Saturday, August 3, 2013

Ipercapnia e ARDS: quando accettarla, quando temerla.

Dopo l’assenza di luglio su ventilab, eccomi di nuovo qui per parlare di Marco, un quarantenne con ARDS moderata (PaO2/FIO2 tra 100 e 200) [1] dovuta ad una polmonite comunitaria, senza insufficienza cardiocircolatoria nè altre insufficienze d’organo. Marco è in ventilazione meccanica controllata con 450 ml di volume corrente, 28/min di frequenza respiratoria e 10 cmH2O di PEEP. E’ alto 175 cm, di conseguenza il suo peso ideale è 71 kg (puoi trovare le formule per calcolare il peso ideale nel post del 18/12/2011): il volume corrente risulta quindi essere circa 6 ml/kg di peso ideale. La PEEP è stata impostata a 10 cmH2O perchè questo valore, dopo una manovra di reclutamento, garantisce la ventilazione con la minor driving pressure (vedi post del 10/04/2011). Con questa impostazione abbiamo una pressione di plateau di 27 cmH2O (durante la scelta della PEEP è stato visto che a livelli di insufflazione più alti si iniziano ad apprezzare i segni di uno stress index > 1).

Problema: con questa impostazione, ragionevole dal punto di vista della ventilazione protettiva, la PaCO2 è 70 mmHg ed il pH 7.21. Che fare?

La prima cosa da fare è chiedersi se questo problema è davvero un problema. A mio parere l’ipercapnia è spesso vissuta come un problema per abitudine e tradizione. Molte volte ho visto darsi da fare per aumentare le vanetilazione quando la PaCO2 è 50 mmHg, ma accettare tranquillamente PaCO2 di 30 mmHg. Perchè? In fondo in entrambi i casi la deviazione dal valore normale è di 10 mmHg. Peraltro, sappiamo bene che è molto più innocuo un aumento della PaCO2 che una sua riduzione della stessa entità: prova a pensare alle possibili conseguenze di un aumento di 20 mmHg di PaCO2 (cioè PaCO2 = 60 mmHg) ed a quelli di una riduzione di 20 mmHg (cioè PaCO2 = 20 mmHg): penso non ci siano dubbi su quale delle due condizioni sia accettabile e quale no.

L’enfasi sulla PaCO2 come guida della ventilazione dipende anche dal fatto che è un numero facile. Vuoi mettere quando è facile regolare la ventilazione sul numerino dell’emogasanalisi rispetto ad una impostazione della ventilazione su pressione di plateau, driving pressure, pressione transpolmonare,ecc… Purtroppo però non sempre la strada più semplice porta nel posto migliore..

Torniamo al caso di Marco. Che problemi possono dargli la PaCO2 di 70 mmHg ed il pH di 7.21? Esaminiamo brevemente gli effetti fisiologici dell’ipercapnia acuta che possono avere un impatto su Mario:

aumento della portata cardiaca. Esistono numerose evidenze che documentano che l’ipercapnia aumenta lo portata cardiaca [2,3]. Questo può avere effetti sfavorevoli? Penso proprio di no. Il nostro gruppo ha evidenziato che la ventilazione con 6 ml/kg di volume corrente, rispetto ai 12 ml/kg, aumenta portata cardiaca e trasporto di ossigeno nella ARDS e che questo effetto è principalmente dovuto all’aumento della PaCO2 e non tanto alla riduzione di volume corrente e pressioni intratoraciche [4]. Per concludere, per questo aspetto Marco può stare tranquillo con i suoi 70 mmHg di PaCO2.

vasocostrizione polmonare. A livello della circolazione polmonare l’ipercapnia favorisce la vasocostrizione ipossica: quindi può migliorare l’accoppiamento ventilazione-perfusione al prezzo dell’aumento delle resistenze vascolari polmonari [2-3]. Le conseguenze possono essere una miglior ossigenazione ed un maggior postcarico del ventricolo destro. Quest’ultimo aspetto può diventare molto importante nei pazienti con scompenso del ventricolo destro (che a volte è presente nei pazienti con ARDS) e contribuire a peggiorarne l’insufficienza cardiocircolatoria [5]. Marco ha un buon compenso cardiocircolatorio e non abbiamo quindi motivo di sospettare uno scompenso destro. Anche da questo punto di vista per lui l’ipercapnia non è un problema.

risposta immunitaria: l’ipercapnia sembra protettiva nella risposta sistemica alla sepsi e nelle prime fasi della sepsi secondaria a polmonite. Potrebbe invece peggiorare il danno polmonare nelle polmoniti di lunga durata [6]. Marco è nella fase iniziale della polmonite, l’ipercapnia può essere più vantaggio che un problema.

disfunzione diaframmatica: l’acidosi respiratoria ipercapnica riduce la disfunzione diaframmatica indotta dalla ventilazione (ventilation-induced diaphragmatic dysfunction, VIDD) che si sviluppa durante ventilazione controllata [7]. Per Marco l’ipercapnia potrebbe essere un investimento in vista dell’inizio della fase di svezzamento che potrebbe iniziare (se sarà fortunato) tra qualche giorno.

Alla luce di quanto abbiamo visto, come procedere? Penso che l’unica correzione ragionevole dell’impostazione della ventilazione potrebbe essere forse essere un lieve aumento della frequenza respiratoria, consapevoli che frequenze troppo elevate possono avere di per sè un impatto negativo sul danno polmonare [8,9]. Ed accettare, in queste condizioni, l’ipercapnia che deriva da una buona impostazione della ventilazione. Ricordiamo che l’ipercapnia si associa ad un miglioramento della sopravvivenza anche quando si ventila “male” (con 12 ml/kg di volume corrente)…[10].

Possiamo sintetizzare quanto detto nel seguente modo. Nei pazienti con ARDS:

– l’impostazione della ventilazione meccanica deve essere fatta sulla base dei principi della ventilazione protettiva, che nella loro formulazione più semplice prevedono il volume corrente di 6 ml/kg di peso ideale (o meno se la pressione di plateau arriva a 30 cmH2O) e PEEP (meglio se scelta per ridurre la driving pressure);

– se il risultato di questo è l’ipercapnia dobbiamo distinguere due situazioni:

1) l’ipercapnia è una nemica da combattere: ad esempio nei casi di ipertensione endocranica, scompenso cardiaco destro, shock con necessità di alti dosaggi di farmaci vasoattivi, PaO2 < 55-60 mmHg. In questi casi dobbiamo approfondire lo studio della meccanica respiratoria con la pressione esofagea e considerare precocemente la rimozione extracorporea di CO2 o l’ossigenazione extracorporea. La ventilazione protettiva NON SI TOCCA.

