Apr 242012
 

Nell’ultimo Corso di Ventilazione Meccanica mi è stata fatta una domanda molto semplice: quale PEEP mettere ai pazienti in ventilazione meccanica? Domanda semplice, risposta complessa, anzi impossibile. Non esiste il valore di PEEP valido per tutti, ogni paziente ha le proprie necessità.

Mi rendo però conto che  possa essere utile avere a disposizione delle semplici regole pratiche con le quali almeno iniziare la ventilazione meccanica.

Ed allora ho deciso di sbilanciarmi (e di espormi volentieri a critiche e commenti), suggerendo un approccio pragmatico all’impostazione della PEEP.  Ed ho il piacere di condividere questa semplificazione con tutti gli amici di ventilab. Con una raccomandazione fondamentale: guai a considerare questo schema un punto di arrivo nella scelta della miglior PEEP. Può essere, al massimo, un punto di partenza.

La PEEP dovrà essere poi regolata da caso a caso con degli obiettivi clinici ben chiari, come sa bene chi viene al Corso di Ventilazione Meccanica. Quindi al suggerimento dei valori iniziali di PEEP aggiungo anche l’obiettivo da perseguire negli aggiustamenti successivi.

Ed ecco la proposta, in funzione delle sei diverse condizioni cliniche che si possono presentare:

  1. polmoni sani: 5 cmH2O. Ridurre (o eliminare) temporaneamente la PEEP se questa si associa ad ipotensione. Dopo supporto cardiovascolare (fluidi e farmaci vasoattivi), ritornare a PEEP 5 cmH2O;
  2. riacutizzazione di broncopneumopatia cronica ostruttiva (BPCO) e ventilazione controllata: la PEEP iniziale consigliata è 0 cmH2O (o comunque una PEEP che mantenga la PEEP totale a 5 cmH2O). L’obiettivo successivo è minimizzare la PEEP totale (se supera i 5 cmH2O) e la pressione di plateau (< 25 cmH2O) riducendo, se necessario, volume corrente, frequenza respiratoria e tempo inspiratorio. Ricordiamo che la PEEP totale è la PEEP letta durante l’occlusione delle vie aeree a fine espirazione;
  3. riacutizzazione di BPCO e ventilazione assistita: PEEP iniziale 5 cmH2O. Obiettivo successivo: aumentare la PEEP se questo non aumenta la PEEP totale;
  4. polmonite: PEEP iniziale 8 cmH2O. L’obiettivo successivo è quello di cercare la PEEP che si associa ad una buona ossigenazione, fermo restando l’obiettivo di mantenere la pressione di plateau inferiore a 25-30 cmH2O;
  5. Acute Lung Injury (ALI): PEEP iniziale 10 cmH2O. Obiettivo successivo è quello di scegliere la PEEP associata alla miglior elastanza (che equivale a dire alla minor driving pressure, vedi post del 10 aprile 2011);
  6. Acute Respiratory Distress Syndrome (ARDS): PEEP iniziale 15 cmH2O. Obiettivo successivo: vedi ALI.

Nel breve spazio di un post non ho evidentemente potuto argomentare le ragioni che mi hanno portato a suggerire questo approccio alla scelta della PEEP iniziale. Ma queste potremo approfondirle nelle risposte ai commenti o in prossimi post.

Chi mi conosce sa quanto detesti le tabelline e le certezze fondate su numeri “sparati” a caso: per scrivere questo post mi sono fatto un po’ violenza, ma spero di essere stato utile a tutti gli amici di ventilab che spesso mi pongono questa domanda semplice ed impossibile.

Un caro saluto a tutti.

Apr 142012
 

La polmonite a volte presenta problemi di ventilazione meccanica che nulla hanno da invidiare alle peggiori forme ARDS. Nel post di oggi mi piace condividere un’esperienza clinica vissuta in questi giorni nella nostra Terapia Intensiva.

