Sunday, August 20, 2017

Monitoraggio grafico della ventilazione meccanica: un approccio sistematico per l'interpretazione.

Quando si prova ad interpretare le curve di pressione e flusso delle vie aeree, spesso vedo commettere un errore fondamentale: voler dare subito la diagnosi, cioè trovare la risposta giusta a colpo d’occhio, arrivandoci e non dopo una analisi ragionata. Si prova ad indovinare piuttosto che a ragionare. Certo, le asincronie più clamorose si vedono al volo, ma, se si vuole diventare davvero bravi, il metodo di gran lunga migliore è quello di applicare un approccio sistematico di lettura e giungere alle conclusioni solo al termine dell’analisi, dopo aver capito esattamente ogni singola dinamica. Un possibile approccio sistematico alla interpretazione delle tracce di pressione e flusso delle vie aeree (ABC-DEF) è stato proposto già 7 anni fa nei post del 13/08/2010, del 20/08/2010 e del 29/08/2010. Nonostante il vecchio ABC-DEF di ventilab sia semplice e sempre valido, oggi vorrei proporre un metodo completamente nuovo, fondato sulla comprensione profonda dell’interazione paziente-ventilatore. Il metodo prevede 7 fasi e lo chiameremo RESPIRE, dall’iniziale di ciascuna fase.

Oggi vedremo in sintesi il metodo RESPIRE nella sua applicazione pratica valida per tutte le ventilazioni pressometriche, cioè tutte le modalità di ventilazione meccanica ad eccezione di volume controllato, NAVA e PAV. Durante il corso “Le modalità di Ventilazione Meccanica” avremo certamente modo di dettagliare meglio il razionale del RESPIRE ed estenderne l’applicazione a tutte le modalità di ventilazione meccanica.

Applichiamo il RESPIRE ad una paziente (con peso corporeo ideale di 52 kg) ventilata con pressione di supporto 8 cmH2O e PEEP 5 cmH2O. Nella figura 1 è riprodotta la schermata completa dello schermo del ventilatore meccanico.

Figura 1

Guardando i numeri, notiamo che la frequenza respiratoria è inferiore a 30/min, il volume corrente è 8 ml/kg, il rapporto frequenza respiratoria/volume corrente è 68. Non male. Vediamo ora cosa ci aggiunge il monitoraggio ventilatorio.

Il RESPIRE può essere applicato al letto del paziente congelando/salvando lo schermo del monitor ed utilizzando i cursori che i ventilatori meccanici offrono per l’analisi delle curve salvate/congelate.

R: Riconosci e disponi le curve importanti

Il primo passo è utilizzare solo le curve di pressione e flusso, con la curva di pressione nel campo superiore e quella di flusso in quello inferiore. E’ un ordine gerarchico, perchè nelle ventilazioni pressometriche è la curva di pressione che “comanda” quella di flusso. Inoltre questo ordine sarà comodo nel prosieguo del metodo. Se il ventilatore non ci offre di default questa visione, possiamo facilmente impostarla scegliendo l’ordine delle curve da visualizzare.

Figura 2

In questo modo abbiamo eliminato molti dati inutili per l’analisi e possiamo concentrarci solo su ciò che è veramente indispensabile.

E: Espirazione del ventilatore

Ora individuiamo i punti in cui inizia e finisce la fase espiratoria sulla traccia di flusso. Sono i punti in cui la traccia di flusso incrocia la linea orizzontale per scendere sotto lo zero o per risalire sopra lo zero. Questi punti consentono di frazionare il ciclo respiratorio, definendo fase espiratoria (“exp” nelle figure) la parte che comprende il flusso negativo e fase inspiratoria (“insp” nelle figure) tutto il resto.

Figura 3

S: Supponi che il paziente sia passivo

Nelle ventilazioni pressometriche supponiamo che, in assenza di attività del paziente, sia presente una curva di pressione “quadra” in inspirazione sopra il livello di PEEP ed una curva di flusso decrescente, sia in inspirazione che in espirazione. Vediamo cosa significa.

Figura 4

Nella figura 4 vediamo come dovrebbe essere una curva di pressione passiva. Durante la fase espiratoria ci aspettiamo il livello di PEEP (in BIPAP la Pbassa durante il tempo di Pbassa), durante la fase inspiratoria un aumento di pressione pari al livello di pressione inspiratoria sopra PEEP (in BIPAP la Palta nel tempo di Palta). La velocità del passaggio dalla PEEP alla pressione inspiratoria (l’angolo α in figura) è regolato con il tempo di salita (rise time). In caso di rise time 0, l’angolo α è di 90°.

La variazione di pressione nel ventilatore determina il flusso. Quando aumenta la pressione nel ventilatore (dalla PEEP alla pressione inspiratoria), il flusso inspiratorio inizia con un picco che poi descresce verso lo zero. Quando si riduce la pressione nel ventilatore (dalla pressione inspiratoria alla PEEP), più o meno specularmente all’inspirazione, un flusso espiratorio inizia con un picco e quindi descresce verso lo zero. Il decadimento passivo del flusso è teoricamente esponenziale (con una convessità, come se fosse attratto, verso la linea dello zero) e la velocità del decadimento è determinata dalla costante di tempo dell’apparato respiratorio (vedi post del 17 luglio 2016) (figura 5).

Figura 5

Applichiamo ora questi concetti alle nostre curve. Ovviamente ci vuole un minimo di fantasia e, sullo schermo dei nostri ventilatori, non possiamo fare che altro che immaginarci le curve passive, senza poterle disegnare concretamente. Ma se ci si prova, si vedrà che in fondo è molto facile.

Figura 6

Nella figura 6 abbiamo disegnato in bianco le ipotetiche curve passive. Abbiamo posizionato la linea della PEEP un po’ più in basso della pressione espiratoria. Questo perchè la PEEP impostata è 5 cmH2O (figura 1, valore di PEEP in nero, in basso), mentre la pressione a fine espirazione misurata è 6 cmH2O (figura 1, valore di PEEP in giallo, in alto a sinistra). Sappiamo quindi che in espirazione la pressione è un po’ più alta di quella impostata.

Guardando la figura 1, sappiamo anche che la pressione di picco (14 cmH2O) è più alta della pressione che abbiamo programmato di raggiungere in inspirazione (13 cmH2O, somma di PEEP 5 + PS 8). Per questo motivo abbiamo considerato una pressione inspiratoria passiva a 13 cmH2O, un po’ più bassa del picco.

Non possiamo sapere l’entità dei picchi di flusso se il paziente fosse passivo, quale la sua costante di tempo. Ci accontentiamo quindi di immaginare flussi decrescenti (verso la linea dello zero) che partono dal picco e finiscono alla fine della inspirazione (volendo essere più fini al punto del trigger espiratorio, correzione tanto più opportuna quanto più il trigger espiratorio è alto) o alla fine della espirazione. E’ una approssimazione comunque assolutamente efficace nell’interpretare le curve.

P: Punto di vista del paziente

Per capire bene come l’attività respiratoria del paziente possa modificare le curve di pressione e flusso, può essere utile fare un altro piccolo sforzo di fantasia. Immaginiamo il paziente coricato supino sotto la curva di pressione e prono sopra la curva di flusso. Vediamo un esempio con le curve di una ventilazione in un paziente completamente passivo (pressione controllata con paralisi muscolare).