2) l’ipercapnia può divenire un’alleata: tutti i casi in cui l’ipercapnia non produce effetti negativi evidenti (cioè in assenza delle condizioni descritte al punto precedente).

L’ipercapnia ci chiede sempre un ragionamento, prima di accettarla o rifiutarla.

Buon agosto ed un sorriso a tutti gli amici di ventilab.

Bibliografia.
1] The ARDS Definition Task Force. Acute Respiratory Distress Syndrome. JAMA 2012; 307:2526-33
2] Curley G et al. Bench-to-bedside review: Carbon dioxide.
 Crit Care 2010; 14:220
3] Ijland MM et al. Bench-to-bedside review: Hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care 2010; 14:237
4] Natalini G et al. Cardiac index and oxygen delivery during low and high tidal volume ventilation strategies in patients with acute respiratory distress syndrome: a crossover randomized clinical trial. Crit Care 2013, 17:R146
5] Mekontso Dessap A et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 2009; 35:1850-8
6]  Curley G et al. Can ‘permissive’ hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit Care 2011; 15:212
7] Jung B at al. Moderate and prolonged hypercapnic acidosis may protect against ventilator-induced diaphragmatic dysfunction in healthy piglet: an in vivo study. Crit Care 2013, 17:R15
8] Hotchkiss JR et al. Effects of decreased respiratory frequency on Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2000; 161:463–468
9] Vaporidi K et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med 2008; 36:1277-83
10] Kregenow DA et al. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 2006; 34:1-7  

Thursday, July 25, 2013

UN INTERESSANTE CASO DI INTERAZIONE TRA VENTILAZIONE MECCANICA ED EMODINAMICA Parte 1

Quando la necessità di ventilazione meccanica si prolunga oltre i sette – dieci giorni è consuetudine sottoporre i pazienti a tracheotomia percutanea. Questo consente di ridurre le complicanze a distanza legate al permanere tra le corde del tubo tracheale, facilita il raggiungimento del respiro spontaneo da parte del paziente, consente una migliore igiene orale e un confort in genere superiore per il paziente.

Nella nostra terapia intensiva utilizziamo, al letto del paziente, due tecniche tracheotomiche percutanee: Ciaglia monodilatatore e Fantoni. Utilizziamo la Ciaglia in caso di disfagia e/o danno neurologico, e posizioniamo una cannula con aspirazione sottoglottica per poter rimuovere le secrezioni che si raccolgono tra il piano cordale e la cuffia; questo provvedimento è riconosciuto efficace, quando applicato insieme ad altri, nella prevenzione delle polmoniti associate alla ventilazione. Nel caso di questa paziente si è deciso di adottare la tecnica di Fantoni.

La tecnica

La tracheotomia con tecnica di Fantoni viene definita translaringea per sottolineare una sua particolarità.

Il paziente viene intubato con un tubo rigido (tracheoscopio) e, sotto controllo fibroscopico, si procede a puntura della trachea. Attraverso l’ago si introduce un filo guida che risale dentro il tubo e viene recuperato dall’alto. A questo punto, per consentire il passaggio translaringeo della cannula, è necessario sostituire il tubo rigido con uno di calibro ridotto (4 ID) la cui cuffia deve posizionarsi nettamente più distale rispetto al punto prescelto per l’inserimento della cannula. Si fissa la cannula al filo guida, si arrotola intorno ad un manubrio il filo guida che fuoriesce dal collo, si esercita una trazione sul filo impugnando il manubrio e con una contropressione sulla trachea, fino a far fuoriuscire la cannula dal collo. Quindi si posiziona correttamente la cannula aiutandosi con un mandrino rigido. Si controlla il corretto posizionamento con il fibroscopio e si rimuove, a questo punto, il tubo di piccolo diametro prima di connettere il ventilatore alla cannula. Questa è l’unica tecnica di tracheotomia percutanea in cui la cannula viene posizionata per via translaringea ed in cui sia necessario sostituire il tubo utilizzato all’inizio della procedura per consentire alla cannula di passare dalla bocca alla trachea.

In entrambe le tecniche tracheotomiche l’impostazione del ventilatore prevede ventilazione in volume controllato con FiO2 = 1, e livelli molto alti degli allarmi di “Pressione di picco” del ventilatore per poter erogare il volume corrente impostato. Infatti a causa della presenza del fibroscopio che riduce il lume del tubo o a causa del piccolo diametro del tubo inserito nella seconda fase della metodica di Fantoni, si raggiungono elevati valori di pressioni picco come conseguenza dell’aumento delle resistenze al flusso inspiratorio.

 

Il caso

TA, 75 anni, ricoverata per emorragia del tronco encefalico; per il persistere di grave danno neurologico e la necessità di assicurare autonomia del respiro e protezione delle vie aeree, viene sottoposta a procedura di tracheotomia percutanea. Viene posta indicazione a tecnica di Fantoni.

Dopo l’inizio dell’anestesia generale endovenosa la paziente viene posizionata per la tracheotomia e intubata con il tubo rigido. Le impostazioni del ventilatore sono 500 ml di volume corrente per 15 atti/minuto con un rapporto I:E di 1:2, PEEP di 5 cmH2O.

Nella foto (ventilazione durante fibroscopia) notate nei parametri d’impostazione (quelli in basso) la FiO2 = 1 e il limite della pressione di picco a 100 cmH2O, nella parte destra del monitor le pressioni di picco alte con normali pressioni di plateau.