Alle 10 del mattino del 5 aprile il sig. Guglielmo si presenta in Pronto Soccorso per febbre (anche 39°C) e tosse produttiva persistenti da una settimana. Fin dall’inizio dei sintomi è stata iniziata a domicilio una terapia antibiotica con 2 grammi di ceftriaxone i.m. al giorno. Guglielmo ha 56 anni, portati maluccio: è gravemente obeso (150 kg), ha una broncopneumopatia cronica ostruttiva ed è iperteso.

Appena arrivato in Pronto Soccorso Gugliemo ha una SpO2 82% con ossigenoterapia. In Pronto Soccorso inizia subito la ventilazione non-invasiva, alternando CPAP 10 cmH2O con IPAP 20 cmH2O ed EPAP 10 cmH2O (FIO2 0.5). La radiografia del torace mostra un compatto addensamento parenchimale polmonare sinistro ai campi medio-basali (figura in alto a sinistra) Durante la ventilazione non-invasiva la PaO2 oscilla tra 50 e 60 mmHg, il pH è sostanzialmente normale (tra 7.35 e 7.42) e la PaCO2 46-48 mmHg (probabilmente cronica per il valore iniziale di 31 mmol/L di HCO3-).

Guglielmo rimane in Pronto Soccorso fino alla mattina successiva proseguendo la ventilazione non-invasiva, ed alle 9.30 di venerdì 6 aprile arriva in Terapia Intensiva. Al momento del ricovero ha una lieve dispnea, il pH è ancora 7.41, la PaCO2 42 mmHg e la PaO2 62 mmHg sempre con ventilazione non-invasiva. Nella mezz’ora successiva però la dispnea diviene intensa e Guglielmo inizia ad utilizzare attivamente i muscoli accessori della respirazione. Per questo motivo viene intubato e sottoposto a ventilazione meccanica. La modalità prescelta è la pressione controllata a target di volume (PCV_VG) con volume corrente di 0.5 l, frequenza respiratoria 22/min, PEEP 16 cmH2O, FIO2 0.8. Il risultato alla prima emogasanalisi arteriosa è 7.26 di pH, 61 mmHg di PaCO2 e 55 mmHg di PaO2.

Quindi una gravissima ipossiemia con una moderata acidosi respiratoria. Nella storia successiva non ci occuperemo più della PaCO2 che in seguito è sempre stata facilmente controllata dalle variazioni della frequenza respiratoria (stabilizzatasi poi a 30/minuto). Focalizziamo quindi la nostra attenzione sul problema che ci ha impegnati maggiormente: l’ipossiemia.

Già la sera del ricovero ci troviamo con 53 mmHg di PaO2 con FIO2 1, la PEEP esterna è 16 cmH2O (con una PEEP totale di 18-19 cmH2O) e la pressione di plateau è circa 30 cmH2O. La radiografia del torace è diventata quella riprodotta qui a fianco. Che fare?

Guglielmo (sedato e, quando necessario, paralizzato) viene posto in posizione laterale destra (con il polmone sano in basso) e la PaO2 sale a 61 mmHg, mentre posto sul fianco sinistro la PaO2 scende a 48 mmHg. Si decide quindi di mantenere la posizione laterale destra. Il razionale è quello di favorire la perfusione del polmone sano sfruttando la redistribuzione per gravità del flusso ematico polmonare (1). Inoltre possiamo sperare di aumentare l’elastanza dell’emitorace sano (su cui grava tutto il notevole peso del torace di Guglielmo), favorendo (teoricamente) la distribuzione della ventilazione in quello malato.

Un rischio delle malattie polmonari monolaterali infatti è quello di arrivare a danneggiare anche il polmone sano. La ventilazione infatti tende sempre a distribuirsi dove trova più facile arrivare, cioè nel polmone sano che quindi rischia di sovradistendersi mentre il polmone malato può rimanere largamente ipoventilato.

E’ stato provato anche l’ossido nitrico che ha però avuto solo una fugace, illusoria efficacia per poche ore.

