione di supporto inspiratoria, otteniamo una stima (per difetto) di una parte della pressione generata dai muscoli respiratori;

  • Impostare una pressione di supporto avendo un obiettivo di volume corrente (in ml/kg di peso ideale) non fornisce indicazioni sulla quota di lavoro respiratorio che resta a carico del paziente. In pressione di supporto questo può apparire paradossale, se consideriamo che il principale obiettivo di questa modalità di ventilazione è proprio la riduzione del lavoro respiratorio del paziente.

  • Durante la ventilazione in pressione di supporto (come nelle altre modalità di ventilazione), il livello di pressione alveolare a fine inspirazione (quello rilevato durante il plateau) può essere superiore alla pressione applicata dal ventilatore: potrebbero pertanto esserci pazienti a rischio di VILI nonostante rassicuranti valori di pressione delle vie aeree.

Bibliografia.

1) Foti G et al. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 1997;156:1210–1216.

_°_°_°_°_°_°_°_°_°_°_°_°_

Grazie Gianni!

Sunday, April 17, 2016

La PEEP nei pazienti con auto-PEEP (PEEP intrinseca) – seconda parte

beep-peepNel post precedente abbiamo messo in discussione l’affermazione ricorrente che “la PEEP debba essere l’80% della PEEP intrinseca”. Ora cercheremo di capire come possiamo scegliere una PEEP ragionevole nei pazienti con auto-PEEP.


Effetto della PEEP sulla PEEP totale.

Abbiamo visto che teoricamente l’applicazione di una PEEP inferiore all’auto-PEEP non dovrebbe aumentare la PEEP totale nei pazienti con flow-limitation, mentre in assenza di flow limitation la PEEP che applichiamo dovrebbe sommarsi alla pre-esistente PEEP intrinseca. Questa interpretazione, fondata su ragionevoli presupposti fisiopatologici, è proposta ed indiscussa da quasi trent’anni. Ma, abbastanza sorprendentemente, non era mai stata verificata nella clinica, cioè nessuno aveva mai misurato sistematicamente su molti pazienti con PEEP intrinseca cosa succede alla PEEP totale quando si applica una PEEP esterna inferiore (circa l’80%) all’auto-PEEP. Questo lavoro l’abbiamo allora fatto noi. Circa 3 anni fa ventilab ha promosso uno studio a cui hanno entusiasticamente partecipato 11 Terapie Intensive italiane arruolando i pazienti con PEEP intrinseca. Il disegno dello studio era molto semplice: misurare la PEEP totale quando il paziente era a ZEEP (cioè senza PEEP), applicare una PEEP uguale al 80% dell’auto-PEEP e rimisurare la PEEP totale. (Ricordiamo che la PEEP intrinseca è la differenza tra PEEP totale e la PEEP esterna; pertanto in assenza di PEEP, auto-PEEP e PEEP totale coincidono.). Ci saremmo aspettati, in teoria, due sole possibili risposte: un gruppo di pazienti avrebbe avuto la stessa PEEP totale sia senza che con la PEEP (come teorizzato nei pazienti con flow limitation), un altro gruppo di pazienti invece avrebbe dovuto aumentare la PEEP totale più o meno della stessa entità della PEEP applicata (come teorizzato in assenza di flow limitation). Queste due ipotetiche possibili risposte sono schematizzate nella figura 1 con l’esempio di un soggetto con 10 cmH2O di auto-PEEP a ZEEP: in alto l’applicazione della PEEP di 8 cmH2O non modifica la PEEP totale, mentre in basso la PEEP totale aumenta della stessa entità della PEEP applicata. Misurando la variazione della PEEP totale come percentuale della PEEP applicata, nel primo caso avremo una variazione della PEEP totale dello 0% rispetto alla PEEP esterna, mentre nel secondo caso avremo un aumento della PEEP totale pari al 100% della PEEP applicata.

Figura 1.

Figura 1.

Dopo aver raccolto ed analizzato i dati di 100 pazienti con PEEP intrinseca, ci siamo accorti che questa interpretazione della realtà non è vera. Non esiste cioè un comportamento “tutto o nulla”, che contempli solo le possibilità che la PEEP totale aumenti dello 0% o del 100% rispetto al valore della PEEP esterna, ma sono più probabili le risposte intermedie a questi due comportamenti paradigmatici: cioè un elevato numero di pazienti ha variazioni della PEEP totale che sono intermedie tra lo 0% ed il 100%, come si può vedere nell’istogramma in figura 2.

Figura 2.

Figura 2.

Tradotto in termini pratici, quando metto una PEEP di 8 cmH2O ad un paziente con PEEP intrinseca, posso aspettarmi più spesso un aumento della PEEP totale di circa il 50% della PEEP (cioè di 4 cmH2O), anche se in realtà è possibile qualsiasi aumento tra lo 0% ed il 100% (tralasciamo per semplicità i rari casi con aumento sopra il 100%, cioè con la PEEP totale che aumenta più della PEEP applicata).