Figura 7

Notiamo preliminarmente una cosa. Nel paziente passivo, il flusso inspiratorio può avere un decadimento lineare e non esponenziale (quello espiratorio conserva comunque il decedimento esponenziale). Quindi in presenza di un flusso inspiratorio che va dal picco di flusso al suo termine seguendo una linea retta, potremo considerare il paziente passivo.

Perchè abbiamo messo il paziente in questa strana posizione? Perchè da questa posizione, quando inspira, le curve sono attirate verso la bocca del soggetto sdraiato, mentre quando espira ne sono allontanate. Cioè l’ipotetica attività respiratoria del paziente sdraiato muove le curve con la stessa direzione del flusso di aria che entra ed esce dal proprio apparato respiratorio.

Visualizziamo questo concetto nella figura 8. La figura è un po’ complicata, ma la spiegheremo punto per punto. In bianco sono state sovraimposte alcune possibili modificazioni delle curve dovute all’attività respiratoria del paziente rispetto alle curve passive.

Figura 8

L’inspirazione del paziente durante la fase di flusso espiratorio determina un avvicinamento sia della curva di pressione che di quella di flusso verso la rispettiva linea dello zero (punti 1 e 5 nella figura 8).

L’inspirazione del paziente durante la fase di flusso inspiratorio abbassa la pressione al di sotto dell’onda quadra ed aumenta il flusso rispetto alla fase di decadimento passivo (punti 2 e 6 nella figura 8). In particolare la curva di pressione si “svuota” e la curva di flusso diventa più alta della linea che idealmente congiunge il picco di flusso al flusso presente al momento della fine dell’inspirazione.

L’espirazione del paziente durante la fase di flusso espiratorio allontana pressione e flusso dalla linea dello zero rispetto all’ipotetico andamento passivo (punti 3 e 7 nella figura 8).

L’espirazione del paziente durante la fase di flusso inspiratorio aumenta la pressione delle vie aeree sopra il valore atteso e tende a far decadere rapidamente il flusso inspiratorio (punti 4 e 8 nella figura 8).

Tutto questo NON VA MEMORIZZATO: è sufficiente ricordare il paziente supino sotto la pressione e prono sopra il flusso e ragionare su come sposterebbe le curve l’aria che entra ed esce dalla sua bocca.

Da notare che qualitativamente il flusso inspiratorio è modificato allo stesso modo dall’inspirazione e dall’espirazione del paziente (punti 6 e 8 nella figura 8): in entrambi i casi si osserva una concavità verso il basso della curva di flusso. Come distinguere le due condizioni? Dobbiamo guardare la consensuale variazione di pressione.

Da considerare due presupposti fondamentali:

  • possono essere presenti alterazioni di flusso (rispetto alla passività) in assenza di alterazioni sulla curva di pressione; il flusso è molto sensibile all’attività del paziente, la pressione invece risente anche della performance del ventilatore meccanico: idealmente, se un ventilatore meccanico funzionasse prefettamente non vi sarebbe mai alcuna alterazione della curva di pressione rispetto alla curva passiva;
  • quando sono presenti alterazioni (rispetto alla passività) sia della curve di flusso che di pressione, queste devono essere coerenti tra loro (devono cioè presentarsi nelle accoppiate descritte sopra) per essere attribuibili all’attivitità respiratoria del paziente.

Infine è utile valutare se ci sono fasi di riposo ed equilibrio alla fine del flusso inspiratorio ed alla fine del flusso espiratorio. Queste fasi sono caratterizzate dalla presenza di una pressione stabile ed assenza di flusso, come ad esempio nelle zone ombreggiate della figura 9. Le piccole fluttuazioni della pressione in figura 9 sono ascrivibili al battito cardiaco. Queste zone documentano l’assenza di attività del paziente ed il raggiunto equilibrio pressorio a fine inspirazione (pressione applicata simile a pressione alveolare) ed a fine espirazione (assenza di iperinflazione dinamica).

Figura 9

I: Inspirazione del paziente

Figura 10

Ora applichiamo questi concetti alla nostra paziente, iniziando dalla verifica di eventuale attività inspiratoria.

Analisi durante la fase espiratoria. Nel punto 1 della figura 10 vediamo l’inizio della caduta di pressione durante la fase espiratoria, segno di attività inspiratoria del paziente. Interessante è la traccia di flusso: in questo caso l’avvicinamento al flusso zero non avviene dalla linea espiratoria teorica, ma con una brusco aumento di pendenza dal flusso precedente. In altre parole, prima del punto 1 il flusso espiratorio aveva una certa pendenza, seppur diversa da quella passiva. Di colpo, da questa linea di flusso con una propria pendenza (orizzonatale in questo caso), si verifica un’improvvisa risalita verso lo zero. Anche questo è segno di attività inspiratoria del paziente. Sono coerenti i segni visti su pressione e flusso, quindi sono spiegabili dall’attività inspiratoria del paziente.

Vediamo anche una zona che si ripete all’inizio di ogni fase espiratoria e che abbiamo indicato con un punto interrogativo. Qui ci sono segnali troppo ambigui per essere interpretati. La pressione fluttua sopra e sotto la linea di passività, con associate fluttuazioni del flusso. Tralasciamo in questo già lungo post l’interpretazione di questo punto, che sarà l’argomento del prossimo post.

Analisi durante la fase inspiratoria. Nel punto 2 sono evidenti sia la riduzione della pressione che l’aumento del flusso:  segni coerenti e quindi inequivocabilmente il paziente sta inspirando.

R: Riposo ed equilibrio

E’ evidente dall figura 6 che al confine tra flussi inspiratori ed espiratori non compare nessuna fase di zero flusso associata ad una pressione costante, come nell’esempio in figura 9. Non possiamo quindi in alcun modo fare previsioni sulla pressione alveolare nè a fine inspirazione nè a fine espirazione. Ne consegue che la pressione alveolare potrebbe essere più elevata della pressione di picco e che potrebbe esserci autoPEEP.

E: Espirazione del paziente

Figura 11

Analizziamo infine la presenza di attività espiratoria (figura 11).

Analisi durante la fase espiratoria. E’ evidente che la curva di flusso si allontana dallo zero nel punto 3. Il flusso espiratorio addirittura tende lievemente ad aumentare durante l’espirazione, segno tipico di espirio attivo. A questo si associa ad una pressione lievemente più alta della PEEP impostata. I segni sono coerenti, quindi abbiamo una espirazione attiva. Da considerare che l’analisi del flusso espiratorio può perdere di valore in presenza di flow limitation (vedi post del 04/06/2012).

Analisi durante la fase inspiratoria. Nel punto 4, verso la fine della fase inspiratoria vediamo l’aumento della pressione delle vie aeree oltre il valore teorico dato dalla somma di PEEP e pressione inspiratoria. Questo si associa ad una caduta verticale del flusso inspiratorio. Anhe in questo caso i segni sono coerenti con la presenza di attività espiratoria prima del termine della fase inspiratoria. Possiamo pensare a quest’ultima come al brusco rilasciamento dei muscoli inspiratori e/o all’attivazione dei muscoli espiratori.

Conclusioni.