Sabato e domenica si accetta la PaO2 tra 50 e 60 mmHg (insensibile ai cambiamenti di FIO2 che varia tra 0.8 e 1) senza sostanziali modifiche di ventilazione e postura.

La mattina di lunedì 9 (Pasquetta) Guglielmo si sveglia con 85 mmHg di PaO2 e la FIO2 a 0.7. Si sveglia non solo metaforicamente: il miglioramento della funzione polmonare consente ad una drastica riduzione della sedazione. Si modifica la modalità di ventilazione e si inizia la Airway Pressure Release Ventilation (APRV) e nella notte si ha il passaggio ad una generosa pressione di supporto ed a una normale posizione semiseduta.

Martedì mattina si mantengono i risultati ossigenativi del giorno precedente con la totale sospensione della sedazione e si inizia la NAVA (Neurally Adjusted Ventilatory Assist) per ottimizzare l’interazione con il ventilatore mentre si riduce l’assistenza inspiratoria.

Giovedì mattina Guglielmo viene sottoposto ad un trial di respiro spontaneo. Dopo mezz’ora Guglielmo è eupnoico, la frequenza respiratoria inferiore a 30/min, pH 7.46, PaCO2 46 mmHg, PaO2 76 mmhg con FIO2 0.5. Decidiamo di procedere all’estubazione e programmiamo periodi di CPAP con casco nei due giorni successivi.

Oggi è sabato, sono passate 48 ore dall’estubazione senza necessità di reintubazione e quindi possiamo dire che il weaning ha avuto successo.

Considerazioni finali.

Premesso che Guglielmo deve ancora essere dimesso dall’ospedale e che quindi non dobbiamo ancora considerare chiusa la sua storia, constatiamo comunque un rapido svezzamento partendo da una gravissima insufficienza respiratoria.

Quali sono state le scelte virtuose nella gestione di questo caso? Quali gli insegnamenti che ci offre?

1) accettare l’ipossiemia. Non sempre viene accettata una 50-60 di PaO2 in ossigeno puro, spesso ho visto la ricerca di un PaO2/FIO2 migliore, di una PaO2 più alta come obiettivo a breve termine. In realtà questi atteggiamenti spesso aprono la strada a successivi peggioramenti. Ben sappiamo che un target ossigenativo largamente riconosciuto come ragionevole nelle insufficienze respiratorie ipossiemiche è una PaO2 di 55 mmHg (2).

2) posizione laterale. Nelle insufficienze respiratorie esclusivamente monolaterali può essere un valore aggiunto (vedi sopra e vedi post del 12/12/2010).

3) sospensione della sedazione. Le evidenze sugli effetti della sedazione nei pazienti ventilati sono ormai molte e tutte concordi: meno si seda meglio è. E, se si può, è meglio evitare la sedazione. Un piccolo commento a questo lo puoi trovare nel post del 28/02/2010. Prossimamente ne discuteremo in maniera più estesa. Sicuramente per ottenere questo risultato è necessaria una grande professionalità degli infermieri. Ed in questo i nostri infermieri sono molto bravi. E mi riferisco alla professionalità vera, quella conquistata sul campo e non quella pretesa a priori.

4) weaning quotidiano e sistematico. Il weaning spesso se non lo cerchi, non lo trovi. Nel nostro caso è riuscito prima del previsto.

5) ventilazione non-invasiva preventiva. Nei soggetti fragili, l’utilizzo sistematico della ventilazione non-invasiva dopo l’estubazione può ridurre la probabilità di reintubazione (3,4) (vedi post del 15/02/2011).

Infine da non dimenticare anche l’importanza delle altre compenti del trattamento (non esiste solo la ventilazione!), prima di tutte l’antibioticoterapia. E’ stata infatti posta tempestivamente la diagnosi di legionellosi con l’analisi degli antigeni urinari e quindi fin dall’inizio si è iniziata l’antibioticoterapia appropriata.

Infine sono felice di sottolineare che Guglielmo è stato per gran parte gestito dai miei colleghi autonomamente, vista la mia sporadica presenza in reparto durante tutto il periodo pasquale. Bravi.