Gli “assorbitori di PEEP”: cosa è necessario per evitare l’aumento della PEEP totale dopo l’applicazione della PEEP.

Questi dati possono sembrare a prima vista incompatibili con la teoria della flow limitation, che prevede solo una risposta “tutto o nulla” come abbiamo prima descritto. Vedremo in seguito perchè questa contraddizione è probabilmente solo apparente.

Ci siamo quindi chiesti se sia possibile prevedere in quale tipo di pazienti l’applicazione della PEEP non aumenta la PEEP totale. Abbiamo chiamato questi pazienti “assorbitori di PEEP”, perchè la fanno scomparire all’interno della propria auto-PEEP. L’analisi dei nostri dati ci ha indicato chiaramente che è fondamentale l’associazione di due caratteristiche per avere un paziente “assorbitore di PEEP”: una bassa frequenza respiratoria e la presenza di flow limitation. L’assenza di una di queste due caratteristiche rende pressochè impossibile essere “assorbitore di PEEP”. Nulla di nuovo sulla flow limitation, come detto già più volte. La vera novità è però la frequenza respiratoria: senza una bassa frequenza respiratoria non è possibile “assorbire” completamente la PEEP. Nel nostro campione di pazienti abbiamo identificato una frequenza respiratoria critica di 20/min: cioè una frequenza uguale o superiore a 20/min precludeva possibilità di essere “assorbitori di PEEP”, anche ai pazienti con flow limitation.

L’importanza della frequenza respiratoria è mediata ovviamente dal suo effetto sul tempo espiratorio: l’aumento della frequenza respiratoria riduce come conseguenza il tempo espiratorio. E la riduzione del tempo espiratorio genera PEEP-intrinseca con un meccanismo indipendente dalla flow limitation.


Disomogenità polmonare e risposta alla PEEP.

Dobbiamo pensare ai polmoni ammalati come ad una struttura disomogenea, dove si alternano aree con caratteristiche diverse tra loro. Tra le differenze che caratterizzano le diverse zone di un polmone patologico possiamo includere la dinamica espiratoria: in certe aeree polmonari ci saranno le condizioni perchè il l’espirazione sia flusso-limitata, mentre altre zone del polmone avranno una espirazione non flusso-limitata. In un paziente tachipnoico la PEEP intrinseca potrà generarsi, nello stesso polmone, con un duplice meccanismo: in alcune zone polmonari sarà determinata solo dalla flow-limitation, in altre zone polmonari da una espirazione incompleta dovuta ad un insufficiente tempo espiratorio. In queste diverse aree, l’effetto della PEEP sulla PEEP intrinseca sarà differente e noi potremo misurare solo un effetto medio. Figura 3Facciamo un esempio. Come presentato nella figura 3 in alto, ipotizziamo che in assenza di PEEP, vi siano due aree polmonari, una caratterizzata da flow limitation con 14 cmH2O di auto-PEEP ed una senza flow limitation con 6 cmH2O di PEEP intrinseca. Se il volume corrente fosse distributio al 50% in ciascuna delle due aree, la PEEP totale che misureremmo con l’occlusione espiratoria delle vie aeree sarebbe la media delle due, cioè 10 cmH2O. Qualora applicassimo 8 cmH2O di PEEP (pari al 80% della auto-PEEP) (figura 3, in basso), nell’area con flow limitation questa PEEP non modificherebbe la PEEP totale regionale, mentre nell’area senza flow limitation questa aumenterebbe la PEEP totale della stessa entità della PEEP applicata. Il risultato finale sarebbe che entrambe le zone a questo punto avrebbero 14 cmH2O di auto-PEEP e questa sarebbe anche la PEEP totale che misureremmo con l’occlusione di fine espirazione.

Questo modello interpretativo ci spiega come sia possibile avere aumenti della PEEP totale pari al 50% della PEEP applicata, quando in teoria ci aspetteremmo lo 0% nelle zone con flow limitation ed il 100% nelle zone senza flow limitation. Noi possiamo solo misurare il comportamento medio complessivo dei polmoni, mentre gli effetti della flow limitation possono essere solo regionali. In questo modo si possono capire i dati presentati nella figura 2.


Conclusioni ed implicazioni pratiche.