Applicando il metodo RESPIRE ad un caso molto semplice (giusto per iniziare), possiamo concludere che:

  • la paziente triggera chiaramente gli atti respiratori (attività inspiratoria alla fine della fase espiratoria)
  • continua ad inspirare attivamente per tutta la durata della fase inspiratoria (attività inspiratoria durante la fase inspiratoria)
  • inizia ad espirare già alla fine della fase inspiratoria (attività espiratoria durante la fase inspiratoria)
  • mantiene una espirazione attiva per tutta l’espirazione (attività espiratoria in fase espiratoria)

Abbiamo insomma una paziente sempre (e tanto) attiva durante tutto il ciclo respiratorio, nonostante i numeri (volume corrente, frequenza respiratoria, volume corrente/frequenza respiratoria) ci dicano che va tutto bene. Forse possiamo ventilare meglio la nostra paziente… ma il “che fare” va oltre l’obiettivo di questo post.

Resta da capire, sempre applicando il RESPIRE, cosa siano quelle strane cose che si vedono in figura 10, contrassegnate dal punto interrogativo… Ne parliamo in settembre.

Come sempre, un sorriso a tutti gli amici di ventilab.

Thursday, July 6, 2017

Compliance: la relazione pressione-volume nella pratica

La relazione pressione-volume statica dell’apparato respiratorio (detta anche più familiarmente “curva di compliance“) è un fondamento indispensabile per la comprensione della ventilazione meccanica e della interazione paziente-ventilatore.

Costruire la curva di compliance nella realtà e ragionare su di essa è un ottimo modo per raggiungere la conoscenza pratica, cioè un vero e persistente arricchimento culturale e professionale. Vediamo quindi insieme come farlo al letto del paziente, con qualsiasi ventilatore meccanico.

Partiamo dando un significato alle parole: relazione pressione-volume statica dell’apparato respiratorio. “Relazione pressione-volume” significa semplicemente misurare di quanto aumenta il volume al variare della pressione: quando applico 1 cmH2O di pressione, di quanto aumenta il volume? Questa è la compliance. Ad esempio avere 50 ml/cmH2O di compliance significa che ad ogni cmH2O di aumento di pressione corrisponde un aumento di 50 ml di volume. Nella pratica otterremo questa informazione in maniera più semplice misurando quanto aumenta la pressione dopo l’erogazione di un volume noto.

Il termine “statica” definisce che la variazione di pressione è rilevata in assenza di flusso: cioè misuriamo la pressione nell’apparato respiratorio dopo un periodo di pausa che segue l’erogazione del volume. La durata della pausa deve essere sufficiente ad ottenere una pressione stabile (un plateau). In questo modo eliminiamo l’effetto delle resistenze e studiamo solo le pressioni che si sviluppano all’interno dell’apparato respiratorio.

La specifica “dell’apparato respiratorio” ci fa intendere che riferiamo le nostre misurazioni a polmoni e gabbia toracica considerati globalmente. Per la meccanica respiratoria, l’apparato respiratorio è usualmente semplificato in un modello costituito da due elementi: i polmoni inseriti nella gabbia toracica. La sola misurazione della pressione delle vie aeree consente di studiare l’apparato respiratorio nel suo complesso, senza poter identificare le singole caratteristiche di polmoni e gabbia toracica.

Dopo questa breve premessa, iniziamo a costruire concretamente la curva di compliance.

Iniziamo con un grafico vuoto che ci aiuta a capire meglio di cosa stiamo parlando.

Figura 1

Dovremo riempire il grafico con diversi volumi (asse verticale) misurando la corrispondente pressione statica (asse orizzontale). Importante capire cosa rappresentano il punto 0 di pressione e volume (sono entrambi zeri relativi): lo zero di pressione è relativo alla pressione atmosferica, lo zero di volume identifica il volume di rilasciamento (o equilibrio elastico) dell’apparato respiratorio, cioè il volume che l’apparato respiratorio raggiunge al termine di un’espirazione passiva completa che equilibra la pressione intrapolmonare con quella atmosferica. In assenza di iperinflazione dinamica, corrisponde alla capacità funzionale residua.

Ora immaginiamo di ventilare un paziente passivo alla ventilazione meccanica (nessun segno di attività dei muscoli respiratori al monitoraggio grafico ed alla valutazione clinica). Modifichiamo temporaneamente l’impostazione del ventilatore meccanica: azzeriamo la PEEP e riduciamo la frequenza respiratoria (mantenendo un tempo inspiratorio di circa 1 secondo) fino ad ottenere un tempo espiratorio sufficiente ad evitare l’autoPEEP (il flusso espiratorio cioè diventa zero prima dell’inizio dell’inspirazione successiva). Quest’ultima condizione può essere facilmente raggiunta in quasi tutti i pazienti con una frequenza respiratoria di 10-15/minuto. Eseguiamo un’occlusione delle vie aeree a fine inspirazione e manteniamola 3″, tempo solitamente sufficiente ad ottenere la stabilizzazione della pressione delle vie aeree su un plateau. La pressione rilevata durante il plateau, alla fine dei 3″ di occlusione, è la pressione di plateau. Nota pratica: tutte le occlusioni devono avere la medesima durata per garantire che le diverse pressioni di plateau siano rilevate a parità di condizioni.

Procediamo ora con un esempio pratico, analizzando la costruzione della curva di compliance in un paziente con ARDS grave.

Figura 2

Nella figura 2 possiamo visualizzare tutti gli elementi descritti quando il paziente che riceve 500 ml di volume corrente e sviluppa 15 cmH2O di pressione di plateau. Possiamo riportare il risultato sul grafico pressione-volume dell’apparato respiratorio.

Figura 3

Figura 4

Per costruire una relazione pressione-volume è necessaria una serie di punti. Più punti ci sono, più si aumenta la precisione della relazione. Dobbiamo quindi somministrare in rapida successione diversi volumi correnti (possiamo tenere ciascuno solo un minuto) ed eseguire per ogni volume corrente la manovra di occlusione decritta sopra. E’ opportuno che il volume più piccolo porti ad ottenere non più di 2 cmH2O di pressione di plateau e che il più alto abbia superato la soglia di sovradistensione (almeno 2-3 volumi correnti con stress index superiore a 1) o raggiunga una pressione di plateau di 40 cmH2O. Per avere una accettabile relazione pressione-volume di solito sono sufficienti 12-15 diversi volumi correnti, che si ottengono con una differenza di 50-100 ml tra l’uno dall’altro. E’ infine utile alternare volumi alti e volumi bassi per evitare significativi periodi di ipoventilazione durante l’applicazione dei volumi correnti più bassi. Qui a fianco possiamo vedere la sequenza delle occlusioni nel nostro paziente con ARDS: il maggior volume corrente utilizzato (700 ml) è chiaramente associato a segni di sovradistensione (già presenti anche a volumi inferiori). Esso è seguito dal volume corrente minimo, sufficiente ad ottenere non più di 2 cmH2O di pressione di plateau. Da questo punto iniziamo una alternanza di volumi correnti alti e bassi che progressivamente calano di 50 ml dal massimo o aumentano 50 ml dal minimo. Come possiamo vedere la pressione di plateau (Pplat) è semplicemente letta sul diplay del ventilatore in tempo reale durante l’occlusione. Abbiamo applicato 13 diversi volumi correnti, che significano realisticamente (con un po’ di esperienza) una ventina di minuti complessivi di lavoro.

Figura 5

Ora dobbiamo costruire il grafico. Potremmo anche utilizzare carta (un foglio a quadretti o, meglio, di carta millimetrata) e penna  come si faceva in tempi eroici. Ma oggi è molto meglio aprire un foglio elettronico e inserire i risultati su due colonne: nella prima la pressione di plateau, nella seconda il corrispondente volume corrente, come mostrato in figura 5.

