Sunday, December 18, 2011

Ventilazione protettiva per i polmoni sani?

In Terapia Intensiva sottoponiamo a ventilazione meccanica molto più spesso pazienti con polmoni sani che con Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS). Come ventilare queste persone? Si deve pensare ad una ventilazione protettiva anche in assenza di ALI/ARDS?

Pubblico molto volentieri le rifllessioni e la proposta pratica di una collega di Torino su come impostare la ventilazione meccanica nei pazienti senza ALI/ARDS.

_°_°_°_°_°_°_°_°_°_°_°_

La ventilazione protettiva è l’impiego di volumi correnti (VT) bassi (al massimo 7 ml/kg di peso ideale) e pressioni di plateau (Pplat) basse (meno di 30 cmH2O) ottenuto con qualsiasi modalità ventilatoria.

E’ dimostrato che pazienti con ARDS o ALI ventilati con ventilazione protettiva hanno mortalità inferiore (1).

Occorre usare la ventilazione protettiva anche con pazienti che non hanno ALI/ARDS?

Studi sperimentali condotti su animali (2) e pazienti con polmoni sani (3) hanno dimostrato che già dopo brevi periodi di ventilazione con VT alti e Pplat alte i polmoni presentano lesioni istologiche, mentre nel liquido del lavaggio bronchiolo-alveolare e nel sangue aumentano i mediatori dell’infiammazione. Il danno aumenta al prolungarsi della ventilazione.

VT alti e Pplat alte danneggiano dunque anche i polmoni sani.

Questo danno polmonare ha reali effetti clinici? ovvero alti VT e alte Pplat causano ALI/ARDS in pazienti con polmoni sani?

Studi di coorte retrospettivi (4), molto usati per indagare rapporti di causalità, hanno diviso i pazienti ammessi in terapia intensiva, senza danno polmonare all’ingresso, in due gruppi: chi ha sviluppato ALI/ARDS durante la degenza e chi no. La ventilazione con alti VT era un fattore di rischio per lo sviluppo di ALI/ARDS.

La teoria del “Multiple hit model” ci spiega perchè non tutti i pazienti ventilati con alti VT e alte Pplat sviluppano ALI/ARDS (5).

Un primo fattore (es. trauma toracico, chirurgia toracica o addominale, trasfusioni multiple, inalazione etc) determina un primo danno polmonare, la ventilazione ad alti VT e alte pressioni aggrava questo danno fino a determinare ALI/ARDS, con l’eventuale concorso di altri fattori (es. sepsi, infezione polmonare).

La ventilazione protettiva è una delle strategie terapeutiche che possiamo impiegare per ridurre le complicanze iatrogene della ventilazione, nonchè per ridurre la mortalità di pazienti con ALI/ARDS.

In pratica

  • Applicare la ventilazione protettiva a tutti i pazienti che necessitino di ventilazione meccanica prolungata (6 ore in letturatura sono già considerate un periodo prolungato!)
  • Tidal volume: 7 ml/Kg peso ideale
  • Frequenza respiratoria iniziale: 15/min
  • Misurare la pressione di plateau mediante pausa di fine inspirazione di 5 sec e controllare che sia inferiore a 30 cmH2O

Alcune osservazioni:

Il calcolo del VT deve essere fatto sulla base del peso ideale, ottenuto con la seguente formula:

Uomini: 50 + 0.91 x (altezza in cm – 152.4)

Donne: 45.5 + 0.91 x (altezza in cm – 152.4)

Un modo semplice ed immediato per fare il calcolo è quello di togliere 100 all’altezza del paziente espressa in cm, si ottiene un valore che poco si discosta da quello ottenuto utilizzando la formula e che consente l’impostazione del ventilatore in tempi più rapidi.