Una volta recuperato il filo guida, il tracheoscopio rigido viene rimosso e posizionato il tubo di piccolo diametro mantenendo le precedenti impostazioni della ventilazione. Nel giro di pochi minuti compare bradicardia progressiva e ipotensione con desaturazione periferica. Dopo i primi attimi d’interrogativi è stato preso un semplice provvedimento … (continua)

Sunday, July 14, 2013

Sedazione e asincronia

La sedazione in terapia intensiva è un argomento molto dibattuto, specie negli ultimi 15 anni, da quando si sono andate accumulando in letteratura evidenze riguardanti gli effetti sfavorevoli della sedazione profonda in termini di morbilità (durata della ventilazione meccanica, durata della degenza in terapia intensiva e in ospedale, incidenza di svariate complicanze della terapia intensiva)1 e potenzialmente anche di mortalità dei pazienti,2 con conseguente aumento dei costi delle cure (vedi post del 28 febbraio 2010).

Anche l’asincronia tra paziente e ventilatore è stata associata a maggior durata della ventilazione meccanica e a minore probabilità di successo del weaning.3,4

Pur al di là dei casi in cui la sedazione e la ventilazione controllata siano assolutamente necessarie per motivi clinici, i medici dichiarano di somministrare comunemente sedativi allo scopo di facilitare l’adattamento del paziente alla ventilazione meccanica e migliorare la sincronia tra paziente e ventilatore.5,6

Sedare i pazienti per migliorare l’interazione è una pratica sempre opportuna?

C’è da dubitarne, e infatti un paio di recenti studi osservazionali hanno fornito alcuni interessanti risultati.

Gli Autori del primo studio6 hanno esaminato pazienti ventilati in SIMV+PS, PSV e PCV. Il tasso di asincronie registrato è stato elevato (11% circa del totale degli atti respiratori) e le asincronie di gran lunga più comuni (88% circa) sono risultate gli sforzi inspiratori inefficaci (figura 1). Altre asincronie rilevate con minore frequenza sono state i ciclaggi anticipati, i doppi triggering e i ciclaggi ritardati. Definizioni e descrizioni di queste asincronie sono disponibili in letteratura3 e più volte sono apparsi su www.ventilab.org post e commenti a riguardo.

Lo studio ha rivelato che il tasso di sforzi inspiratori inefficaci (cui l’analisi è stata limitata per ragioni statistiche) era pari a zero nei pazienti svegli e calmi (RASS=zero) ma aumentava linearmente con l’aumento della profondità dello stato di sedazione, fino ad attestarsi intorno al 15% di tutti gli atti respiratori nei pazienti non risvegliabili (RASS=-5); inoltre era superiore nei pazienti comatosi rispetto ai pazienti svegli o in quelli che presentavano delirium. C’è da notare che la quantità di sedativi somministrati nelle 24 ore precedenti l’osservazione non correlava con il tasso di asincronia, sebbene non risulti che il dosaggio dei sedativi sia stato modulato sulla base del livello di sedazione ottenuto.
Lo studio presenta numerosi altri limiti, tuttavia la correlazione tra livello di sedazione e asincronia merita di essere ulteriormente indagata. Gli Autori ipotizzabo che l’aumento degli sforzi inspiratori inefficaci possa essere imputabile al minore sforzo muscolare e quindi al minore flusso inspiratorio generato dai pazienti maggiormente sedati.

Il secondo studio7 è stato condotto su un campione di pazienti ventilati in ACV (volume assistito-controllato) con un volume corrente di 6,7 ml/kg di peso ideale. Il tasso di asincronie riscontrato è stato elevatissimo: il 44 (27-87) % degli atti respiratori erano costituiti da doppi triggering (detti anche in inglese breath-stacking; figura 2). Bisogna rimarcare che il volume corrente insufflato in caso di doppio triggering risulta di regola superiore (fino al doppio!) rispetto al volume corrente impostato: si tratta pertanto di un fenomeno potenzialmente pericoloso, specialmente in particolari categorie di pazienti (es. ARDS, ma non solo). Gli autori hanno voluto verificare quali trattamenti venivano messi in atto dallo staff curante e qual’era l’efficacia di quei trattamenti.

I comportamenti osservati sono stati tre: nessun intervento, aumento della sedazione o modifica delle impostazioni del ventilatore (passaggio a PSV o prolungamento del tempo inspiratorio in ACV). Entrambi gli interventi si sono rivelati efficaci nel ridurre il tasso di asincronia rispetto a nessun intervento (figura 3) ma la modifica delle impostazioni del ventilatore è stata nettamente più efficace rispetto all’aumento della sedazione (figura 4).

 

Le conclusioni che mi sento di proporre agli amici di ventilab sono le seguenti:

– sebbene non esistano a oggi prove definitive che le asincronie tra paziente e ventilatore determinino di per sé effetti negativi sugli esiti clinici rilevanti, è bene acquisire la capacità di riconoscerle attraverso quel prezioso strumento che è il monitoraggio grafico del ventilatore;

– dal momento che protocolli e strategie finalizzate alla “ottimizzazione” (leggi alla riduzione) dell’uso dei sedativi si sono rivelati vantaggiosi per i pazienti, dovremmo tendere a risolvere i problemi di asincronia modificando opportunamente le impostazioni del ventilatore e riservare l’uso dei sedativi solo ai casi di assoluta necessità.

Un caro saluto a tutti, a chi è in vacanza e a chi è ancora al lavoro. A presto.

 

Bibliografia

1. Schweickert WD et al. Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med 2004; 32: 1272–76

2. McGrane S. et al. Sedation in the Intensive Care Unit. Minerva Anestesiol 2012; 78:369-80

3. Thille AW et al. Patient-ventilator asynchrony during mechanical ventilation: Prevalence and risk factors. Intensive Care Med 2006; 32:1515–1522.

4. Chao DC et al. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997; 112:1592–1599

5. Rhoney DH et al. National survey of the use of sedating drugs, neuromuscular blocking, and reversal agents in the intensive care unit. J Intensive Care Med 2003; 18:139–145

6. de Wit M et al. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009; 24: 74–80

7. Chanques G et al. Impact of ventilator adjustment and sedation–analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013 Jun 18; 41 [Epub ahead of print] DOI: 10.1097/CCM.0b013e31828c2d7a

Friday, June 28, 2013

MIP/NIF nello svezzamento (weaning) dalla ventilazione meccanica: la forza ed il carico.

Come promesso ad alcuni amici di ventilab, ecco il post sulla Maximun Inspiratory Pressure (MIP) (o Negative Inspiratory Force, NIF). Cosa sono, a cosa servono? Per rispondere a queste domande, commentiamo insieme il caso di Piero.