Il passaggio finale è la creazione del grafico sul foglio elettronico: finalmente vedremo il risultato del nostro lavoro e trarremo alcune conclusioni che ci potranno aiutare nelle scelte di ventilazione meccanica.

Ecco la relazione pressione-volume statica dell’apparato respiratorio del paziente che stiamo vedendo come esempio:

Figura 6

Osserviamo che gli aumenti di pressione-volume fino a 18 cmH2O-600 ml possono essere ben raggruppati lungo una linea retta (linea tratteggiata grigia in figura 7). Questa linea però non includerebbe i punti oltre i 18 cmH2O-600 ml, che si troverebbero più in basso. Questi punti sono meglio rappresentati da una linea meno pendente (linea tratteggiata rossa in figura 7).

Figura 7

La pendenza di ciascuna delle due rette è una compliance, infatti esprime la variazione in ml per cmH2O: bassa pendenza = bassa compliance, alta pendenza = alta compliance. La linea grigia è una compliance di 31 ml/cmH2O, cioè il rapporto tra la variazione di volume di 500 ml (da 100 a 600 ml) e la variazione di pressione di 16 cmH2O (da 2 a 18 cmH2O). La linea rossa identifica una compliance di 14 ml/cmH2O.

Figura 8

Volendo essere pignoli, dopo aver visto nella figura 6 che 18 cmH2O-600 ml sono il “punto di rottura” della linea, possiamo riscrivere nel foglio elettronico i dati come vediamo in figura 8. Creiamo due colonne di volume, una con i dati sulla prima linea di pendenza ed una con i dati sulla seconda linea di pendenza. Il valore 18 cmH2O-600 ml compare in entrambe le colonne perchè appartiene ad entrambe.

Se creaimo ora il grafico (figura 9), avremo una serie di punti per la prima (in grigio) ed una per la seconda pendenza (in rosso). E potremo chiedere al foglio elettronico di disegnare la retta della pendenza di ciascuna delle due serie, di mostrare l’equazione di questa retta (che è la relazione pressione-volume) ed il coefficiente di determinazione (R2). Vediamo e commentiamo il risultato, rendendolo semplice e comprensibile per tutti.

Figura 9

Le rette che ha disegnato il folgio elettronico sono molto simili a quelle che abbiamo disegnato ad occhio nella figura 7 (quindi noi ed il computer siamo d’accordo!). Vicino ad esse c’è una equazione, che ci deve lasciare tranquilli: il coefficiente della x (nel riquadro blu) è la compliance calcolata sulla retta (praticamente identica a quella che ci siamo calcolati in precedenza, anche questa una conferma dei risultati). Il valore di R2 ci informa di quanto la variazione di volume possa essere spiegata dalla variazione di pressione, in parole povere quanto sia buona la correlazione tra pressione e volume. Un R2 maggiore di 0.9 è un’ottimo risultato perchè significa che la relazione pressione-volume è accurata e non ci stiamo inventando relazioni che non esistono: nel nostro caso abbiamo un’ottima correlazione per entrambe le rette (anche se quella rossa è fatta solo con 3 punti…). Con questo approccio più “matematico” non abbiamo aggiunto nulla di nuovo, ma ci sentiamo tranquilli che le nostre valutazioni occhiometriche non erano forzate. In questo grafico vediamo che l’incrocio tra le due rette, che viene normalmente definito punto di flesso superiore, si verifica ad un livello di pressione leggermente inferiore a 18 cmH2O (linea verticale blu tratteggiata in figura 9).

Ed ora cosa ce ne facciamo di tutto il nostro lavoro? In questo paziente con ARDS è assente il punto di flesso inferiore, manca cioè alle pressioni più basse una linea con compliance inferiore alla massima pendenza. Nei pazienti con punto di flesso inferiore (ci capiterà prossimamente di vederne qualcuno), la PEEP dovrebbe essere leggermente superiore (un paio di cmH2O) alla pressione a cui lo osserviamo. Al contrario, i pazienti senza punto di flesso inferiore (come il nostro) si giovano di bassa PEEP, che potremmo quindi decidere di mettere a 5 cmH2O (meglio se la rivalutiamo con un trial di PEEP per scegliere quella associata alla minor driving pressure, vedi post del 28/2/2015 e del 18/10/2015). Sappiamo inoltre che dovremmo evitare pressioni di plateau superiori a 17 cmH2O (un valore decisamente minore dei 30 cmH2O raccomandati dalle linee guida…). La variazione di pressione da 5 (PEEP) a 17 cmH2O (massima pressione di plateau tollerata) è di 12 cmH2O. Con una complinace di 31 ml/cmH2O, questo corrisponde ad una variazione tidal di volume di circa 370 ml. Questa potrebbe essere un’impostazione razionale del ventilatore meccanico, ricordando che i 5 cmH2O sono sempre di PEEP totale. Quando aumentiamo la frequenza respiratoria dopo la costruzione della curva di compliance, probabilmente genereremo autoPEEP: dovremo quindi riaggiustare la PEEP e misurare la PEEP totale con l’occlusione a fine espirazione per portarla ai 5 cmH2O che ci siamo posti come obiettivo.

La logica di questo approccio è stata utilizzata in alcuni trial clinici (1-3) che, complessivamente, hanno portato a risultati migliori rispetto alla sola riduzione del volume corrente  (4) (l’unica differenza riguarda la scelta della PEEP nei pazienti senza punto di flesso inferiore).

L’applicazione della PEEP può modificare la curva di compliance e rendere più complesso il ragionamento. Ma su questo avremo modo di confrontarci prossimamente, per oggi penso basti così.

Vorrei concludere invitando tutti a ricavare la curva di compliance sui propri pazienti e ricavarne informazioni clinche utili per la ventilazione. Le prime volte certamente non si raggiungerà la perfezione, ma dopo poche esperienze alcuni concetti fondamentali si chiariranno e si scolpiranno nella propria conoscenza e capacità clinica. Un consiglio: alle prime esperienze, evitare pazienti con ipossiemia molto grave: se non si è rapidi e coordinati nella procedura (cosa che si acquisisce con la pratica), le fasi a basso volume corrente senza PEEP potrebbero non essere semplicissime. Presto valuteremo anche approcci più veloci per costruire la curva di compliace, ma vale la pena affrontarli dopo aver digerito questo approccio classico.

Come sempre, un sorriso a tutti gli amici di ventilab.

 

Bibliografia
1) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54
2) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61
3) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8
4) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

Monday, May 22, 2017

Asincronie paziente-ventilatore e valutazione del dolore: una riflessione sulle validate scale comportamentali.

Viene proposto sempre più di frequente l’utilizzo di scale comportamentali per la valutazione del dolore nel paziente che non è in grado di comunicare. Le due scale più accreditate sono la Behavioral Pain Scale (BPS) (1) (figura 1) e la Critical-Care Pain Observation Tool (CPOT) (2) (figura 2), il cui uso è consigliato ormai da tutte le linee guida sulla​ gestione del dolore nel paziente critico.

Figura 1

Queste scale attribuiscono punteggi all’espressione del volto, a posizione e movimenti del corpo ed al cosiddetto “adattamento” alla ventilazione meccanica. Quest’ultimo concetto, espresso in termini più appropriati, è l’interazione paziente-ventilatore, argomento a cui anche ventilab attribuisce da sempre grande importanza. Quindi le scale comportamentali utilizzano le asincronie per la valutazione del dolore.