Es. Uomo alto 170 cm:

– peso ideale sec formula: 50 + 0,91 x (170 – 152.4) = 66 Kg -> VT consigliato: 66 X 7 = 460 ml

– peso ideale calcolato in modo approssimativo: 170 – 100 = 70 Kg -> VT consigliato: 70 X 7 = 490ml

  • Osservazione pratica: un volume corrente di 700 ml presuppone che il paziente sia alto almeno 2 metri!
  • Alcuni ventilatori (es. Evita XL) offrono nella schermata di avvio il calcolo del volume corrente secondo la ventilazione protettiva una volta immesso il peso ideale del paziente.
  • E’ importante applicare volumi correnti bassi anche quando le pressioni di plateau sono inferiori a 30 cmH2O. Infatti VT e Pplat influiscono in modo indipendente sulla mortalità (6).
  • A volte in pazienti particolari (es. obesi, ustioni al torace) possono essere accettabili pressioni di plateau più elevate, perchè in realtà non riflettono un reale aumento della pressione transpolmonare (cioè di quello che realmente sta accadendo al polmone), ma solo una riduzione della compliance del torace (7).
  • Considerazioni analoghe valgono per la ventilazione in anestesia generale durante interventi chirurgici.

Bibliografia.

1) The Cochrane Library 2007 issue 2

2) Cilley et al. J Pediatr Surg 1993; 28: 488-493

3) Pinheiro de Oliveira R et al. Critical Care 2010, 14:R39

4) Gajic et al. Int Care Med 2005; 31: 922-926

5) Wolthuis et al. Anesthesiology 2008; 108: 46-54

6) Hager et al. Am J Respir Crit Care Med 2005; 172: 1241-1245

7) Pelosi et al. Curr Opin Crit Care 2011; 17: 1-7

_°_°_°_°_°_°_°_°_°_°_°_

Grazie del contributo, Nadia.

Due domande agli amici di ventilab: come pensi sia giusto ventilare chi ha i polmoni sani? E’ un problema rilevante? La prossima settimana farò le mie considerazioni sull’argomento. Nel frattempo mi piacerebbe sentire i commenti dei lettori.

Un cordiale saluto a tutti.

 

Monday, December 12, 2011

Una nuova pubblicazione sul Monitoraggio grafico

Sta arrivando la notte di S. Lucia che, lo dico per i non bresciani, è la notte in cui i bravi bambini ricevono i doni natalizi. Il suo nome è legato al concetto di “luce” e non potevo presentarvi in altra data che questa sera un nuovo lavoro in pubblicazione su Critical Care [1] che ha suscitato la mia curiosità in quanto costituisce un’inattesa pubblicità per il  nostro corso e per l’approccio alla ventilazione che andiamo proponendo: monitoraggio grafico in piena luce. In sostanza cosa ci rivela questo studio? Afferma che l’analisi delle onde  generate durante la ventilazione, in questo caso non invasiva, ha effetti positivi sui parametri fisiologici nei pazienti COPD e consente di raggiungere obiettivi personalizzati sul paziente.

 

Lo studio multicentrico, prospettico, randomizzato e controllato è stato condotto in cinque terapie intensive intermedie respiratorie, con personale esperto nell’utilizzo della ventilazione non invasiva. Ha arruolato 70 pazienti COPD riacutizzati che venivano inclusi o nel  gruppo “ottimizzato” o in quello “standard”: nel primo il medico poteva vedere il monitoraggio grafico (onde di pressione e di flusso) e prendere decisioni conseguenti, nell’altro il monitor grafico era oscurato. Nel primo gruppo le azioni consistevano nell’individuare e correggere auto trigger, sforzi inefficaci, ottimizzare il ciclaggio espiratorio, individuare e correggere PEEPi. Gli obiettivi dello studio consistevano nel valutare la normalizzazione del pH dopo due ore di ventilazione e, come obiettivo secondario, i cambiamenti nelle variabili fisiologiche e l’esito dei pazienti a 30 giorni. Per valutare la tolleranza alla ventilazione i pazienti venivano intervistati circa la difficoltà inspiratoria ed espiratoria che dovevano indicare con l’ausilio di un analogo visivo (VAS).

Il 51% dei pazienti nel gruppo “ottimizzato” rispetto al 26% di quelli nel gruppo “standard” raggiungevano la normalizzazione del pH  entro le prime due ore di ventilazione (differenza significativa): questa differenza, pur mantenendosi favorevole al primo gruppo, nel periodo successivo non raggiungeva più la significatività.