Possiamo riassumere i punti fondamentali del post:

1) l’applicazione di una PEEP esterna di poco inferiore all’auto-PEEP ha effetti molto diversi da soggetto a soggetto: in alcuni pazienti l’iperinflazione (cioè la PEEP totale) non aumenta, in altri pazienti invece aumenta di una quantità non prevedibile.
2) possiamo identificare i pazienti che non aumenteranno l’iperinflazione (“assorbitori di PEEP”) se sono contemporaneamente presenti 2 caratteristiche: flow limitation e bassa frequenza respiratoria (indicativamente sotto i 20/min)

Le implicazioni cliniche per l’applicazione della PEEP nei pazienti con auto-PEEP possono essere queste:

1) pazienti tachipnoici e/o pazienti senza flow limitation:
qualsiasi PEEP esterna aggrava l’iperinflazione (=PEEP totale)
– quando l’aumento dell’iperinflazione rappresenta un problema (riduzione dell’efficienza dei muscoli respiratori, sovradistensione polmonare, impatto emodinamico) bisogna evitare la PEEP esterna oppure metterla al minimo ragionevole (a mio parere circa 4-5 cmH2O)

2) pazienti con flow limitation e frequenza respiratoria normale/bassa (< 20/min circa):
– è ragionevole impostare una PEEP un po’ inferiore all’auto-PEEP (in questo caso può andar bene il famoso 80%): si ha la massima riduzione del carico soglia senza i possibili effetti negativi del peggioramento dell’iperinflazione
– quando non è possibile valutare la flow limitation (NIV, ventilatore senza loop flusso-volume), possiamo ragionevolmente pensare che i pazienti con malattia polmonare cronica ostruttiva siano flusso-limitati.

Un sorriso ai tantissimi amici di ventilab.


PS: Questi dati sono presentati in anteprima assoluta ai lettori di ventilab. E’ in corso il processo di revisione per la eventuale pubblicazione: vediamo se qualcun’altro, oltre a ventilab, ritiene questi risultati interessanti…

Wednesday, March 30, 2016

La PEEP nei pazienti con auto-PEEP (PEEP intrinseca) - prima parte

so_grecheQuanta PEEP mettere nei pazienti con auto-PEEP? La risposta che spesso si dà a questa domanda è carica di certezze: la PEEP deve essere l’80% della PEEP intrinseca.

In realtà questa affermazione è impraticabile nella pratica clinica, senza un chiaro razionale fisiopatologico e non confermata da studi clinici. Cerchiamo di capire il motivo dell’inadeguatezza di questa risposta comune e, cosa più importante, come scegliere correttamente la PEEP nei pazienti con auto-PEEP. Ricordiamo che auto-PEEP e PEEP intrinseca sono sinonimi e quindi li useremo in maniera intercambiabile. Personalmente preferisco il termine auto-PEEP a quello di PEEP intrinseca anche per sottolineare che questa PEEP non è un evento intrinsecamente presente nel paziente, ma piuttosto il frutto di una interazione tra le caratteristiche del paziente ed il suo pattern respiratorio.

Iniziamo con 3 buone ragioni per dubitare della PEEP al 80% della auto-PEEP.

1) la PEEP intrinseca non è sempre misurabile.

Mentre è facile (ma di solito poco importante) misurare la auto-PEEP nei pazienti passivi durante la ventilazione meccanica, spesso è difficile farlo quando servirebbe, cioè durante la ventilazione assistita. Purtroppo alcuni ventilatori disattivano l’occlusione di fine espirazione durante la ventilazione di supporto. Ma quando anche questa fosse disponibile, spesso non si ottiene un plateau durante l’occlusione di fine espirazione quando si rimuove la PEEP. Come vediamo nella figura 1, durante l’occlusione delle vie aeree nei pazienti attivi e senza PEEP, spesso non si ottengono dei plateau di pressione regolari e costanti.

Figura 1.

Figura 1.

In questi casi non si può fare alcuna ipotesi circa il valore di auto-PEEP, che richiede invece un plateau di pressione stabile. Ricordiamo peraltro che se entriamo nell’ottica di mettere l’80% di PEEP rispetto alla PEEP intrinseca, questa dovrebbe essere misurata ovviamente senza PEEP.

2) i pazienti non hanno UNA PEEP intrinseca.

Una prima considerazione: nei pazienti passivi il valore di PEEP intrinseca varia principalmente al variare del tempo espiratorio, delle resistenze delle vie aeree e della presenza o meno di flow limitation (1). Quindi una variazione di frequenza respiratoria/tempo inspiratorio oppure un miglioramento o peggioramento di flow limitation e broncocostrizione porteranno a diversi valori auto-PEEP nello stesso paziente, anche in tempi relativemente brevi.

Nei pazienti con attività respiratoria spontanea, la auto-PEEP può cambiare anche in funzione della presenza o meno di attività dei muscoli espiratori. In caso di espirazione attiva, infatti aumenterà il flusso espiratorio e si ridurrà quindi la PEEP intrinseca, a parità di tutti gli altri fattori. Questo evento, seppur tipico dei pazienti senza flow limitation, può accadere anche in pazienti flusso-limitati, perchè la flow limitation spesso inizia a presentarsi solo nella seconda metà dell’espirazione (vedi figura 3 del post del 25/11/2012).