Figura 2

Nella BPS e nel CPOT non si pretende certo di analizzare tutta l’interazione paziente-ventilatore, ma solo di rilevare quelle grossolane asincronie che possono far suonare l’allarme del ventilatore meccanico. Queste asincronie sono quelle che aumentano la pressione nelle vie aeree oltre il limite prefissato. Vediamo un esempio nella figura 3.

Figura 3

Cerchiamo di capire perché succede. La curva gialla è la pressione delle aeree, quella verde è il flusso. Vediamo che i picchi di pressione che allarmano il ventilatore si verificano nell’ultima fase del flusso inspiratorio. Anzi, l’attivazione dell’allarme di pressione è proprio un evento che fa cessare il flusso inspiratorio ed apre l’espirazione. Se questo diventa frequente, la ventilazione meccanica può divenire anche impossibile.

Ora facciamo attenzione anche alla traccia bianca che compare insieme alla curva gialla. Quando la traccia bianca sale, il paziente inspira, quando scende invece espira. Vediamo una totale asincronia tra i periodi inspiratorio ed espiratorio del paziente (traccia bianca) e quelli del ventilatore (traccia verde). La pressione delle vie aeree (traccia gialla) si avvia verso il limite di allarme quando il paziente inizia ad espirare (la traccia bianca inizia a scendere​) mentre il ventilatore cerca di erogare​ ancora flusso inspiratorio (traccia verde al di sopra dello zero).

Questa asincronia è un ciclaggio ritardato. L’attivazione dell’allarme di pressione si può verificare in particolare durante la ventilazione a volume controllato, come nell’esempio in figura 3. Per risolvere l’asincronia e  far cessare l’attivazione dell’allarme possiamo migliorare l’impostazione della ventilazione a volume controllato oppure cambiare modalità di ventilazione. Nelle ventilazioni ciclate a flusso (pressione di supporto) se questa asincronia persiste, è perlomeno silenziosa ed un occhio poco esperto non se ne accorge.

Torniamo a BPS e CPOT. Sia nella BPS che nel CPOT si interpretano, di fatto, alcune grossolane asincronie come espressione di dolore. Ma che caspita c’entrano le asincronie con il dolore? Il paziente “contrasta” il ventilatore se questo è impostato male. Ed il problema può essere risolto adeguando l’impostazione del ventilatore. Migliorando l’impostazione del ventilatore, abbiamo forse tolto dolore ad un paziente che lo aveva? Nelle ventilazioni ciclate a flusso il paziente di fatto non può “contrastare”, mentre il quelle ciclate a tempo (in particolare il volume controllato) questo accade senza un buon setting del ventilatore. Vuol dire che in pressione di supporto si ha meno dolore che in volume controllato? Siamo evidentemente nel campo dell’assurdo. Che siano forse assurdi anche BPS e CPOT?

Qualche dubbio a me viene. Entrambe le scale del dolore nascono utilizzando variabili selezionate arbitrariamente e non per una dimostrata associazione con il dolore. Di fatto gli autori hanno semplicemente deciso dovessero essere quelle e che dovessero avere i punteggi che essi hanno ritenuto appropriati. È facile inventare score così… Ma se funzionano, visto che si sente sempre dire che sono validate, ce ne potremmo fare una ragione. Ma diamo una rapida occhiata a come BPS e CPOT sono stati validati.

Il BPS è stato “validato” confrontando il punteggio ottenuto durante stimoli ritenuti dolorosi (mobilizzazione o tracheoaspirazione) con quello rilevato durante stimoli ritenuti non dolorosi (applicazione calze compressive o medicazione del catetere venoso centrale). Lascio a ciascuno i commenti sulla scelta di questi stimoli (la tracheoaspirazione non interferisce di per sè forse con la ventilazione?). E accenno solo il fatto che è stato utilizzato un approccio statistico scorretto (i classici test parametrici su dati ordinali evidentemente non distribuiti normalmente).

Entriamo nel merito: il punteggio del BPS può variare da 3 a 12. Nello studio di “validazione” la media del BPS durante le procedure dolorose era tra 4 e 5, mentre durante le procedure non dolorose era tra 3 e 4. Quindi, in media, 1 punto di differenza tra dolore e non dolore. Quando la stessa procedura dolorosa era ripetuta nello stesso paziente, il punteggio del BPS era diverso di almeno 1 punto 14 volte su 31. Cioè la differenza di BPS tra procedure dolorose identiche nello stesso paziente era spesso simile alla differenza media tra procedure dolorose e non dolorose. La concordanza della misurazione del BPS tra diversi operatori è poi stata fatta considerando concordi le valutazioni che differivano di 1 punto… (che abbiamo visto essere la differenza media tra dolore e non dolore…).

Il punteggio di BPS in quasi tutti i pazienti dello studio di “validazione” era inferiore a 8 (gli stessi autori scrivono che per questo motivo non sono stati in grado di valutare la validità dello score sopra 8). Quindi si è inventato uno score che consente una variazione di 10 punti (da 3 a 12), ed alla fine sappiamo che funziona piuttosto male sulla prima metà della scala.
Per brevità, solo una piccola nota dello studio di validazione del CPOT: si nota nei risultati che avevano un CPOT di 2 sia pazienti che dichiaravano di avere dolore che quelli che non riferivano dolore. Penso basti questo.

Come possiamo vedere, BPS e CPOT non solo non​ hanno un razionale clinico-fisiologico e nemmeno un solido costrutto metodologico, ma sono tutt’altro che validati se andiamo a leggere la letteratura originale (ma tanto non lo fa nessuno…).

Restituiamo quindi le asincronie al complesso mondo dell’interazione paziente-ventilatore ed abituiamoci a gestire la complessità invece che impigrirci nella banalizzazione. Certamente le asincronie possono essere frequenti nei pazienti con drive e frequenza respiratoria elevati, come ad esempio quelli con dolore, con febbre, con agitazione, con elevato spazio morto, con ipossiemia, con acidosi metabolica, con iperventilazione centrale,… ma a ciascun problema diamo una soluzione appropriata.

Ancora il tempo per una domanda ed una considerazione prima di salutare.

La domanda. Abbiamo proprio bisogno di dare un numero per sapere se un paziente ha un dolore da trattare? Riteniamo che, nei soggetti incapaci di comunicare correttamente il proprio dolore, scale idiote siano migliori della capacità dell’essere umano di vedere la sofferenza sul volto e sul corpo dei propri simili? È oggettività o ubriacatura da punteggi? Per definizione non si può oggettivare il dolore altrui, siamo però capacissimi di vederlo, fa parte della nostra competenza di esseri umani. Purtroppo quando entriamo in ospedale rischiamo di sminuire quest’ultima competenza a favore di sedicenti oggettività.

La considerazione. Ormai ci si riempie la bocca di linee-guida e strumenti validati. Si crede ad una medicina che produce certezze. Purtroppo (e per fortuna) non è così. L’accettazione acritica di linee-guida, quasi regolarmente prive di raccomandazioni 1A (questo dovrebbe far riflettere…), e di strumenti validati (spesso allo stesso livello di BPS e CPOT) rischia di privare il medico dell’abitudine elementare al ragionamento clinico, della capacità di approfondimento e dell’entusiasmo nel proprio lavoro. Sfruttiamo il prezioso lavoro che per tutti compiono coloro che fanno le linee-guida, ma ad esse cerchiamo sempre di affiancare la nostra capacità critica, evitiamo un atteggiamento di religioso rispetto che deve eventualmente essere riservato a misteri ben più profondi. Cerchiamo sempre di capire e di conoscere in prima persona tutto quello che possiamo.