In letteratura [2] il valore di pH dopo due ore di trattamento è stato correlato con l’insuccesso della NIMV (e necessità di intubazione tracheale): costituisce quindi un parametro fisiologico di forte impatto clinico. Per quanto riguarda gli obiettivi secondari, i pazienti del gruppo “ottimizzato” hanno mostrato nelle prime sei ore una più rapida riduzione statisticamente significativa della PaCO2, l’applicazione di più alti valori di PEEPe e di un trigger inspiratorio più sensibile; il gruppo “ottimizzato” ha presentato una maggiore tolleranza della ventilazione, statisticamente significativa solo in termini di minor attivazione degli allarmi. La sopravvivenza a 30 giorni è stata sovrapponibile nei due gruppi: probabilmente
sarebbe stato necessario un campione molto più consistente per evidenziare eventuali differenze.

Ho voluto citarvi questo lavoro non certo per i risultati che son tutt’altro che clamorosi ma perché è il primo studio che mostra una potenziale efficacia clinica dall’analisi grafica della ventilazione. L’analisi delle onde di pressione e di flusso induce il medico ad usare più alti valori
di PEEPe, un trigger inspiratorio più sensibile, una più veloce pressurizzazione: tutto questo può generare migliore tolleranza da parte del paziente e quindi maggior efficacia della metodica; inoltre permette una più rapida normalizzazione del pH ovvero risultati più pronti e meno incertezza in una fase molto delicata in cui si deve decidere dell’utilizzo o meno dell’intubazione tracheale. In sostanza un medico capace di utilizzare il monitoraggio grafico della ventilazione è in grado di ottenere il massimo dalla modalità di ventilazione impiegata a beneficio del paziente.

  1.  Di Marco F et al. Optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial. Crit Care. 2011 Nov 24;15(6):R283. [Epub ahead of print].
  2. Carratù P et al. Early and late failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute exacerbation. European Journal of Clinical Investigation (2005)35, 404–409.

Monday, December 5, 2011

La pressione resistiva: 3 implicazioni pratiche.

Sicuramente il tubo qui a lato non è percorso da un flusso d’aria. Entrambe le estremità sono in comunicazione con l’ambiente e quindi hanno la stessa pressione (cioè la pressione atmosferica). E senza una differenza di pressione tra i due estremi non può esistere un flusso.

Se aumentiamo la pressione all’estremità prossimale del tubo (dove c’è il raccordo per la Y) si genera un flusso che va dall’estremo prossimale all’estremo distale del tubo (verso la cuffia), sempre aperto alla pressione atmosferica. L’entità del flusso è direttamente proporzionale alla differenza di pressione (dP) tra gli estremi del tubo ed inversamente proporzionale alla resistenza R del tubo: flusso = dP/R.

La differenza di pressione che genera il flusso è la pressione resistiva.

Ammettiamo che nel nostro tubo venga applicata una pressione di 8 cmH2O e che si ottenga un flusso di 1 l.s-1.*

Quanto sarà la pressione a metà del tubo? Possiamo riscrivere l’equazione del flusso (vedi sopra) come dP = flusso x R. Dalla legge di Hagen-Poiseuille sappiamo che R è direttamente proporzionale alla lunghezza del condotto: a metà tubo avremo metà resistenza. Nel nostro esempio, quindi, il dP tra la metà e la fine del tubo sarà la metà del dP totale, cioè 4 cmH2O. Per lo stesso ragionamento possiamo prevedere che la pressione interna al tubo dopo 1/4 della sua lunghezza sia di 6 cmH2O (cioè si sia ridotta di 1/4 del dP). Analogamente dopo 3/4 della lunghezza, la pressione si sarà ridotta di 3/4, sarà cioè di 2 cmH2O. Alla fine del tubo (o per meglio dire dove cessa il flusso che si disperde nell’atmosfera), la pressione è diventata uguale alla pressione atmosferica (figura 1, in alto).

Figura 1

Se il tubo si restringe, per mantenere lo stesso flusso bisogna applicare una pressione più elevata per vincere la resistenza più alta. Ma alla fine del tubo, in entrambi i casi, avremo la stessa pressione. La pressione resistiva è sempre 0 dove non c’è flusso (figura 1, in basso).