Una dimostrazione eclatante di quanto sia variabile l’auto-PEEP ce la fornisce un vecchio studio che misurava la PEEP intrinseca in 35 respiri consecutivi in pazienti in ventilazione assistita-controllata. Nei pazienti con almeno 3 cmH2O di PEEP intrinseca, il valore medio di auto-PEEP era di 7 cmH2O con una deviazione standard di 4 cmH2O (2). Detto in altre parole, nello stesso paziente il valore della auto-PEEP poteva ragionevolmente variare tra 0 e 15 cmH2O (pari a due deviazioni standard dalla media), con i due terzi dei respiri che avevano una auto-PEEP compresa tra 3 e 11 cmH2O (entro una deviazione standard dalla media). E questa variazione in 35 respiri consecutivi!

E’ evidente che poichè la PEEP intrinseca varia continuamente nello stesso paziente, non ha molto senso cerca di applicare il famoso 80% di PEEP rispetto al valore di auto-PEEP: quale valore di auto-PEEP?

3) la PEEP interagisce con la auto-PEEP in maniera differente nei pazienti con e senza flow limitation.

La flow limitation a cui ci riferiamo è più precisamente la “tidal expiratory flow limitation”, cioè quella flow limitation che si manifesta durante l’espirazione del normale volume corrente. La flow limitation è una condizione che rende impossibile l’aumento del flusso espiratorio nonostante l’aumento della differenza di pressione tra i polmoni e l’apertura delle vie aeree. Al contrario di un soggetto sano, un paziente con flow limitation non aumenta il flusso espiratorio (cioè la velocità con cui il volume corrente esce dall’apparato respiratorio) nemmeno se espira forzatamente. Come, ad esempio, può succedere al nonno quando non riesce a spegnere le candeline sulla torta di compleanno: se il nonno è flusso-limitato probabilmente non riuscirà a spegnere le candeline nemmeno se soffierà più intensamente, perché comunque non potrà aumentare il flusso espiratorio.

La teoria ci dice che nei soggetti con flow-limitation, l’aggiunta di una PEEP esterna inferiore alla PEEP intrinseca non aumenta la PEEP totale (cioè la somma di PEEP esterna e auto-PEEP) (3-5). Vediamo in figura 2 una curva pressione-tempo di un soggetto senza PEEP: una insufflazione è seguita da una occlusione delle vie aeree a fine espirazione.

Figura 2.

Figura 2.

Il valore di pressione misurato durante questa occlusione è definito PEEP totale, che nell’esempio è di 10 cmH2O. In assenza di PEEP, la PEEP totale coincide ovviamente con l’auto-PEEP (che è sempre calcolata come differenza tra PEEP totale e PEEP esterna). Se ad un soggetto con flow limitation applichiamo una PEEP minore della auto-PEEP, ci aspettiamo che la PEEP totale rimanga stabile con una conseguente riduzione dell’auto-PEEP. Come possiamo ben capire da questo esempio, la PEEP intrinseca è quella parte di PEEP totale non spiegata dalla PEEP esterna. Questa condizione è riprodotta nella figura 3.

Figura 3.

Figura 3.

Dobbiamo evitare di credere che in questo caso l’applicazione della PEEP riduca l’iperinflazione, cioè il volume polmonare a fine espirazione. Infatti la PEEP totale (che stima il livello di iperinflazione) è rimasta identica: l’iperinflazione è quindi invariata. Semplicemente abbiamo scambiato una parte dell’auto-PEEP con la PEEP esterna. In questo caso si ha una riduzione del carico soglia (vedi post del 23/06/2010). Qualora il paziente fosse in ventilazione assistita o spontanea, l’applicazione di questa PEEP determinerebbe quindi un miglioramento della sincronia paziente-ventilatore ed una riduzione del carico dei muscoli respiratori.

Nei pazienti senza flow limitation però dovremmo aspettarci un comportamento completamente diverso.

Figura 4.

Figura 4.

Come si vede nella figura 4, se il paziente descritto nella figura 2 non fosse flusso-limitato, l’aggiunta della PEEP esterna pari al 80% della PEEP intriseca potrebbe fare solo guai. Infatti, in assenza di flow limitation, la fisiopatologia ci porta a concludere che tutta la PEEP applicata si somma alla preesistente auto-PEEP, aumentato la PEEP totale. La conseguenza è un aumento dell’iperinflazione a fine espirazione, con possibili effetti sfavorevoli sia respiratori che emodinamici (e senza nemmeno il vantaggio della riduzione del carico soglia).