Un sorriso a tutti gli amici di ventilab, come sempre.

1) Payen JF et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 2001; 29:2258-63
2) Gélinas C et al. Validation of the Critical-Care Pain Observation Tool in adult patients. Am J Crit Care 2006; 15:420–427

Sunday, April 30, 2017

Ventilazione non-invasiva: come impostare il supporto inspiratorio.

Il successo della ventilazione meccanica dipende in maniera decisiva anche dall’appropriatezza della sua impostazione. Se in un paziente con ARDS sbagliamo la scelta di volume corrente e PEEP, possiamo trasformare una tecnica molto efficace in un problema senza soluzione; se durante la ventilazione assistita utilizziamo costantemente un supporto inspiratorio eccessivo o insufficiente, possiamo perpetuare la dipendenza dalla ventilazione meccanica invece che avviarci verso lo svezzamento.

A volte ho la sensazione che ci si dimentichi questo concetto fondamentale quando si parla di ventilazione non-invasiva: si passa il tempo a discutere se sia efficace o meno, senza specificare i criteri di impostazione. E’ un approccio profondamente sbagliato: la ventilazione non-invasiva non è efficace perchè si applica una maschera sulla faccia, ma perchè si eroga una ventilazione meccanica

Oggi vediamo come impostare il supporto inspiratorio (cioè la pressione di supporto o la differenza IPAP-EPAP) in maniera efficace quando curiamo un paziente con insufficienza respiratoria acuta (anche in presenza di una componente cronica). Su questo argomento esistono diversi approcci ed opinioni autorevoli, quello che propongo è ciò che personalmente ritengo più logico.

Consideriamo il momento in cui si inizia la ventilazione non-invasiva. In questa fase la pressione di supporto dovrebbe essere la più elevata possibile. E’ opportuno iniziare con un basso livello di supporto inspiratorio (ad esempio 5 cmH2O) e rapidamente (in pochissimi minuti) raggiungere, per incrementi successivi, il massimo livello che il paziente tollera o ritiene confortevole e che si associa ad un livello gestibile di perdite aeree.

E’ importante raggiungere il massimo possibile perchè in questa fase la ventilazione non-invasiva viene sempre proposta a pazienti che hanno o 1) una insufficienza della pompa respiratoria o 2) un elevato lavoro dei muscoli respiratori.

Dovremmo intendere come insufficienza della pompa respiratoria quella condizione in cui si ha una acidemia (cioè un pH < 7.35) senza ipocapnia (PaCO2 > 35 mmHg) (vedi post del 29/01/2011). Rientrano in questa categoria, oltre alla classica acidosi respiratoria ipercapnica, anche quei casi di acidosi metabolica senza una ipocapnia. Durante acidosi metabolica, la normale risposta di una pompa respiratoria efficiente è qualla di iperventilare per ridurre la PaCO2 e quindi tendere alla correzione del pH. Se la pompa respiratoria è esaurita, la PaCO2 rimane attorno ai 40 mmHg senza alcun tentativo di correzione respiratoria del pH.

L’elevato lavoro dei muscoli inspiratori è una condizione di stress che può precedere la vera e propria insufficenza della pompa respiratoria, e clinicamente si manifesta con dispnea, tachipnea (aumento della frequenza respiratoria), polipnea (aumento della ventilazione/minuto), non di rado iperpnea (aumento della profondità dell’inspirazione),  e utilizzo dei muscoli accessori della respirazione (è ben esplorabile lo sternocleidomastoideo). In questa fase la PaCO2 può essere normale o ridotta ed il pH normale o alcalino. Quando i muscoli inspiratori iniziano a cedere sotto il peso di un prolungato periodo di elevato lavoro respiratorio, iniziamo a vedere il respiro rapido e superficiale ed infine il respiro paradosso (addome e torace si espandono in maniera alternata invece che sincrona durante gli atti respiratori).

In entrambe queste condizioni un obiettivo fondamentale della ventilazione non-invasiva è mettere a riposo il più possibile i muscoli inspiratori. E’ sbagliato pensare di ottenere questo obiettivo impostando una pressione di supporto sufficiente a raggiungere un volume corrente di 6-8 ml/kg (di peso ideale). Questo può essere un obiettivo necessario ma certamente non sufficiente. Infatti molti pazienti con elevato lavoro respiratorio sono già in grado di inspirare un volume corrente normale (o elevato) anche senza alcun supporto inspiratorio: sono cioè ancora in grado di combattere, seppur ad un elevato prezzo metabolico e di stress. In queste condizioni i muscoli respiratori possono utilizzare anche più del 25% dell’ossigeno consumato dall’intero l’organismo (in condizioni di normalità è circa il 1-2%), con sovraccarico della funzione cardiaca e sofferenza di altri tessuti.

Dobbiamo quindi affidarci a criteri diversi dal volume corrente. Possono aiutarci a scegliere il livello di supporto inspiratorio la valutazione della frequenza respiratoria, della dispnea, dell’utilizzo dei muscoli accessori della respirazione e, come sempre, il monitoraggio grafico della ventilazione.

Se durante ventilazione non-invasiva il volume corrente fosse compreso tra 420 e 470 ml potremmo essere soddisfatti nella maggior parte dei pazienti. Ma il monitoraggio grafico della ventilazione meccanica può fornirci informazioni decisive per una impostazione appropriata della pressione di supporto.

Nella figura 1 vediamo il flusso nelle vie aeree nello stesso paziente con 3 diversi livelli di pressione di supporto (da sinistra a destra: 5, 15 e 20 cmH2O sopra la PEEP di 5 cmH2O). Tra le 3 condizioni, il volume corrente varia effettivamente tra 420 e 470 ml.

Figura 1

Nel riquadro C abbiamo un flusso che, dopo il picco iniziale (porzione verticale viola), è (quasi) decrescente, tipico della ventilazione pressometrica passiva. Questo vuol dire che il paziente, dopo aver attivato il ventilatore, tende a mettere a riposo i muscoli inspiratori. Osserviamo la parte viola della curva di flusso nei riquadri A e B: dopo il picco iniziale, il flusso inspiratorio non decresce come nel riquadro C, segno di una persistente attività dei muscoli inspiratori, che è tanto più marcata tanto più ci si allontana dalla teorica decrescita passiva.

La figura 2 presenta le stesse curve della figura 1, con una retta che congiunge l’iniziale picco di flusso con il flusso quando inizia il ciclaggio tra inspirazione ed espirazione (istante in cui il flusso inizia a crollare verso lo zero).

Figura 2

Questa rappresentazione aiuta a capire cosa si intende per flusso decrescente e come valutare, seppur in maniera grossolana e qualitativa, quando e quanto un soggetto continua ad utilizzare i muscoli inspiratori durante il supporto inspiratorio. Nel riquadro A c’è un’area molto rilevante tra la traccia di flusso e la linea tratteggiata che dovrebbe descrivere l’ipotetico decadimento passivo del flusso; nel riquadro B c’è ancora una evidente area tra flusso e linea di decadimento passivo, però minore rispetto a quella vista in A e quindi segno di un minor contributo dei muscoli inspiratori; in C praticamente tutto il flusso è sulla liena di decadimento e ci fa pensare che resti solo eventualmente una minima attività dei muscoli inspiratori dopo il triggeraggio.