Nell’apparato respiratorio non c’è pressione resistiva in due casi:

  1. nelle vie aeree quando non c’è flusso: ad esempio durante le occlusioni di fine inspirazione o fine espirazione o durante un periodo di apnea:
  2. negli alveoli, anche se c’è flusso nelle vie aeree: il movimento di gas per differenza di pressione (cioè il flusso convettivo) di norma si esaurisce nei bronchioli terminali. Nei bronchioli respiratori, nei dotti alveolari e negli alveoli non vi è mai flusso convettivo ed i gas si spostano per differenza di pressione parziale (flusso diffusivo). Gli alveoli sono protetti dalla pressione resistiva.

Tre implicazioni pratiche delle considerazioni fisiologiche che abbiamo finora discusso sono:

  1. durante le manovre di occlusione delle vie aeree, non esiste flusso. Ne consegue che la pressione è uguale in tutti i punti dell’apparato respiratorio e che quindi la pressione che misuriamo nel ventilatore è uguale a quella degli alveoli. Ecco perchè la pressione di plateau, misurata a fine inspirazione, ci serve per guidare la ventilazione protettiva;
  2. la pressione di picco è misurata quando c’è flusso ed è la somma di pressione elastica, pressione resistiva e PEEP totale (vedi post del 24/06/2011). Non ci dà quindi informazioni sulla pressione alveolare perchè questa sarà più bassa in ragione della pressione resistiva necessaria per spingere quel flusso dal ventilatore ai bronchioli terminali. A questo punto è chiaro che se misuriamo la differenza tra pressione di picco e pressione di plateau conosciamo la pressione resistiva.
  3. La pressione resistiva aumenta se aumenta il flusso (dP=flusso x R). Quando vogliamo aumentare il tempo espiratorio (ad esempio nei pazienti con iperinflazione dinamica) dobbiamo ridurre inevitabilmente il tempo inspiratorio, Questo si traduce in aumento del flusso inspiratorio (=volume corrente/tempo inspiratorio). La conseguenza è l’aumento della pressione resistiva che induce un aumento della pressione di picco. Ma se questo è associato ad una riduzione della PEEP intrinseca, la pressione di plateau diminuisce ed i polmoni sono più protetti dal ventilator-induced lung injury (VILI) (figura 2).

Figura 2.

In conclusione, valutiamo sempre l’impatto della ventilazione al netto della pressione resistiva: è facile, basta fare un’occlusione delle vie aeree a fine inspirazione di 3 secondi e leggere la pressione di pausa che viene rilevata.

Un saluto a tutti gli amici di ventilab.

 

*Questo implica che la R del tubo sia di 8 cmH2O.l-1.s : R = dP/flusso -> R = 8 cmH2O / 1 l.s-1

 

Sunday, December 4, 2011

Workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica." a Brescia il 28 gennaio 2012.

Come anticipato nel post del 27 novembre 2011, il workshop “La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica.” si svolgerà il 28 gennaio 2012 a Brescia presso la Fondazione Poliambulanza.

Il programma è il seguente:

Moderatore: Andrea Candiani (Cattedra di Anestesia e Rianimazione, Università degli Studi di Brescia)
– ore 8.45-9.00 registrazione dei partecipanti
– ore 9.00-9.30: Introduzione alla giornata – Achille Bernardini, Dipartimento Emergenza Alta Specialità, Fondazione Poliambulanza, Brescia – Andrea Candiani, Cattedra di Anestesia e Rianimazione, Università degli Studi di Brescia
– ore 9.30-10.00: Considerazioni critiche sull’uso della ventilazione non invasivaGiuseppe Natalini, Terapia Intensiva, Fondazione Poliambulanza, Brescia
– ore 10.00-11.00: La ventilazione non invasiva nel paziente con insufficienza respiratoria acuta ipossiemica – Giuseppe Foti, Neurorianimazione, Lecco
– ore 11.00-11.15: coffee-break
– ore 11.15-12.15: La ventilazione non invasiva nel paziente con insufficienza respiratoria ipercapnica – Michele Vitacca, Pneumologia, Fondazione Maugeri, Lumezzane
– ore 12.15-12.45: Discussione
– ore 12.45-13.00: Conclusioni – Giuseppe Natalini, Terapia Intensiva, Fondazione Poliambulanza, Brescia

Il compito affidato ai relatori è duplice: dovranno 1) discutere criticamente le evidenze della letteratura e, soprattutto, 2) aprire al pubbblico la propria esperienza clinica. Sia il dott. Foti che il dott. Vitacca sono degli esperti che lavorano in prima linea: un’occasione davvero rara di avere la sintesi tra evidenze scientifiche e pratica clinica.