Un saluto a tutti. Alla prossima.

Bibliografia.
1) Glenny RW. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med 2009; 35:1833-42
2) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8
3) Ferrer Early noninvasive ventilation averts extubation failure in patients at risk. A randomized trial. Am J Respir Crit Care Med 2006; 173:164-70.
4) Ferrer M et al. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomised controlled trial. Lancet 2009; 374:1082-8

Apr 012012
 

Riprendiamo il post sulla ventilazione in anestesia del 22 marzo. Oggi vedremo come si sono realmente svolte le cose, interpreteremo gli eventi e li analizzeremo anche alla luce dei commnenti ricevuti. Infine, come abitudine, termineremo alcune raccomandazioni pratiche sulla ventilazione meccanica in anestesia.

Prima di iniziare, i risultati del sondaggio: perfetta parità tra le due risposte. Un motivo di più per ragionare sul caso e cercare di esplicitare bene i problemi da gestire.

I fatti: la fine della storia.

Arrivato in sala operatoria, con la collega facciamo queste cose:

-Cerchiamo di ottimizzare il posizionamento della maschera laringea Proseal. Introduciamo un sondino gastrico tramite la via gastrica della ProSeal, sgonfiamo la cuffia della maschera, la estraiamo parzialmente la ProSeal e quindi la facciamo scorrere fino a fine corsa (cioè contro lo sfintere esofageo superiore) sulla guida della sonda gastrica. Insuffliamo la cuffia della Proseal introducendo tutta l’aria che serve per ridurre al minimo le perdite dalla maschera mentre riprendiamo la ventilazione.

– Impostiamo la ventilazione meccanica. Iniziamo una ventilazione a volume controllato con 500 ml di volume corrente e portiamo a 80 cmH2O il limite delle pressione nelle vie aeree. Tutto questo non cambia molto: otteniamo ancora pressioni di insufflazione molto elevate ed il volume corrente è praticamente nullo.

– Rivediamo il piano di anestesia. Approndiamo l’anestesia con un bolo di propofol e potenziamo la miorisoluzione con un nuovo bolo di mivacurium. Stiamo ormai veleggiando verso gli 82% di SpO2, ma in breve tempo si ricomincia a vedere il volume corrente sulla spirometria del ventilatore e le pressioni di picco si abbassano a circa 60 cmH2O, ricompare il tracciato capnografico. Si rileva ancora qualche perdita aerea dalla LMA, ma otteniamo facilmente un volume corrente sempre superiore a 300 ml. Iniziamo a respirare tutti (paziente ed anestesisti). Non so quanto tempo sia passato, probabilmente un paio di minuti dal mio arrivo.

– Progressivamente la pressione di picco si assesta intorno ai 50 cmH2O, il volume corrente espirato aumenta fino a circa 450 ml. Ora non abbiamo più significative perdite dalla maschera laringea ProSeal. L’introduzione di una breve pausa di fine inspirazione fa vedere che la pressione dal picco di 50 cmH2O scende a 30 cmH2O prima di iniziare l’espirazione. In altre parole, nonostante l’elevata pressione di picco, la pressione di plateau sarà sicuramente inferiore a 30 cmH2O. A questo punto decidiamo di mettere 10 cmH2O di PEEP e vediamo che le pressioni non si modificano. La saturazione sale sopra il 95% anche riducendo la FIO2 sotto 0.5.

E così concludiamo l’intervento, con la paziente che si sveglia al termine tutta soddisfatta, lamentando solo un lieve mal di gola… Beh, signora, va bene così…

L’interpretazione dei fatti.

Premetto che ho non ho presentato questo caso per mostrare una gestione esemplare (non voglio cioè dire che sia stato fatto tutto il meglio che si potesse fare), ma semplicemente per ragionare su come e perchè è accaduto quel che è accaduto.