Da quanto abbiamo visto, penso si possa comprendere perchè sia discutibile e/o impraticabile la scelta di applicare ai pazienti una PEEP esterna pari al 80% della auto-PEEP misurata a ZEEP. Al massimo questa può essere una scelta sensata solo per alcuni pazienti, sempre ammesso (e non concesso) si possa avere a disposizione un valore fisso ed attendibile di auto-PEEP.

Quindi, alla fine, come decidere ragionevolmente quanta PEEP mettere nei pazienti con PEEP intrinseca? La risposta a questa domanda è articolata, e ventilab può offrire un contributo originale per capire la scelta migliore al letto del paziente. Il post di oggi è però già abbastanza lungo, quindi tra un paio di settimane vedremo la risposta di ventilab.

Nel frattempo, come sempre, un sorriso alle migliaia di affezionati amici di ventilab.

PS: i commenti, anche tardivi, ai post sono sempre molto graditi. Chiedo solo un po’ di pazienza, non sempre mi è facile trovare il tempo per rispondere tempestivamente.

 

Bibliografia.
1) Natalini G et al. Assessment of factors related to auto-PEEP. Respir Care 2016; 61:134-41
2) Patel H et al. Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Crit Care Med 1995; 23:1074-9
3) Marini JJ. Should PEEP be used in airflow obstruction? Am Rev Respir Dis 1989;140:1-3.
4) Tobin M et al. PEEP, auto-PEEP, and waterfalls. Chest 1989;96:449-51.
5) Marini JJ. Dynamic hyperinflation and auto-Positive End-Expiratory Pressure. Lessons learned over 30 Years. Am J Respir Crit Care Med 2011;184:756-62.

Friday, February 26, 2016

Strain, compliance e driving pressure nella ventilazione protettiva dei pazienti con ARDS

fishbowlStress e strain sono due concetti sempre più ricorrenti nella ventilazione protettiva del paziente con Acute Respiratory Distress Syndrome (ARDS). Cerchiamo di capire se e come possono esserci utili nella pratica clinica.

Lo strain in fisica descrive la deformazione di un corpo rispetto alla sua struttura iniziale (figura 1).

Applicato al polmone possiamo intendere lo strain come il rapporto tra la deformazione applicata al polmone (cioè il volume corrente) rispetto al suo volume iniziale (cioè la capacità funzionale residua).

Strain

Figura 1

La figura 2 ci aiuta a ricordare che la Capacità Funzionale Residua (FRC, Functional Redisual Capacity) è il volume del polmone alla fine di una espirazione passiva completa.

functional-residual-capacity

Figura 2

Come sappiamo quando si parla di “capacità” (come nel caso della Capacità Funzionale Residua) in spirometria si intende la somma di volumi polmonari. In particolare la Capacità Funzionale Residua è la somma di Volume di Riserva Espiratoria (nella figura 2 ERV, Expiratory Reserve Volume, cioè il volume che possiamo espirare con un’espirazione massimale) ed il Volume Residuo (RV, residual volume, volume che non possiamo espirare, nemmeno con un’espirazione massimale).

Possiamo considerare la capacità funzionale residua come la dimensione iniziale di un contenitore nel quale andiamo ad aggiungere il volume corrente. A parità di volume corrente, un contenitore (cioè una capacità funzionale residua) più grande subirà una deformazione relativa (cioè uno strain) minore rispetto ad un contenitore di dimensioni minori (figura 3).

lung_volumes

Figura 3

Facciamo un esempio. Gino è un soggetto maschio adulto con un polmone sano (figura 4a) ed una capacità funzionale residua di 2500 ml. Gino ventila con un volume corrente di circa 500 ml, lo strain è quindi pari a 500 ml/2500 ml, cioè 0.2. Ipotizziamo che, sfortunatamente, a Gino una ARDS (figura 4b) determini la riduzione della capacità funzionale residua a 800 ml (di solito la gravità della ARDS è direttamente proporzionale alla riduzione della capacità funzionale residua).

rx torace normale vs ards

Figura 4

Se a Gino continuiamo a somministrare 500 ml di volume corrente (come quando era sano), avremo un rapporto volume corrente/capacità funzionale residua di 500 ml/800 ml, cioè uno strain di circa 0.63. Come a tutti i pazienti con ARDS, applichiamo a Gino anche una PEEP, che inevitabilmente contribuisce ad aumentare ulteriormente il volume polmonare al di sopra della capacità funzionale residua. L’incremento di volume indotto dalla PEEP si somma al volume corrente nella determinazione dello strain. Ipotizziamo di applicare 15 cmH2O di PEEP e che questo aumenti il volume polmonare di fine espirazione di circa 300 ml. In questo caso, se si mantiene costante il volume corrente a 500 ml, lo strain sarà quindi (500 ml + 300 ml)/800 ml, cioè 1.