Piero è un uomo di 78 ricoverato per una riacutizzazione postoperatoria di BPCO. E’ trachetomizzato ed ha difficoltà di svezzamento dalla ventilazione meccanica. Quando è deconnesso dal ventilatore, nel volgere di poche ore manifesta dispnea e respiro rapido e superficiale. Un quadro clinico che siamo abituati a vedere relativamente spesso nei nostri pazienti. Perchè Piero non riesce a conquistare il weaning dalla ventilazione meccanica?

Sappiamo che la dipendenza dalla ventilazione meccanica può essere ricondotta principalmente a due cause: un elevato carico o una ridotta forza dei muscoli respiratori.

Se riusciremo a capire quale, tra questi due, sia il problema principale per Piero, potremo indirizzare i nostri sforzi verso la vera cura del problema.

Per esaminare la forza dei muscoli respiratori possiamo misurare la MIP. La MIP è la misurazione della variazione di pressione generata dai muscoli respiratori durante un’inspirazione massimale contro una via aerea chiusa. Nei pazienti intubati o tracheotomizzati (come Piero) si deve occludere la via aerea a fine espirazione e far eseguire al paziente l’inspirazione più profonda possibile che è in grado di fare. La variazione della pressione nelle vie aeree è la nostra MIP. Alcuni ventilatori meccanici hanno ormai l’opzione per farlo automaticamente, altrimenti è possibile eseguire un’occlusione delle vie aeree un attimo prima dell’inizio dell’inspirazione massimale, congelare la traccia di pressione delle vie aeree durante la manovra e successivamente analizzarla. Il paziente deve essere istruito su ciò che deve fare e mentre esegue la manovra deve essere guidato ed incentivato a farla bene. E’ raccomandabile eseguire 3-5 manovre ed utilizzare la più grande variazione di pressione come valore di MIP. Nei pazienti non collaboranti è stato suggerito di occludere le vie aeree (con una valvola unidirezionale) per 20-25 secondi consecutivi e rilevare la massima variazione di pressione nelle vie aeree.

Noi abbiamo misurato la MIP a Piero, come facciamo spesso nei pazienti con weaning dalla ventilazione meccanica particolarmente impegnativo. Gli abbiamo spiegato la manovra e gliela abbiamo fatta eseguire tre volte. Abbiamo messo Piero in CPAP a 0 cmH2O (cioè l’abbiamo lasciato collegato al ventilatore senza alcuna pressione positiva) ed abbiamo eseguito l’occlusione delle vie aeree a fine espirazione. Contemporaneamente abbiamo registrato la pressione delle vie aeree. Ecco il risultato:

Piero è stato capace di ridurre la propria pressione nelle vie aeree al massimo di 30 cmH2O durante l’occlusione delle vie aeree. Che significato ha una MIP di 30 cmH2O? Piero appare essere un paziente relativamente debole, ma questa non sembra essere l’unica causa del fallimento del weaning. Infatti  la MIP “normale” per Piero dovrebbe essere nettamente superiore (tra 50 e 95 cmH2O, vedi nota), ma la debolezza muscolare diventa di per sè causa di fallimento dello svezzamento dalla ventilazione meccanica se la MIP è inferiore a 20 cmH2O.

La MIP quindi ci ha dato un’informazione utile ma, in questo caso, insufficiente per inquadrare il problema. Adesso dobbiamo capire quanto è il carico dei suoi muscoli respiratori, in altre parole quanto “costa” fare un respiro. Quindi abbiamo misurato la pressione esofagea ed ecco la risposta:

Durante un normale ciclo respiratorio la pressione esofagea si riduce mediamente di circa 16 cmH2O per ogni inspirazione. Nella figura qui sopra vediamo riprodotta la traccia durante tre inspirazioni consecutive: ogni riduzione della pressione corrisponde all’entità della pressione generata dai muscoli respiratori durante la normale respirazione.

Adesso conosciamo i due fattori in gioco: carico e forza dei muscoli respiratori di Piero. Il carico è di circa 16 cmH2Oe la forza di 30 cmH2O. In ogni inspirazione Piero deve utilizzare più della metà della forza massima che è capace di sviluppare: uno sforzo insostenibile. Si ritiene infatti che uno la respirazione spontanea non possa essere mantenuta a lungo quando il rapporto tra carico (=variazione di pressione esofagea durante la normale respirazione) e forza (=MIP) è superiore a 0.2, cioè quando si utilizza per ogni respiro più del 20% della propria forza massima.

Possiamo quindi affermare che Piero, pur non avendo una debolezza estrema (la MIP è > 20 cmH2O ), deve sostenere un lavoro troppo elevato per le sue forze. Abbiamo misurato la PEEP intrinseca di Piero ed abbiamo visto che è di 8 cmH2: in ogni respiro, metà dello sforzo è speso per annullare la PEEP intrinseca.

Ora abbiamo tutti gli elementi per orientare consapevolmente i nostri sforzi per  svezzare Piero dalla ventilazione meccanica. In primis cercare di ridurre la PEEP intrinseca che si genera durante la respirazione spontanea (in questo caso non ci interessa combattere la PEEPi durante ventilazione meccanica): 1) massimizzare la broncodilatazione; 2) ridurre frequenza respiratoria e ventilazione minuto spontanea: ridurre la produzione di CO2 (corretto apporto nutrizionale e controllo della ipertermia), eventuale saltuario utilizzo di oppioidi durante episodi di tachipnea che non si risolvono rapidamente; 3) ridurre la flow limitation: mantenimento della posizione seduta.

Sarà poi anche importante comunque aumentare la forza dei muscoli respiratori di Piero. Per fare questo, a mio modo di vedere, il fattore più importante è il corretta modulazione della assistenza ventilatoria, con l’obiettivo di evitare sia l’affaticamento costante che il ridotto utilizzo dei muscoli respiratori (eccessiva assistenza e, peggio, autociclaggio). Quindi un corretto apporto nutrizionale (calorie, proteine, calcio, fosforo). E probabilmente anche esercizi quotidiani di respirazione contro un carico soglia. Ed il mantenimento della posizione seduta: anche il diaframma ha bisogno di punti di appoggio.