– Gestione delle vie aeree.
Innanzitutto un complimento alla collega che, quando si è trovata in difficoltà, ha chiamato aiuto: questa è sempre la prima cosa da fare, chiaramente indicata anche nelle linee guida SIAARTI sulle vie aeree difficili (1).

E’ stato discusso l’utilizzo della ProSeal come scelta iniziale. Nella discussione al post precedente sono emerse anche due opzioni diverse da quella scelta nel nostro caso: intubazione fibroscopica in sedazione o intervento in analgosedazione. La mia opinione personale è che sia l’utilizzo della maschera laringea ProSeal, sia l’intubazione fibroscopica, sia l’analgosedazione come tecnica di anestesia possano essere scelte ragionevoli. Molto spesso in medicina non ci sono scelte giuste e scelte sbagliato, piuttosto esistono decisioni ragionevoli e decisioni irragionevoli: a volte lo stesso problema può essere risolto brillantemente anche con approcci diversi se si usa il cervello (alla faccia dei protocolli!).

Non entro nel merito del confronto delle tre possibilità (il post è già abbastanza lungo e ricco di spunti), cercherò solo di spiegare il razionale della maschera laringea. Premetto che nel nostro ospedale si fa un uso ampio della maschera laringea (oltre il 50% degli interventi in anestesia generale vengono eseguiti con essa) ed abbiamo molta esperienza nel suo uso. L’utilizzo della maschera laringea nelle linee guida per la gestione delle vie aeree difficili è confinato alla drammatica condizione di impossibilità di ventilazione (1). Tuttavia l’utilizzo della maschera laringea fin dall’inizio nei casi di intubazione difficile normalmente evita qualunque problema anestesiologico: si ottiene una ventilazione efficace e sicura senza dover fare la laringoscopia e si possono somministrare i miorilassanti solo dopo avere verificato la ventilabilità del paziente. Sicuramente per poter usare la maschera laringea in situazioni potenzialmente difficili, si deve prima acquisire una grande esperienza con lo strumento in condizioni elettive.

La maschera laringea ProSeal in particolare garantisce normalmente una tenuta anche a pressioni superiori ai 30 cmH2O (2) ed anche nei  pazienti obesi con PEEP consente una ventilazione ottimale senza perdite aeree (3). Inoltre la ProSeal consente di drenare lo stomaco, evitando così il rischio di aspirazione polmonare.

Gestione della ventilazione.

Chiediamoci perchè possiamo avere alte pressioni di picco. La risposta è sempre nell’equazione di moto dell’apparato respiratorio: pressione di picco = pressione elastica + pressione resistiva + PEEPtotale (vedi post del 24/006/2011). Se si capisce questa semplice equazione, si capisce tutta la ventilazione meccanica.

Due di queste tre pressioni distendono i polmoni (pressione elastica e PEEPtotale) e ci potrebbero preoccupare come possibile causa di danno polmonare da ventilazione (VILI, ventilato-induced ling injury), mentre la pressione resistiva si dissipa lungo le vie aeree e normalmente non deve essere considerata una possibile causa di VILI (vedi post del 5/12/2011).

La pressione elastica (prodotto di elastanza e volume corrente) potrebbe essere elevata per l’elevata elastanza dell’apparato respiratorio dovuta all’obesità (4). Ma in questo caso, essendo l’elevata elastanza dovuta ad una causa extrapolmonare, la pressione transpolmonare dovrebbere essere bassa, cioè senza rischio di VILI da sovradistensione. Non dimentichiamo poi che la paziente (purtroppo) non sta ventilando: no volume corrente, no pressione elastica. La PEEPtotale anch’essa è ragionevolmente bassa: non abbiamo PEEP e non abbiamo ventilazione.