Ora possiamo capire bene perchè, quando iniziamo la ventilazione non-invasiva, dovremmo incrementare la pressione di supporto per avvicinarci il più possibile al profilo di flusso che vediamo in C. E’ importante fermarsi nell’incremento della pressione di supporto appena si nota questo pattern. Il livello di assistenza inspiratoria va rivalutato, con l’approccio appena visto, tutte le volte che si osservi un cambiamento del pattern respiratorio. Spesso vedremo che poco dopo l’inizio della ventilazione non-invasiva potremo ridurre il supporto inspiratorio mantenendo una bassa attività dei muscoli inspiratori.

Quando la condizione di insufficienza di pompa respiratoria o di elevato lavoro dei muscoli inspiratori tendono a risolversi, potremo tranquillamente abbassare il livello di pressione di supporto, senza più ricercare la passività del paziente. Viceversa, se non si dovesse arrivare a questo punto in tempi ragionevolmente brevi, dovremmo iniziare a pensare all’intubazione tracheale.

Se siamo d’accordo su quando detto finora, dobbiamo ammettere che la CPAP raramente può essere una tecnica ottimale di ventilazione non-invasiva.

Uno dei problemi a cui espone questo approccio è quello di avere qualche paziente che genera volumi correnti molto elevati, anche 10-12 ml/kg. Dobbiamo però essere lucidamente consapevoli che questo  volume corrente non è passivamente generato dal livello di supporto inspiratorio se abbiamo scelto il livello di pressione inspiratoria necessario e sufficiente a far riposare i muscoli respiratori. Infatti stiamo semplicemente aiutando il paziente a fare ciò che il suo cervello (=centri del respiro) comanda. Se dal cervello partono ordini potenzialmente dannosi (=generare un alto volume corrente), la soluzione non è mettere in difficoltà la pompa respiratoria per impedire che ciò accada. In questa situazione vale la pena valutare se il volume corrente tenderà a ridursi man mano che si metteno a riposo i muscoli respiratori. Se ciò non dovesse accadere, a noi la responsabilità di scegliere se accettare un volume corrente elevato o iniziare una ventilazione protettiva, che non potrà che essere invasiva e con sedazione/parlisi. Ma questo è un altro capitolo…

Per concludere, facciamo una breve sintesi dei punti principali:

  • all’inizio della della ventilazione non-invasiva il supporto inspiratorio dovrebbe essere regolato per rendere il più decrescente possibile il flusso inspiratorio; ne risulterà anche la riduzione della dispnea, della tachipnea e dell’utilizzo dei muscoli accessori della ventilazione;
  • dopo aver scaricato i muscoli respiratori da un eccessivo lavoro, si dovrebbe iniziare a ridurre il supporto, accettando un livello di attività respiratoria compatibile con le risorse muscolari;
  • qualora con questo approccio si ottenesse un volume corrente che si ritiene causa di possibile danno indotto dalla ventilazione, una soluzione normalmente ragionevole è passare alla ventilazione protettiva invasiva.

Un sorriso a tutti gli amici di ventilab.

 

Sunday, March 26, 2017

Espansione volemica e pulse pressure variation.

Spesso chi gestisce un paziente critico si pone la domanda se il paziente sia “pieno” o vuoto” per decidere se somministrare un carico di fluidi.

Oggi ragioniamo sull’indicazione all’espansione volemica in due pazienti, Mario e Pippo. Chi segue ventilab sa che che ogni tanto scomodiamo questi due personaggi per confrontare ipotetiche condizioni cliniche.  In questo caso le caratteristiche di Mario e Pippo non sono inventate, verso la fine del post scopriremo chi sono realmente.

Sia Mario che Pippo hanno una cinquantina di anni e sono ricoverati in Terapia Intensiva con uno shock settico. La fase di rianimazione iniziale è stata completata, ed ora entrambi sono in ritmo sinusale, hanno una pressione arteriosa stabile con norepinefrina, la cui velocità di infusione da alcune ore non necessita di esssere modificata. I due pazienti sono intubati, sedati, completamente passivi alla ventilazione controllata. Le loro principali variabili cardiorespiratorie sono presentate nella tabella 1.

[table id=1 /]

Guardando questi dati, riteniamo sia opportuna un’ulteriore espansione volemica per Mario e/o Pippo?

In entrambi i pazienti la pressione arteriosa tutto sommato può essere considerata ragionevole, pressione venosa centrale e saturazione venosa centrale (ScvO2) hanno valori sostanzialmente normali (e quindi sono di scarsa utilità nella decisione). Sia Mario che Pippo sono tachicardici, come molti pazienti con shock settico, tuttavia la frequenza cardiaca di Mario è molto alta e probabilmente meritevole di un intervento: ma quale? Espansione volemica o rallentamento farmacologico? I lattati sono ancora elevati, ma (essendo l’unico valore a disposizione) non sappiamo se siano in riduzione, stabili o in aumento.

Per quanto sappiamo fino ad ora, il dubbio se somministrare un carico di fluidi rimane. Nei casi come quelli di Mario (soprattutto) e Pippo ritengo che conoscere la portata cardiaca possa aiutare a prendere una decisione ragionata.

Dovremme avere chiaro che la somministrazione di fluidi è un mezzo e non un fine. Il fine è infatti aumentare la portata cardiaca, l’espansione volemica è solo uno dei mezzi a nostra disposizione per raggiungere questo fine. La frequente domanda se il paziente sia “vuoto” o “pieno” (assolutamente proibita nella Terapia Intensiva in cui lavoro) è la domanda sbagliata, perchè ciò che conta non è il volume (a cui spesso ci riferiamo con termini vaghi ed immisurabili come “volemia” o “precarico”) ma il flusso del sangue, cioè la misurabilissima portata cardiaca, che determina il trasporto di ossigeno ai tessuti (assieme alla concentrazione di emoglobina ed alla saturazione del sangue arterioso).

La domanda sbagliata (quella proibita…) dovrebbe essere sostituita con altre 2 domande: 1) la portata cardiaca è sufficiente per le necessità metaboliche del paziente? 2) se la risposta alla domanda 1 è ““, abbiamo finito: non abbiamo bisogno di procedere all’espansione volemica; solo se la risposta alla domanda 1 è “no“, dobbiamo farci la seconda domanda: un carico di fluidi può essere efficace per aumentare la portata cardiaca? La risposta a queste domande presuppone necessariamente la conoscenza della portata cardiaca.

Facciomoci queste due domande con Mario e Pippo: 1) la portata cardiaca è sufficiente?

L’indice cardiaco (cioè la portata cardiaca divisa per la superficie corporea) di Mario è 3.9 l/min/m2, quello di Pippo 3.8 l/min/m2, che, data la loro corporatura, corrispondono rispettivamente ad una portata cardiaca di 7.6 e 7.4 l/min. Dalla fisiologia ricordiamo che la portata cardiaca normale di un adulto a riposo è circa 5 l/min, che per la superficie corporea di Mario e Pippo corrisponde ad un indice cardiaco di circa 2.6 l/min/m2. Possiamo quindi dire che Mario e Pippo hanno una portata cardiaca di circa il 50% superiore a quella “normale”

Figura 1

Sia Mario che Pippo sono quindi in “alta portata”, ma questa è associata ad un elevata frequenza cardiaca. Ci può venire il legittimo dubbio che in realtà il cuore abbia un basso stroke volume (gittata sistolica), cioè che “pompi” poco sangue per singolo battito cardiaco, e che quindi che l’elevata portata cardiaca sia il prodotto di una eiezione sistolica ridotta per una frequenza cardiaca elevata. In questo caso la somministrazione di fluidi (e quindi l’aumento del precarico) potrebbe mantenere la portata cardiaca grazie all’aumento dello stroke volume (figura 1) e la conseguente riduzione della frequenza cardiaca.