Non abbiamo certamente già risolto i problemi del nostro Piero, ma sicuramente sappiamo molto di più di della semplice constatazione del fallimento del weaning ed abbiamo creato una prospettiva di cura personalizzata.

Per concludere:

1) la MIP/NIF può esserci utile nella pratica clinica nei casi di svezzamento difficile;

2) se rileviamo un valore di MIP inferiore  a 20 cmH2O, il problema principale è la debolezza dei muscoli respiratori: bisogna agire principalmente su questo (per quanto possibile);

3) se la MIP è, come spesso accade, tra 20 e 50 cmH2O, diventa utile valutare il carico, cioè la variazione di pressione esofagea durante la normale ventilazione. Un rapporto (variazione normale pressione esofagea)/MIP superiore a 0.2 significa carico troppo elevato per le risorse del paziente.

Un sorriso a tutti gli amici di ventilab (sperando che torni il bel tempo…)

Nota. Il range di MIP normale può essere così calcolato: nei maschi 126 – 1.028*età + 0.343*peso in kg+ 22.4; nelle femmine 171 – 0.694*età+ 0.861*peso in kg- 0.743*altezza in cm + 18.5

Bibliografia

– ATS/ERS Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med 2002; 166: 518-624
– Cader SA et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. J Physiother 2010; 56:171-7
– Harik-Khan RI et al. Determinants of maximal inspiratory pressure: the Baltimore Longitudinal Study of Aging. Am J Respir Crit Care Med 1998; 158:1459-64
– Martin AD et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011; 15:R84
– Moxham J et al. Assessment of respiratory muscle strength in the Intensive Care Unit. Eur Respir J 1994; 7: 2057-61
– Truwit JD at al. Validation of a technique to assess maximal inspiratory pressure in poorly cooperative patients. Chest 1992; 102;1216-9

Tuesday, June 4, 2013

Interazione ventilatore-paziente in ventilazione non invasiva

Durante la ventilazione meccanica la sincronia tra l’eventuale attività spontanea del paziente e l’azione prodotta dal ventilatore rappresenta un fattore importante nel determinare il successo del trattamento. Nell’ambito della ventilazione non invasiva (NIV) ciò è particolarmente vero, dal momento che la sincronia può condizionare, oltre che l’efficacia, anche la tollerabilità della tecnica da parte del paziente[1].

Per di più nel trattamento dell’insufficienza respiratoria acuta mediante NIV dovremmo essere in grado di ottimizzare rapidamente la sincronia e sfruttare al massimo le potenzialità della metodica, perché sappiamo che in caso di inefficacia il ritardo nel passaggio alla ventilazione invasiva peggiora la mortalità (vedi post del 15/07/2011 e del 06/10/2012).

Rispetto alla ventilazione invasiva, l’interazione ventilatore-paziente in NIV è complicata da:

  1. tipo di interfaccia paziente;

  2. presenza di perdite aeree (intenzionali e non intenzionali) che si verificano a livello dell’interfaccia paziente.

a) A proposito del tipo di interfaccia, limitando il discorso alle soluzioni più utilizzate nei reparti intensivi e sub-intensivi (maschere e caschi), va detto che in generale l’utilizzo del casco in NIV è gravato rispetto alla maschera oro-nasale da un maggior tasso di asincronie, perchè la parete compliante e l’elevato volume interno di gas comprimibile attutiscono le variazioni di pressione e di flusso all’interno del circuito. Ne risultano prevalentemente ritardi nel triggering e fenomeni di auto-triggering dell’atto assistito dalla macchina[2].

b) Se il casco o la maschera non aderiscono bene alla superficie del collo o del viso, le perdite aeree non intenzionali possono determinare marcate asincronie. In particolare, le perdite aeree in fase espiratoria possono essere interpretate dal ventilatore come sforzi inspiratori da parte del paziente e causare auto-triggering dell’atto assistito; d’altra parte l’algoritmo di compensazione delle perdite può far sì che la macchina non riesca a differenziare gli sforzi inspiratori del paziente dalle perdite aeree e si producano quindi sforzi inspiratori inefficaci. In fase inspiratoria invece la perdita aerea può simulare una inspirazione protratta nel tempo e causare un ritardo nel ciclaggio dall’inspirazione all’espirazione[3].

La quantità di asincronia indotta dipende in tutti questi casi sia dall’entità delle perdite, sia dalla capacità del ventilatore di compensarle; di converso un elevato livello di supporto pressorio incrementa l’entità delle perdite[3].

Ricordiamoci poi che l’inadeguatezza delle impostazioni dei parametri ventilatori da parte di noi operatori può sia essere l’unico motivo dell’asincronia riscontrata (analogamente a quanto osservabile in ventilazione invasiva), sia sommarsi alle problematiche specifiche della NIV. In casi limite il paziente può ritrovarsi a respirare in totale controfase rispetto all’assistenza ventilatoria!

Le principali asincronie osservate durante NIV applicata mediante maschera facciale[4] sono:

  • sforzi inspiratori inefficaci (figura 1): come visto in precedenza sono associati all’entità delle perdite e, analogamente a quanto accade in ventilazione invasiva, sono stati riportati più frequentemente in pazienti affetti da patologia polmonare ostruttiva, probabilmente in relazione alla presenza di auto-PEEP (vedi post del 08/05/2012);

  • auto-triggering: associati anch’essi all’entità delle perdite ma certamente correlati anche alla sensibilità e al tipo di trigger oltre che alle caratteristiche specifiche del ventilatore in uso (vedi post del 27/01/2013);

  • doppio triggering (figura 2): fenomeno potenzialmente legato a un insufficiente livello di pressione di supporto associata o meno a una insufficiente durata del tempo inspiratorio, in presenza di uno sforzo inspiratorio vigoroso o sostenuto;

  • ciclaggi espiratori ritardati (figura 1 e 3): sono correlati, come detto, all’entità delle perdite aeree e forse favoriti dalla presenza di patologia polmonare ostruttiva.

Lo spazio disponibile per questo post è quasi esaurito. Per una descrizione più dettagliata e per il trattamento specifico di ciascun tipo di asincronia rimando gli amici di ventilab ai contributi precedentemente pubblicati e ai prossimi che certamente compariranno sul nostro sito.