L’alta pressione di picco è quindi spiegata dalla pressione resistiva, che ci serve solo a spingere l’aria nei polmoni: se serve tanta pressione quindi bisogna dare tanta pressione. Ecco perchè infischiarsene delle pressioni di picco e guardare invece il volume corrente. In anestesia penso questa dovrebbe essere una regola generale: abbiamo normalmente a che fare con polmoni senza ALI/ARDS, quindi concentriamoci sul volume corrente erogato. Se il volume corrente è basso o normale, non può esserci VILI (in assenza di elevati valori di autoPEEP). Questo è il motivo per il quale in anestesia per me esiste (quasi) sempre una sola ventilazione: il volume controllato. Nel nostro caso, se avessimo insistito con la pressione controllata avremmo avuto qualche chance in più di fare andare male le cose.

A questo punto chiediamoci perchè ci sono elevate resistenze. Abbiamo tre cause: obesità (4), maschera laringea e vie aeree. 

Per l’obesità non possiamo fare molto, se non eventualmente dare un po’ di antiTrendelemburg.

Le resistenze della maschera laringea dipendono in maniera rilevante dal corretto posizionamento (5), e quindi la posizione della ProSeal deve essere ottimizzata. Per fare questo è molto utile utilizzare una sonda gastrica inserita nel tubo gastrico della ProSeal. La sonda gastrica che arriva fino allo stomaco (oltre a consentirci di svuotare lo stomaco!!!) diventa una guida straordinaria al corretto posizionamento della ProSeal, se la si usa come mandrino facendo scorrere su di essa la ProSeal fino a fine corsa. A questo punto abbiamo la maschera contro lo sfintere esofageo superiore, la miglior posizione possibile per la maschera laringea.

Infine l’ultima causa di aumentata pressione resistiva: le vie aeree. Con la maschera laringea il punto veramente critico sono le corde vocali. Basta infatti che, per una riduzione del piano di anestesia e della miorisoluzione, queste si mettano in adduzione (cioè che si chiudano), che la ventilazione può diventare difficile o impossibile. L’unica soluzione è approfondire l’anestesia e la miorisoluzione.

Facendo tutto questo, la situazione è migliorata e ci siamo anche potuti permettere il lusso di una PEEP, raccomandabile negli obesi (6).

Se le cose non fossero andate a posto, avremmo sicuramente tentato l’intubazione e, in caso di fallimento, la scelta sarebbe stata tra il risveglio della paziente con assistenza in maschera e cricotiroidotomia d’urgenza. Ma per fortuna non abbiamo dovuto arrivare fino a questo punto nel nostro racconto…

Conclusioni.

Questo caso ci insegna quattro cose sulla ventilazione in anestesia, da ricordare soprattutto quando ci sono difficoltà:

1) la ventilazione a volume controllato può essere l’unica modalità di ventilazione in anestesia (la pressione controllata in questo contesto è un’amica molto, molto falsa);

2) in anestesia il VILI da sovradistensione polmonare non esiste se non si generano volumi correnti superiori al normale (6-8 ml/kg) o autoPEEP (a meno che non si debba fare l’anestesia ad un paziente con ARDS)

3) i limiti di allarme delle pressioni delle vie aeree devono sempre essere aumentati (e non rispettati!) in caso di difficoltà di ventilazione

4) una breve pausa di fine inspirazione inserita nella ventilazione ci può confermare che non stiamo combinando guai se già nel breve accenno di plateau abbiamo una pressione non superiore a 30-35 cmH2O.

Un saluto a tutti.

Bibliografia
1) Accorsi A et al. Recommendations for airway control and difficult airway management. Minerva Anestesiol 2005;71:617-57
2) Keller C et al. Mucosal pressure and oropharyngeal leak pressure with the ProSeal versus laryngeal mask airway in anaesthetized paralysed patients
Br J Anaesth 2000; 85:262-6
3) Natalini G et al. Comparison of the standard laryngeal mask airway and the ProSeal laryngeal mask airway in obese patients. Br J Anaesth 2003; 90: 323-6
4) Pelosi P et al. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996;109:144-51
5) Natalini G et al.Resistive load of Laryngeal Mask Airway and ProSeal Laryngeal Mask airway in mechanically ventilated patients. Acta Anaesthesiol Scand 2003; 47:761-4
6) Pelosi P et al. Positive End-expiratory Pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 1999; 91:1221-31