Gino aveva uno strain di 0.2 quando era sano ed uno strain di 1 con l’ARDS, a parità di volume corrente: ha cioè quintuplicato la deformazione del polmone. Un fenomeno tutt’altro che trascurabile, poiché l’aumento dello strain sopra una soglia critica è un elemento determinante per il danno polmonare indotto dalla ventilazione.

E’ quindi importante misurare la capacità funzionale residua e determinare lo strain nei pazienti con ARDS? No, a mio personale parere: ad oggi non è stata identificato un convincente valore soglia di strain da non superare nella pratica clinica. Ed inoltre sappiamo che lo strain indotto dalla PEEP (definito anche strain statico) è meno dannoso dello strain associato al volume corrente (strain dinamico). Quindi, anche qualora fosse dato un valore soglia allo strain, saremmo in difficoltà a scorporare gli effetti della PEEP da quelli del volume corrente.

Il concetto di strain, anche se per ora sembra povero di chiare implicazioni pratiche, è comunque estremamente interessante dal punto di vista concettuale. Ci dice che il volume corrente deve essere proporzionale al volume del polmone ventilabile nei pazienti con ARDS: il volume corrente deve quindi essere adeguato, oltre che al peso ideale del paziente, anche alla gravità della ARDS.

Possiamo però riconoscere che in fondo un’informazione simile ci è offerta anche dalla cara, vecchia compliance (che caratterizza la ARDS fin dalla sua nascita, vedi post del 31/01/2016). Come sappiamo la compliance esprime la variazione di volume dell’apparato respiratorio per ogni cmH2O di pressione ad esso applicato e si misura dividendo il volume corrente per la differenza di pressione statica (cioè di plateau) tra inspirazione ed espirazione. Gino quando era sano probabilmente aveva una normale compliance dell’apparato respiratorio (circa 100 ml/cmH2O), quindi riusciva a ventilare i suoi 500 ml con 5 cmH2O di differenza di pressione tra inspirazione ed espirazione. Quando gli viene l’ARDS, la compliance si riduce a 30 ml/cmH2O (come quella di molti pazienti con ARDS). Meno di un terzo del normale, una riduzione proporzionalmente simile a quella della capacità funzionale residua, che si era ridotta da 2500 a 800 ml. Già quasi 30 anni fa è stato proposto è stato osservato che il valore di compliance corrisponde all’incirca alla percentuale di polmone rimasto normalmente aerato nei pazienti con ARDS (1). Quindi una compliance di 30 ml/cmH2O potrebbe grossolanamente indicare che il 30% del tessuto polmonare è rimasto normalmente ventilabile.

Pensiamo ora a quello che facciamo quando ventiliamo i pazienti con ARDS facendoci guidare dalla driving pressure (vedi post del 28/02/2015): quando scegliamo una PEEP per ridurre la driving pressure, altro non facciamo che aumentare quanto possibile la compliance. Dopo di questo, se necessario, limitiamo il volume corrente (e quindi la driving pressure) per evitare la comparsa di segni di sovradistensione.

Di solito lo strain è associato allo stress, che altro non è che la driving pressure. Stress e strain sono direttamente proporzionali: stress = k · strain.

Per quanto detto finora, questa equazione, relativamente all’apparato respiratorio, diventa: driving pressure = k ·VT/FRC.

Tradotta in italiano, l’equazione ci dice che tanto più è elevata la driving pressure, tanto maggiore è la deformazione che sta subendo il polmone. E’ stato osservato che il rischio di morte nei pazienti con ARDS aumenta quando la driving pressure supera i 15 cmH2O

Dopo quanto detto finora si può almeno intuire perché la costante di proporzionalità tra stress e strain è l’elastanza specifica, cioè il rapporto tra capacità funzionale residua e compliance. Possiamo quindi scrivere l’equazione nella sua forma finale: driving pressure = FRC/compliance · VT/FRC.

E qui ci fermiamo (almeno per oggi) perché ogni ulteriore approfondimento sarebbe interessantissimo, ma certamente non breve. Notiamo però che la driving pressure (una misura molto semplice) riassume in se tutti gli elementi fondamentali nella ventilazione protettiva.

Un’ultima precisazione. Quando misuriamo la pressione nelle vie aeree per calcolare compliance e driving pressure, ci riferiamo a tutto l’apparato respiratorio, tradizionalmente inteso come la somma di polmone e gabbia toracica. Se vogliamo riportare tutti questi concetti al solo polmone, invece della pressione delle vie aeree dobbiamo utilizzare la differenza tra pressione delle vie aeree e pressione esofagea.