Il dott. Giuseppe Foti, dopo una vita all’Ospedale S. Gerardo di Monza, è da pochi giorni primario della Neurorianimazione dell’Ospedale di Lecco. Ha una qualificata esperienza clinica e scientifica nel trattamento dei pazienti con insufficienza respiratoria acuta, dalla circolazione extracorporea alla ventilazione non-invasiva.

Il dott. Michele Vitacca, anestesista rianimatore e pneumologo, è uno dei massimi esperti internazionali nel trattamento della insufficienza respiratoria cronica con la ventilazione non-invasiva. Usava (e studiava) la ventilazione non-invasiva anche in tempi in cui la ventilazione non-invasiva era una strana metodica vista con diffidenza e scetticismo.

Il mio contributo sarà una premessa all’uso della ventilazione non-invasiva: se ne possono sfruttare i punti di forza solo conoscendone i limiti.

L’iscrizione è gratuita (ma obbligatoria), i posti sono limitati a 200 per la capienza della sala. L’iscrizione può essere fatta online sul sito web della Fondazione Poliambulanza, nella pagina Eventi Formativi (clicca qui per arrivare subito al modulo di iscrizione).

Infine un cordiale ed affettuoso saluto al prof. Giorgio Conti, che non potrà essere dei nostri in questa occasione. Sono sicuro che avremo presto l’occasione di averlo gradito ospite.

Aspetto numerosi tutti gli amici di ventilab.

A presto

Giuseppe Natalini

Sunday, November 27, 2011

Ventilazione a volume controllato o ventilazione a pressione controllata? Quale la migliore?

Spesso mi viene chiesto se è meglio utilizzare la ventilazione a pressione controllata o la ventilazione a volume controllato. Vediamo insieme cosa le differenzia per giungere ad una scelta consapevole.

Premetto che la cosa più importante è avere chiari gli obiettivi da raggiungere con la ventilazione: questi poi si possono raggiungere con qualunque modalità di ventilazione si consosca bene.

Come ben sappiamo, la pressione controllata applica una pressione costante nelle vie aeree per tutta la durata dell’inspirazione. Il risultato è un flusso inspiratorio che inizia con un picco e decresce durante l’inspirazione (fig. 1, a sinistra). Il volume controllato invece genera un flusso costante per tutta la durata dell’inspirazione e per ottenere ciò il ventilatore deve aumentare continuamente la pressione nelle vie aeree (fig. 1, a destra).

Figura 1.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di pressione tra volume controllato e pressione controllata.

Prima conseguenza di questa diversa logica di funzionamento è la differenza nelle pressioni di picco. A volte questo viene presentato come un vantaggio della pressione controllata sul volume controllato, ma lo è davvero?

La pressione di picco è la somma di due pressioni: 1) la pressione che ci serve per generare il flusso più 2) la pressione che espande l’apparato respiratorio.

La pressione che genera il flusso è quella forza che spinge il gas inspirato attraverso tubo tracheale e vie aeree. Essa ha il proprio valore massimo all’inizio della branca inspiratoria e si riduce progressivamente fino ad annullarsi al termine delle vie aeree. Il suo valore dipende dall’entità del flusso e dalle resistenze.

Alla fine della inspirazione la pressione per generare flusso è più elevata in volume controllato che in pressione controllata: infatti in volume controllato abbiamo ancora un flusso più elevato (uguale a quello di tutta la fase inspiratoria) che in pressione controllata, che a fine inspirazione vede il flusso più o meno completamente annullato (fig 1).

La pressione per generare flusso non arriva negli alveoli ma si consuma lungo il tubo tracheale e le vie aeree. Non deve essere considerata come una pressione che può indurre danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) .