Vengo dunque alle conclusioni.

1) Anche in corso di NIV poniamo grande attenzione all’interazione ventilatore-paziente:

  • guardiamo e tocchiamo il paziente: rivalutiamo di frequente i movimenti del torace e dell’addome, accertiamoci che si espandano entrambi in concomitanza con l’insufflazione meccanica, controlliamo che i segni di distress respiratorio si riducano rapidamente entro limiti accettabili (se indispensabile, una minima e temporanea sedazione può a mio giudizio essere considerata);
  • guardiamo e tocchiamo il ventilatore: controlliamo che non compaiano sul monitoraggio grafico i segni dell’asincronia descritti in precedenza né segni di elevate perdite aeree, ottimizziamo le impostazioni del ventilatore in modo da ottenere una adeguata riduzione del lavoro respiratorio del paziente e un adeguato ripristino dei volumi polmonari;
  • guardiamo e tocchiamo l’interfaccia: scegliamo il giusto tipo di presidio (può essere una buona regola di partenza riservare l’uso del casco alla CPAP e preferire la maschera per fare NIV e verifichiamone frequentemente il corretto posizionamento al fine di minimizzare le perdite aeree, pur cercando di limitare i possibili danni da decubito.

 

2) Consideriamo precocemente il passaggio alla ventilazione invasiva tutte le volte che non riusciamo a ottenere una sincronia soddisfacente e il miglioramento delle condizioni del paziente in termini di riduzione della fatica, di adeguatezza del pattern di ventilazione (frequenza respiratoria e volume corrente), di efficienza degli scambi gassosi.

Grazie per l’attenzione e a presto.

P.S. Il post su MIP e NIF promesso da Beppe è in corso di preparazione, per leggerlo dovremo pazientare ancora un paio di settimane.

Riferimenti bibliografici

  1. Carlucci A, Richard J, Wysocki M, Lepage E, Brochard L. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 2001; 163:874–880

  2. Pisani L, Carlucci A, Nava S. Interfaces for noninvasive mechanical ventilation: technical aspects and efficiency. Minerva Anestesiol 2012; 78:1154-61

  3. Schettino P, Tucci R, Sousa R, Barbas V, Amato P, Carvalho R. Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study. Intensive Care Med 2001; 27:1887-91

  4. Vignaux L, Vargas F, Roeseler J, Tassaux D, payday 2 hacks Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 2009; 35:840-6

Saturday, May 25, 2013

ARDS e posizione prona: ecco cosa c'è di nuovo.

La pronazione (cioè mettere a pancia in giù) è da anni una procedura utilizzata nei pazienti con ARDS. Da tanti anni è noto che la pronazione migliora l’ossigenazione favorendo l’aumento della capacità funzionale residua e l’accoppiamento di ventilazione e perfusione (1). Negli ultimi anni si è capito che probabilmente la pronazione ha anche un effetto protettivo sul polmone, riducendo stress e strain (2-3).

Nonostante i vantaggi teorici, i trial clinici eseguiti per verificare l’impatto della pronazione sulla sopravvivenza non erano mai riusciti a dimostrare una riduzione della mortalità rispetto a quella supina (4-7). Ma adesso sembra che le cose stiano cambiando.

Ancora in attesa di pubblicazione, lunedì sera è stato anticipato online sul sito del New England Journal of Medicine lo studio PROSEVA che potrebbe cambiare le carte in tavola. Per il momento puoi vedere l’articolo cliccando qui. Per una strana coincidenza, pochi minuti prima che apparisse su internet, avevo parlato dei risultati di questo studio, che giravano nei congressi, in una risposta ad un commento.

Proviamo ora a vedere insieme gli aspetti salienti dello studio PROSEVA.

Gli autori di questo studio hanno deciso di arruolare solamente pazienti con ARDS da meno di 36 ore con un PaO2/FIO2 < 150 mmHg con almeno 5 cmH2O di PEEP che mantenessero questa condizione per almeno 12-24 ore. I pazienti arruolati venivano randomizzati per essere ventilati in posizione supina (234 pazienti)o in posizione prona (240 pazienti).

Nello studio PROSEVA la posizione supina era mantenuta per almeno 16 ore consecutive: una posizione supina completa, senza supporti per l’addome ma solo con “imbottiture” adesive per fronte, ginocchia, torace e creste iliache. Il capo era ruotato ogni due ore a destra ed a sinistra. Quindi i pazienti erano riposizionati in posizione supina; venivano nuovamente pronati se avevano un PaO2/FIO2 < 150 mmHg dopo circa 6 orein posizione supina. Il ciclo delle pronazioni cessava quando il PaO2>/FIO2 diventava > 150 mmHg.

I pazienti che venivano pronati, trascorrevano effettivamenete quasi il 75% del tempo in posizione prona (ovviamente durante il periodo in cui avevano i criteri per la pronazione). La mortalità a 28 giorni (l’outcome principale dello studio) è stata nettamente minore nel gruppo “prono” rispetto a quello “supino” (16% vs 33%, p<0.001). Un risultato eclatante, di cui dovremo certamente tenere conto nella ventilazione dei nostri pazienti con ARDS. Ma che merita qualche commento.

Dobbiamo innanzitutto ricordare che, tra i trial clinici sulla pronazione, lo studio PRESEVA è l’unico a dimostrarne chiaramente l’efficacia. Questo può essere spiegato da alcune caratteristiche dello studio PROSEVA: sono stati arruolati solo i pazienti più gravi, che sembrano essere i soggetti ideali per la pronazione (8); l’arruolamento è stato riservato ai pazienti che confermavano di avere una ARDS grave dopo 12-24 ore di osservazione, eliminando così sia i pazienti che muoiono subito, sia quelli che migliorano rapidamente (con o senza pronazione); il periodo di pronazione era prolungato, nettamente prevalente rispetto al tempo supino; allo studio hanno partecipato solo ed esclusivamente centri che utilizzano routinariamente la pronazione da almeno 5 anni.