Possiamo concludere che:

1) la scelta del volume corrente nel paziente con ARDS deve tener conto della dimensione del polmone che “accetta volentieri la ventilazione”. Questa può essere definita sia dalla capacità funzionale residua sia dalla compliance (che è simile alla percentuale di polmone rimasto normalmente aerato);

2) lo strain al momento è di difficile determinazione (bisogna misurare la capacità funzionale residua) e di vaga utilità clinica (non disponendo di valori soglia praticamente utilizzabili)

3) la driving pressure contiente in sé l’informazione dello strain, è facile da misurare e disponiamo di una possibile soglia di allarme utilizzabile nella pratica clinica (all’incirca sopra i 15 cmH2O).

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Gattinoni L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6

2) Amato MB et al. Driving pressure and survival in the acute respiratory distress syndrome. New Eng J Med 2015; 372:747-55

Saturday, January 30, 2016

ARDS: imparare dal passato.

maradona-gelsi scudetto napoli 10-05-1987Di solito amiamo citare l’ultimo articolo, quello appena uscito sul New England… Buona cosa, per carità…ma sono convinto che si possa imparare (e soprattutto CAPIRE) molto anche dal primo articolo.

Vorrei quindi proporre agli amici di ventilab un affascinante viaggio nel passato per rivisitare insieme il primo articolo che ha parlato di ARDS (Acute Respiratory Distress Syndrome, come viene definita oggi, dopo essere stata chiamata fino agli anni novanta Adult Respiratory Distress Syndrome).

L’ARDS nasce ufficialmente sabato 12 agosto 1967, quando viene pubblicato su Lancet l’articolo “Acute Respiratory Distress in Adult”. Il primo autore è David Ashbaugh, Assistant Professor of Surgery: dobbiamo rassegnarci, l’ARDS è stata “scoperta” da un chirurgo…d’altri tempi…ashbaugh2

La Sindrome da Distress Respiratorio Acuto nell’Adulto (questo quindi il primo nome della ARDS) prende le mosse dalla semplice (ma attenta ed intelligente) osservazione clinica e laboratoristica di pochi pazienti da parte di medici preparati e curiosi. Come del resto è successo per quasi tutte le malattie, scoperte indipendentemente dai dogmi di una sedicente evidence-based medicine.

Gli autori studiarono le caratteristiche di 12 pazienti tra i 272 che avevano sottoposto a supporto respiratorio. Questi avevano malattie diverse (7 traumi, 4 polmoniti e 1 pancreratite) ma una caratteristica comune: non rispondevano alle comuni terapie. Ashbaugh ed i suoi colleghi capiscono fin da allora che, considerata la stessa risposta del polmone a stimoli diversi, si può postulare un meccanismo comune del danno.

Presentazione clinica.

Il quadro clinico era carattezzato da ipossiemia (cianosi refrattaria alla ossigenoterapia), grave dispnea e tachipnea ed era insorto entro 4 giorni dall’inizio della malattia primitiva. Ritroviamo qui due caratteristiche fondamentali anche per la definizione attuale della ARDS: l’insorgenza acuta e l’ipossiemia. Ma l’ipossiemia qui descritta appare ben più grave rispetto ai criteri attuali per la diagnosi di ARDS (PaO2/FIO2<300): i pazienti ventilati di Ashbaugh e colleghi avevano una SaO2 media di 77% con una FIO2 media di 0.76 (quello che stava meglio una SaO2 del 74% con una FIO2 di 0.4). L’attuale definizione di ARDS (vedi post del 24/06/2012) comprende anche pazienti in cui l’ipossiemia non è molto grave: paradossalmente oggi potrebbe avere una ARDS anche un paziente senza insufficienza respratoria. Infatti una definizione tradizionale di insufficienza respiratoria la identifica con una PaO2 inferiore a 60 mmHg. Quindi si potrebbe fare la diagnosi in un soggetto con una PaO2 in aria di 62 mmHg (il PaO2/FIO2 sarebbe 295 mmHg). Uno scenario clinico ben diverso da quello descritto nell’articolo del 1967.

Fin da questo primo articolo l’ARDS è stata caratterizzata da una bassa compliance in tutti i pazienti (la compliance dinamica era compresa tra 9 a 19 ml/cmH2O). Gli autori sapevano bene che questa compliance non è come quella statica, ma che è comunque un valore gravemente ridotto rispetto al normale (50-125 ml/cmH2O per gli autori). La bassa compliance dell’apparato respiratorio è quindi caratteristica della ARDS dalle sue origini e ne può definire gravità forse meglio dell’abusato PaO2/FIO2, essendo correlata alla percentuale di tessuto polmonare normalmente aerato (Gattinoni et al. Am Rev Respir Dis 1987; 136:730-6) ed alla driving pressure (vedi post del 28/02/2015). Fa riflettere che la compliance non sia parte degli attuali criteri diagnostici di ARDS, nonostante sappiamo essere uno dato facilmente misurabili al letto del paziente.

Aspetto radiologico ed anatomo-patologico.