Alla fine della inspirazione, a parità di volume corrente, avremo la stessa pressione negli alveoli sia in volume controllato che in pressione controllata. E questa pressione (indipendente dalla modalità di ventilazione) dipende unicamente da elastanza e volume corrente. Questa pressione può essere stimata facendo un’occlusione delle vie aeree alla fine della inspirazione: nella figura 2 vediamo sopvrapposte due curve di volume controllato (PCV) e pressione controllata (PCV) a parità di volume corrente. Si può notare come le pressioni di picco siano diverse tra loro, mentre le pressioni di plateau sono uguali tra di loro. Stesso plateau, stesso stress.

Figura 2.

Quindi pressione controllata e volume controllato hanno, a parità di volume corrente, lo stesso impatto sul danno polmonare, che in realtà è determinato solo da elastanza e volume corrente.  Non lasciamoci trarre in inganno dalla diversità delle pressioni di picco. Si potrebbero fare disquisizioni più approfondite per i polmoni caratterizzati da marcata disomogeneità, ma affronterò l’argomento solo se vedrò che può interessare ai lettori di ventilab.

La pressione controllata fa raggiungere inoltre valori di pressione media delle vie aeree più elevata del volume controllato, a meno che a quest’ultimo non si aggiunga un’opportuna pausa di fine inspirazione. E la pressione media delle vie aeree è correlata all’ossigenazione. Si può quindi dire che in pressione controllata è più semplice ottimizzare pressione media delle vie aeree e ossigenazione.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di flusso tra volume controllato e pressione controllata.

Il volume controllato assicura l’erogazione di un predeterminato un flusso (e quindi un volume corrente), mentre il flusso che si genera in pressione controllata è variabile e dipende dalle variazioni della costante di tempo del paziente (cioè del rapporto tra resistenza ed elastanza). In alcuni casi può essere preferibile garantire un volume corrente costante: pensiamo ad esempio ai pazienti con trauma cranico ed ipertensione intracranica, dove la regolazione della PaCO2 è un obiettivo clinico importante. In altri casi può essere meglio limitare automaticamente le pressioni ed accettare variazioni del volume corrente, come ad esempio nei pazienti con ARDS ed elevate pressioni di plateau (o transpolmonari).

Un’altra differenza tra pressione controllata e volume controllato è la diversa distribuzione del flusso. Nella pressione controllata il flusso è elevato all’inizio dell’inspirazione, mentre nel volume controllato è uniforme per tutta l’inspirazione. Un elevato flusso inspiratorio iniziale favorisce la sincronia tra paziente e ventilatore se il paziente triggera gli atti respiratori. Quindi la pressione controllata ci può semplificare la sincronia paziente-ventilatore e la riduzione del lavoro respiratorio del paziente. Ovviamente anche un’oculata regolazione del volume controllato può raggiungere gli stessi obiettivi, ma sicuramente serve un occhio più esperto per gestire l’interazione paziente-ventilatore durante volume controllato (1,2).

 _°_°_°_°_°_°_°_°_°_°_

Le ventilazioni a pressione controllata a target di volume.

Quasi tutti i ventilatori hanno forme di ventilazione che rientrano in questa categoria: PCV-VG (GE), PRVC o VGRP (Maquet, Siemens), AutoFlow (Draeger), ecc. In pratica sono normalissime ventilazioni a pressione controllata in cui però il ventilatore continua ad adeguare la pressione applicata per raggiungere un volume prefissato. Quindi le impostiamo come un volume controllato (a parte la pausa) ma funzionano come una pressione controllata: pressione inspiratoria costante e flusso inspiratorio decrescente. In maniera molto semplice aggiungiamo alla pressione controllata il vantaggio principale del volume controllato: il volume costante. Ovviamente le pressioni potranno aumentare o diminuire secondo le necessità.

 _°_°_°_°_°_°_°_°_°_°_

Come scegliere tra volume controllato e pressione controllata.