Non possiamo però trascurare che i risultati dello studio PROSEVA potrebbero essere stati favoriti anche dalla selezione dei pazienti. Infatti nel periodo dello studio i centri partecipanti hanno ricoverato 3449 pazienti con ARDS ma solo 1434 (41.5%)  sono stati presi in considerazione (cioè “screenati) per la partecipazione allo studio. E purtroppo non possiamo conoscere le caratteristiche dei 2015 pazienti con ARDS non considerati per l’inclusione nello studio (i ricercatori non le hanno raccolte…). Sono forse stati involontariamente “scelti” pazienti con particolari caratteristiche? Un dato strano c’è: nello studio PROSEVA circa il 60% dei pazienti avevano una ARDS secondaria a polmonite, quasi il doppio dei rispetto allo studio della ARDSNet che confrontò la ventilazione a bassi ed alti volumi correnti (9).

Dobbiamo poi notare che nei pazienti pronati la pressione di plateau è rimasta, per tutta la prima settimana di studio, più bassa di quella dei pazienti non pronati. Certamente questo può essere un risultato della pronazione. Ma la riduzione della mortalità è legata alla riduzione della pressione di plateau o alla pronazione? E se nel gruppo “supino” si fossero ridotte le pressioni di plateau riducendo il volume corrente (il margine c’era, in fondo il pH medio era circa 7.40)?

Infine, dobbiamo considerare questi dati sono stati ottenuti con un protocollo che non considerava l’individualizzazione del trattamento dei pazienti sui dati di meccanica respiratoria: la PEEP è stata scelta con una tabella PEEP/FIO2 che ha portato pazienti con ARDS grave a ricevere mediamente PEEP tra gli 8 ed i 9 cmH2O e la pressione di plateau limitata a 30 cmH2O. Nessuno spazio a punto di flesso, driving pressure, elastanza volume-dipendente, pressione transpolmonare, stress index. Un modo facile, ma probabilmente non intelligente, di scegliere la PEEP e volume corrente per limitare stress e atelettrauma… Ripensiamo alla signora Pina (vedi post del 21 febbraio 2013)…

Ci sarebbe molte altre considerazioni da fare sullo studio PROSEVA, se ci sarà l’occasione le valuteremo nei commenti.

In conclusione, con le conscenze finora a nostra disposizione, quando e come dovremo utilizzare la posizione prona nella pratica clinica? Ecco un possibile utilizzo razionale della pronazione:
– dovrebbe essere utilizzata precocemente nei pazienti con ARDS grave (PaO2/FIO2 < 150 mmHg);
– dovrebbe essere prolungata (tra le 15 e le 18 ore consecutive con intervalli di 4-6 ore in posizione supina);
– dovrebbe essere proseguita fintantochè la ARDS rimane grave, cioè fino a quando il PaO2/FIO2, nei periodi di posizione supina, non arriva a superare i  150 mmHg;
– bisogna ricordare che esistono controindicazioni: ad esempio tra i criteri di esclusione del PROSEVA c’erano ipertensione intracranica, politrauma, ipotensione.

Un sorriso a tutti gli amici di ventilab.

PS: avevo promesso un post su MIP/NIF: sarà il prossimo, a meno di altre novità…

Bibliografia.

1) Lamm WJ et al. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 1994;150:184-93
2) Mentzelopoulos SD et al. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 2005; 25:534-44
3) Galiatsou E et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med 2006;174:187-97
4) Gattinoni L et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73
5) Guerin C et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87
6) Taccone P et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84
7) Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9
8) Sud S et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010;
9) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

Monday, May 20, 2013

P0.1 (pressione di occlusione delle vie aeree): cosa è, come utilizzarla.

Molti amici di ventilab mi hanno chiesto di dedicare un po’ di spazio alla P0.1. Volentieri affronto quindi l’argomento, anche perchè la possibilità di misurare la P0.1 è sempre più frequente sui nostri magnifici ventilatori meccanici. E, come tutte le cose, la si deve conoscere bene per usarla in maniera appropriata.

La P0.1 è sempre stata un oggetto un po’ misterioso per chi non si dedica specificatamente alla fisiopatologia respiratoria. Ricordo a tal proposito un episodio che risale ad oltre 20 anni fa: ad un congresso un chairman poco esperto di fisiopatologia respiratoria doveva moderare una sessione in cui c’era una relazione sulla P0.1, che fu presentata in questo modo: “Ed ora abbiamo il piacere di sentire una interessantissima relazione del dott. xxxxxxx sulla PO1″ (il problema fu che invece di “zero” lesse “O” come la lettera dell’alfabeto!). Niente di male, solo la sfortuna di doversi occupare (soprattutto allora) di un argomento spesso riservato agli “iniziati”….

Cosa è la P0.1

La P0.1, che nella letteratura scientifica è chiamata anche pressione di occlusione delle vie aeree (airway occlusion pressure), è la misura della riduzione della pressione (P) delle vie aeree nel primo decimo di secondo (da qui il nome 0.1) di un’inspirazione con vie aeree occluse.

Chiariamo meglio il concetto con una rappresentazione grafica. Guardiamo la seconda curva (quella della pressione delle vie aeree Paw) nella figura a lato. La prima linea tratteggiata verticale indica il momento in cui inizia un’inspirazione triggerata dal paziente. Per misurare la P0.1 questa inspirazione deve iniziare contro una via aerea occlusa per almeno 0.1 secondi ed il paziente deve essere ignaro di questa occlusione. Essendo la via aerea occlusa, in questi 0.1 secondi il paziente non riceverà alcuna insufflazione dal ventilatore (non riuscirà quindi nemmeno ad attivare il trigger) e si avrà una riduzione della pressione nelle vie aeree. La differenza di pressione delle vie aeree tra valore di fine espirazione e quello rilevato dopo 0.1 secondi di occlusione è la P0.1.