L’aspetto radiologico era simile in tutti i pazienti ed evolveva parallelamente al quadro clinico. Si iniziava con l’insorgenza di infiltrati alveolari bilaterali a chiazze (“patchy”) che diventavano confluenti e quindi veri e propri consolidamenti prima della morte. Un quadro radiologico veramente tipico della ARDS, forse più caratteristico, esplicativo e chiaro di quello che ritroviamo negli ultimi criteri di definizione della ARDS, che parlano semplicemente di opacità polmonari bilaterali.

Nei sette pazienti deceduti fu eseguita l’autopsia. L’esame microscopico dei 5 pazienti morti precocemente mostrava atelectasia alveolare, edema ed emorragia interstiziale ed intra-alveolare (ricordiamo questo dettaglio, sarà interessante quando parleremo della terapia). Nei due pazienti morti tardivamente il quadro era caratterizzato da infiammazione e fibrosi interstiziale, era già compresa la possibile evoluzione fibrotica della malattia.

Terapia.

L’unica terapia farmacologica per la quale gli autori hanno avuto la sensazione potesse forse essere efficace in qualche paziente è la terapia steroidea. Le conoscenze attuali non ci portano molto lontano da questa iniziale intuizione.

Ma il capolavoro viene con la strategia di ventilazione. Ricordiamo che siamo cinquant’anni fa, che nessuno fino ad allora aveva mai parlato di ARDS, e che sulla ventilazione meccanica c’erano pochissime idee e confusissime.

Ashbaugh ed i suoi colleghi capirono che la Intermittent Positive Pressure Ventilation (IPPV), cioè la ventilazione meccanica senza PEEP, non era efficace, se non forse in un paziente che veniva ventilato con un sigh ogni 2 minuti (“recovery in this patient may have been partly due to the respirator”). Da notare il volume corrente erogato, mediamente 450 ml, cioè circa 6 ml/kg!

Era stato invece proposta l’efficacia della Continuous Positive Pressure Ventilation (CPPV), cioè la ventilazione meccanica con PEEP di 5-10 cmH2O. La CPPV, provata per la prima volta nel quinto paziente della serie, ha poi sempre dato un notevole miglioramento ossigenativo ed i pazienti che la utilizzavano, se morivano, lo facevano per cause diverse dall’insufficienza respiratoria. Questa scoperta, tutt’ora decisiva nel trattamento dei pazienti con ARDS, da sola meriterebbe la standing ovation. Ma, prima di tributarla, leggiamo le riflessioni di Ashbaugh e colleghi sull’effetto positivo della PEEP: “La base teorica per l’utilizzo della PEEP coincide con la base teorica della perdita di compliance polmonare. Se il surfactant è diminuito, gli alveoli dovrebbero collassare in espirazione quando la pressione di fine espiratozione è a livello atmosferico. Gli alveoli collassati richiedono pressioni più grandi per riaprirsi, spiegando cioè la rilevante perdita di compliance. La PEEP potrebbe teoricamente prevenire il collasso completo e migliorare l’ossigenazione mantenendo la ventilazione alveolare…L’uso della PEEP guadagna solamente tempo: la prognosi resta grave se non si cura con successo la malattia sottostante.

Ovviamente gli autori dell’articolo sanno di non essere giunti ad una conclusione definitiva, ma di aver solamente aperto una strada da verificare (“Questo apparente aumento di sopravvivenza con l’utilizzo della CPPV è incerto per il piccolo numero di pazienti, ma potrebbe diventare significativo quando ci sarà una maggior esperienza”).

Ora finalmente possiamo fare l’applauso. Con soli 12 pazienti studiati con cura gli autori sono arrivati ad intuizioni la cui portata è evidente a ciascuno di noi. Oggi uno studio come questo non sarebbe certamente pubblicato da Lancet nè da alcuna rivista che si ritenga “seria”. Ma la mole di conoscenze che si sono schiuse davanti ai nostri occhi ed alle nostre intelligenze con questo piccolo studio sono superiori a quelle di moltissimi trial randomizzati e controllati multicentrici con migliaia di pazienti pubblicati sull’ultimo numero del New England… Ovviamente le ipotesi richiedono sempre una conferma, è necessario verificare con i dati ciò che si pensa di aver capito. Ma la cultura medica ed il tentativo di capire dovrebbero sempre essere la parte nobile del lavoro, e la verifica delle ipotesi solo l’atto necessario e conclusivo del processo. Per un bel calcio, i mediani dovrebbero essere di supporto ai fuoriclasse …

Un sorriso a tutti gli amici di ventilab.

Ventilab.org è definitivamente sostituito da www. ventilab.it

Come già da tempo preannunciato, l'attività di ventilab proseguirà unicamente su www.ventilab.it . Da questo momento www.ventilab.org ...