Detto questo, mi sento di fare questa proposta nella scelta delle ventilazioni controllate ed assistite-controllate:

– scegliere di norma una ventilazione a pressione controllata a target di volume (PCV-VG, PRVC o VGRP, AutoFlow, ecc). E’ semplice da impostare ed unisce vantaggi di volume controllato e pressione controllata: garantisce il volume corrente, facilitando sincronia ed ossigenazione grazie al flusso decrescente. A questo punto bisogna solo scegliere il volume corrente ed il I:E giusti…

– quando abbiamo la necessità di limitare la pressione di plateau (esempio siamo già a 30 cmH2O di plateau), utilizzare la pressione controllata. Solitamente impostando PEEP e pressione controllata la cui somma non superi 31-32 cmH2O, ci si garantisce di rimanere sotto i 30 cmH2O di pressione di plateau. Meglio comunque verificare di caso in caso.

Un caro saluto a tutti.

PS: il workshop “La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica” si terrà quasi certamente sabato 28 gennaio 2011. A prestissimo la conferma definitiva.

Bibliografia.

1) Chiumello D et al. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 2002; 20: 925-33

2) Kallet RH et al. Work of breathing during lung-protective ventilation in patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50:1623-31

Sunday, November 20, 2011

Avviso importante: rinviato il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica"

Il workshop “La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica programmato sabato 17 dicembre è rinviato ad altra data.  Al più presto stabiliremo una nuova data e ne daremo comunicazione.

Mi scuso per l’inconveniente, purtroppo dovuto ad un imprevisto grave problema.

Un saluto a tutti.

Sunday, November 13, 2011

Ventilazione meccanica per obiettivi: quando il meglio è nemico del bene.

Quando prendo in carico la cura di una persona, mi pongo sempre degli obiettivi da raggiungere. Avere obiettivi chiari è il primo passo per fare le scelte migliori.

Abbiamo sempre chiari gli obiettivi della ventilazione meccanica?

La ventilazione meccanica ha l’obiettivo di supportare le funzioni dell’apparato respiratorio evitando di fare danni (se possibile).

Le funzioni dell’apparato respiratorio da supportare sono due:

  1. ossigenazione
  2. rimozione di CO2

Ragioniamo sugli obiettivi che dobbiamo avere per ciascuna di queste funzioni.

Ossigenazione.

La domanda è: quanto ossigeno serve ai nostri pazienti? Semplicemente un livello di PaO2 che consenta una buona funzione dei nostri organi e tessuti. Sappiamo che l’ossigeno deve arrivare ai mitocondri. L’ossigeno arriva nei capillari (cioè in prossimità dei mitocondri) grazie alla portata cardiaca ed all’emoglobina. Una volta che l’ossigeno è giunto nei capillari, il passaggio ai mitocondri dipende dalla differenza tra la PO2 nel capillare e nel mitocondrio. La PO2 durante il suo tragitto nel capillare si riduce progressivamente a causa della continua cessione dell’ossigeno ai tessuti: è quindi più alta nel versante arterioso rispetto a quello venoso (e l’entità di questo fenomeno è condizionato dal trasporto di ossigeno) (figura 1).

Figura 1.

La PO2 dei mitocondri varia tra 4 e 23 mmHg, dipendendo dal tipo di tessuto considerato. Ma, oltre alla differenza di PO2 tra capillare e mitocondrio, c’è un altro fattore che condiziona la diffusione dell’ossigeno ai tessuti: la distanza tra capillare e mitocondri delle cellule (1). Proviamo a pensare a come può variare questa distanza in un soggetto sano e nel paziente edematoso. L’edema è una barriera all’ossigenazione cellulare. Esistono evidenze che la quantità di fluidi somministrati (dopo le prime ore di trattamento) e l’entità dei bilanci idrici positivi sono associati a peggiori outcome (2-5).

Per riassumere: L’ossigenazione dei tessuti dipende sia da fattori polmonari (la PaO2) che da fattori non polmonari (portata cardiaca, emoglobina ed edema). Quello che può fare la ventilazione è assicurare una PaO2 sufficiente a saturare l’emoglobina (vedi post del 31 /10/2011) e generare un sufficiente gradiente di PO2 tra capillari e mitocondri. Si ritiene che una PaO2 sopra 55-60 mmHg ed una corrispondente saturazione arteriosa superiore a 88-90% siano più che sufficienti a questo scopo (6). Dobbiamo quindi evitare di “spingere l’acceleratore” sul ventilatore meccanico per avere delle “belle” PaO2. Cosa ce ne facciamo, se le dobbiamo poi pagare con i danni indotti dalla ventilazione meccanica. Dobbiamo anche evitare di considerare il PaO2/FIO2 un obiettivo a breve termine della ventilazione meccanica: esso descrive unicamente il livello di gravità della disfunzione polmonare, non ci dice se stiamo ventilando bene un paziente. Potremmo infatti adottare strategie ventilatorie che migliorano nel breve periodo il PaO2/FIO2, ma che fanno male al paziente. Un esempio? I pazienti con ARDS migliorano nei primi giorni il PaO2/FIO2 se ventilati con 12 ml/kg di volume corrente rispetto a quando ricevono un volume corrente di 6 ml/kg . Sappiamo però tutti come va poi a finire… (6)