Perchè il paziente non deve essere consapevole di questa occlusione? Perchè proprio 0.1 secondi? La P0.1 viene proposta come misura del drive respiratorio centrale, cioè del livello di attivazione del centro del respiro. Tanto maggiore è il drive respiratorio, tanto maggiore sarà la forza con cui i muscoli respiratori si contraggono e quindi la depressione che essi generano contro una via aerea occlusa. A noi interessa quindi la pressione sviluppata dai muscoli respiratori per effetto della sola attività involontaria del centro respiratorio. Quindi tutte le influenze corticali devono essere abolite e per ottenere questo risultato il soggetto deve essere inconsapevole. Quando però occludiamo le vie aeree, introduciamo una perturbazione rispetto alla normale attività respiratoria che potrebbe essere percepita dal soggetto e quindi modificarne l’output del centro respiratorio. Si ritiene però che nel breve lasso di tempo di 0.1 secondi l‘occlusione non sia percepita e quindi l’attività dei muscoli respiratori non possa essere influenzata. Nello studio di Whitelaw, Derenne e Milic-Emili che introdusse la P0.1 nella fisiologia applicata , si osservò che solo dopo 0.25 secondi si notavano segni suggestivi di modificazioni dell’attività del centro del respiro indotte dall’occlusione delle vie aeree.

Limiti della P0.1.

Ammetto di avere una certa diffidenza verso la P0.1. Prima di tutto perchè ritengo che non sia mai stato dimostrato in modo convincente che la P0.1 sia un buon indicatore quantitativo del drive respiratorio.

Nello storico studio di Whitelaw sono stati arruolati solo 10 giovani maschi sani di età compresa tra i 15 ed i 34 anni ed è stata solamente valutata la variazione della P0.1 con l’ipercapnia. Nemmeno studi successivi non hanno mai chiaramente validato la P0.1 come misura del drive respiratorio.

Inoltre nei pazienti con disturbi neuro-muscolari la P0.1 può non riflettere il drive respiratorio: anche se questo fosse elevato, la capacità di generare pressione da parte dei muscoli respiratori è ridotta a causa del danno nervo-muscolare. E siamo ormai sempre più consapevoli che questo è un problema frequente in Terapia Intensiva (ICU-acquired weakness, ventilatory induced diaphragmatic dysfunction). A questo va aggiunto che la P0.1 può essere alterada variazioni del volume polmonare di fine espirazione (generate dalla PEEP o dalla PEEPi), che possono alterare la relazione tra tensione muscolare e pressione sviluppata.

Infine l’utilizzo della P0.1 nella ricerca clinica è stato a volte improprio e comunque ha portato a risultati contrastanti: quindi pochissimi dati convincenti dalla letteratura scientifica.

Utilizzo pratico della P0.1.

Consapevoli di questi limiti, la P0.1 può essere comunque di aiuto al letto del paziente. Vediamo un possibile approccio pratico all’utilizzo della P0.1.

1) P0.1 < 1-2 cmH2O.
Analizzando il resto dei dati a nostra disposizione, dobbiamo capire quale di queste tre condizioni è vera:
a) l’assistenza ventilatoria è eccessivamente elevata: questo mette “a riposo” il centro del respiro e quindi la P0.1 è bassa. Implicazione pratica: riduciamo il livello di supporto; se quest’ultimo non fosse in realtà molto elevato, potrebbe essere una buona idea far fare al paziente un bel trial di respiro spontaneo (se tutte le altre condizioni per il weaning sono presenti);
b) il paziente è sedato: la sedazione deprime il centro del respiro, puoi usare la P0.1, insieme agli altri monitoraggi, per ottimizzare il livello di sedazione;
c) il paziente è affetto da debolezza muscolare: questo è da sospettare soprattutto se la riduzione del supporto inspiratorio determina un respiro rapido e superficiale associato a bassi valori di P0.1. In questo caso è utile misurare la MIP (maximum inspiratory pressure)  o la NIF (negative inspiratory force) con uno sforzo massimale del paziente a vie aeree chiuse.

2) P0.1 > 5-6 cmH2O.
In questo caso l’interpretazione è più semplice: il drive respiratorio è elevato, in altre parole il cervello del paziente “sente” fame d’aria e stimola il paziente a respirare intensamente. Quando abbiamo una P0.1 elevata, il paziente ha elevate è probabilità di fallire lo svezzamento dalla ventilazione meccanica; dovremo anzi incrementare il supporto ventilatorio (o fare un uso giudizioso deilla sedazione).

Per valori intermedi (quindi 3-4 cmH2O), la P0.1 offre una segnale facilmente interpretabile.

Possiamo quindi concludere che la P0.1 non è un numero magico (come del resto pochi ce ne sono in medicina), ma che può, nell’ottica di una valutazione multiparametrica della ventilazione, migliorare la nostra conoscenza del paziente ventilato e quindi il modo di utilizzare la ventilazione meccanica.

Un caro saluto a tutti.

Bibliografia.

– Alberti A et al. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 1995; 21:547-53
– Berger KI et al. Mechanism of relief of tachypnea during pressure support ventilation. Chest 1996; 109:1320-7
– Del Rosario N et al. Breathing pattern during acute respiratory failure and recovery. Eur Respir J 1997; 10:2560-5
– de Souza LC et al. Comparison of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the prediction of weaning outcome: impact of the use of a digital vacuometer and the unidirectional valve.Respir Care 2012; 57:1285-90
– Fernandez R et al. P0.1/PIMax: An index for assessing respiratory capacity in acute respiratory failure. Intensive Care Med 1990; 16:175-9
– Fernandez R et al. Extubation failure: Diagnostic value of occlusion pressure (P0.1) and P0.1-derived parameters. Intensive Care Med 2004; 30:234-40
– Hilbert G et al. Airway occlusion pressure at 0.1 s (P0.1) after extubation: An early indicator of postextubation hypercapnic respiratory insufficiency. Intensive Care Med 1998; 24:1277-82
– Mancebo J et al. Airway occlusion pressure to titrate Positive End-expiratory Pressure in patients with dynamic hyperinflation. Anesthesiology 2000; 93: 81-90
– Milic-Emili J et al. Occlusion pressure: a simple measure of the respiratory center’s output. N Engl J Med 1975; 293:1029-30
– O Perrigault PF et al. Changes in occlusion pressure (P0.1) and breathing pattern during pressure support ventilation. Thorax 1999; 54:119-23
– Sassoon CSH et al. Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis 1993; 148:860-6
– Whitelaw WA et al.Occlusion pressure as a measure of respiratory center output im conscious man. Respir Physiol 1975; 23:181-99

Ventilab.org è definitivamente sostituito da www. ventilab.it

Come già da tempo preannunciato, l'attività di ventilab proseguirà unicamente su www.ventilab.it . Da questo momento www.ventilab.org ...