Eliminazione di CO2.

Nei pazienti con insufficienza respiratoria ipossiemica (il cui paradigma è l’ALI/ARDS) non abbiamo bisogno di mantenere 40 mmHg di PaCO2 e 7.40 di pH! Il nostro organismo funziona bene (a volte anche meglio, forse) (vedi post del 24/09/2011) anche a valori di PaCO2 un po’ più alti e di pH un po’ più bassi. Nei pazienti con ALI/ARDS, se detestiamo l’acidosi respiratoria, possiamo iniziare a preoccuparci se il pH scende al di sotto dei 7.25 (che corrisponde a circa 60 mmHg di PaCO2 in assenza di alterazioni metaboliche del pH). Potremmo essere anche più tolleranti ed accettare anche pH fino a 7.15 (circa 70 mmHg di PaCO2 senza associate alterazioni metaboliche) o addirittura anche inferiori (7). Con l’eccezione dei pazienti con trauma cranico, shock non responsivo alle catecolamine o con con disfunzione ventricolare destra (8).

Diverso è l’approccio ai pazienti con insufficienza respiratoria ipercapnica (un esempio tipico può essere la riacutizzazione della BPCO) o durante la fase di weaning. Se la PaCO2 elevata è associata ad acidosi respiratoria, abbiamo un segno evidente dell’insufficienza della pompa respiratoria (cioè dell’apparato neuromuscolare che muove i polmoni). In questo caso l’obiettivo è il riposo dei muscoli respiratori esauriti da un eccessivo e prolungato carico di lavoro. Quindi dobbiamo dare una ventilazione che garantisca l’abolizione (o quasi) della ventilazione spontanea del paziente per il tempo strettamente necessario a far riposare i muscoli respiratori. Ancora una volta la normalizzazione PaCO2 non è il nostro obiettivo, ma semmai una conseguenza del nostro trattamento.

In conclusione possiamo affermare che nella maggior parte dei casi non è molto difficile raggiungere i due obiettivi della ventilazione meccanica:

  1. raggiungere una PaO2 di almeno 55-60 mmHg (o una saturazione di 88-90%)
  2. avere un pH maggiore di 7.15-7.25

La vera sfida è ossigenare ed eliminare anidride carbonica senza danneggiare l’apparato respiratorio. Dobbiamo stare alla larga sia dal VILI (ventilator-induced lung injury) che dal VIDD (ventilator-induced diaphragmatic dysfunction), che uccidono molte più persone di ipossiemia ed ipercapnia. Evitare la normalizzazione (o addirittura la perfezione) dell’emogasanalisi è spesso il primo passo per raggiungere anche questi obiettivi. Ma di questo ne riparleremo in altre occasioni…

Un caro saluto al popolo di ventilab, una tribù di circa tremila appassionati di ventilazione.

Bibliografia

1) Lumb AB. Nunn’s Applied Respiratory Physiology. Chapter 11: Oxygen, pp. 179-216. Churchill Livingstone, 7th edition (2010).

2) Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128:3098-108

3) Upadya A et al. Fluid balance and weaning outcomes. Intensive Care Med 2005; 31:1643-7

4) Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75

5) Stewart RM et al. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg 2009; 208:725-35

6) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

7) Hickling KG et al. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16:372-7

8) Mekontso Dessap A et  al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 2009; 35:1850-8

 

Ventilab.org è definitivamente sostituito da www. ventilab.it

Come già da tempo preannunciato, l'attività di ventilab proseguirà unicamente su www.ventilab.it . Da questo momento www.ventilab.org ...