Calcoliamo quindi lo stroke volume dividendo la portata cardiaca per la frequenza cardiaca. Lo stroke volume di Mario risulta così essere di 58 ml e quello di Pippo 65 ml, valori non molto diversi dai 70 ml di un soggetto normale. Se il cuore non è dilatato, questi corrisponderebbero a frazioni di eiezione di almeno il 50%.

Abbiamo gli elementi per rispondere alle 2 domande che abbiamo formulato: 1) nè Mario nè Pippo hanno bisogno di aumentare la portata cardiaca avendone una che è già superiore a quella normale (soprattutto considerando che sono sedati). Sappiamo infatti da almeno 20 anni che nel paziente critico l’aumento della portata cardiaca a valori sovranormali non produce alcun vantaggio clinico; 2) visto che la risposta alla prima domanda è “no“, non mi pongo la seconda domanda

Non abbiamo quindi un buon motivo per somministrare in questa fase un ulteriore carico di fluidi, che apparirebbe non solo inutile ma addirittura potenzialmente pericoloso. Sono ormai numerosi i dati che supportano la convinzione che la somministrazione generosa di fluidi ed il bilancio idrico positivo si associano ad un incremento del rischio di morte.

In questa fase ciò che mi preoccupa maggiormente è la tachicardia di Mario, ed a questo punto vorrei rivalutare l’emodinamica dopo aver rallentato la frequenza cardiaca, ad esempio con un beta-bloccante. Non è detto peraltro che la riduzione della frequenza riduca la portata cardiaca: l’incremento del tempo di diastole che ne consegue allunga il periodo di riempimento del cuore e quindi aumenta il volume di fine diastole, che in fisiologia si definisce precarico ventricolare L’incremento di precarico potrebbe tradursi in un aumento dello stroke volume: quanto raffigurato in figura 1 potrebbe verificarsi senza necessità di una espansione volemica. Tutte questo sono ovviamente mere ipotesi, assolutamente da verificare con la misurazione della portata cardiaca dopo la riduzione della frequenza.

Sei d’accordo con questo approccio? In medicina (come nella vita) raramente esiste un chiaro confine tra il giusto e lo sbagliato, ma solo cose più o meno ragionevoli, quindi più opzioni possono essere plausibili. Se hai commenti, non esitare a scriverli alla fine del post.

A questo punto sveliamo chi sono veramente Mario e Pippo. Sono i pazienti di un articolo pubblicato questo mese su Critical Care Medicine (1). Nello studio è stata valutata la variazione di portata cardiaca dopo una espansione volemica (circa 500 ml di soluzione fisiologica in 10′). Sono stati definiti “fluid-responder” i pazienti che aumentavano l’indice cardiaco di almeno il 15%, chi non raggiungeva questo risultato era “non fluid-responder”. Il nostro Mario ha riassunto i valori medi, precedenti l’espansione volemica, dei pazienti “fluid-responder“, mentre Pippo è stato descritto con i valori medi dei soggetti “non fluid-responder“. Non entriamo nel dettaglio dello studio (meriterebbe un post tutto per sè), riflettiamo solo sulle sue premesse: per quale motivo i pazienti (che sono simili a Mario e Pippo) hanno ricevuto una espansione volemica? Dai dati presentati, l’aggiunta di un carico di fluidi sembra inappropriato. Nel testo dell’articolo si afferma diplomaticamente “che sono stati arruolati pazienti in cui il medico curante aveva programmato un carico di fluidi”…

Le conclusioni dello studio sono efficacemente riassunte nel suo titolo:” The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation.” Con questo bel titolo ad effetto, quello che inevitabilmente resta in mente è che la “pulse pressure variation” (vedi post del 28 maggio 2014) è utile per decidere se fare o meno espansione volemica.

Tuttavia, dopo tutto quello che abbiamo detto finora, il suo titolo avrebbe dovuto essere invece: “Attenzione! La pulse pressure variation induce a somministrare fluidi anche a chi non ne ha bisogno“. In altre parole, riuscire ad aumentare la portata cardiaca con un’espansione volemica non significa aver bisogno di farlo.  Questo la sanno benissimo anche gli autori degli studi sugli indici dinamici (di cui fanno parte pulse pressure variation e stroke volume variation), che in qualche angolo della discussione di solito non mancano di precisare che essere fluid-responder non significa aver bisogno di fluidi (per inciso, in questo articolo mi sembra si siano dimenticati di farlo…). Ma purtroppo questa fondamentale avvertenza scompare nel clamore di presunti grandi risultati, allo stesso modo in cui si perde la smentita di una notizia da prima pagina se avviene con un anonimo trafiletto nelle pagine interne…

Essere “fluid-responder” è una condizione di assoluta normalità: tutti noi siamo fisiologicamente “fluid-responder” e contemporaneamente abbiamo una normale portata cardiaca (siamo cioè nella parte ripida della relazione di Frank-Starling in figura 1). Ma non per questo pensiamo di doverci imbottire di fluidi, a meno che non ci si trovi a tavola con gli amici…

Possiamo quindi condividere che, nel paziente critico stabilizzato, l’ipotesi di somministrazione di ulteriori carichi di fluidi dovrebbe venire in mente dopo il riscontro di una bassa portata cardiaca associata a segni di ipoperfusione tissutale. Solo a questo punto ci possiamo porre il quesito se i fluidi siano una scelta efficace per aumentare la portata cardiaca, e quindi, solo a questo punto, la valutazione della pulse pressure variation potrebbe avere un senso.

Prima dei saluti, possiamo provare a tradurre clinicamente quello che abbiamo finora discusso:

  1. nella primissima fase di supporto cardiocircolatorio, reintegro volemico e vasocostrittori devono essere guidati dall’integrazione dei dati anamnestici, clinici e strumentali (anche ecografici); la somministrazione di vasocostrittori dovrebbe essere limitata al mantenimento di una sufficiente pressione arteriosa media (approssimativamente 70 mmHg, cioè circa 80-90/50-60 mmHg di pressione arteriosa);
  2. se, dopo il trattamento iniziale, permane la necessità di dosaggi medio-elevati di farmaci vasoattivi, può essere opportuno misurare la portata cardiaca, oltre a valutare i segni di ipoperfusione/ipossia tissutale (riduzione di diuresi e saturazione venosa centrale, aumento di lattati e tempo di refilling capillare,…)
    • se la portata cardiaca è normale/elevata (indice cardiaco > 3 l/min/m2, anche meno in assenza di segni di ipoperfusione  tissutale), ci si potrebbe limitare a modulare il vasocostrittore (ad esempio la noradrenalina) con l’obiettivo di mantenere una sufficiente pressione arteriosa (vedi punto 1); in questa fase l’espansione volemica di norma è inappropriata ed inopportuna, a meno che non vi sia uno stroke volume ridotto associato ad una frequenza cardiaca molto alta (ad esempio > 120/min);
    • se la portata cardiaca è ridotta, la misurazione degli indici dinamici (pulse pressure variation, passive leg raising, ecc….) può aiutare a decidere se procedere all’espansione volemica o all’utilizzo di inotropi, senza dimenticare ovviamente la valutazione clinica degli edemi, la variazione del peso corporeo e la rilevazione degli indici statici (PVC e/o pressione di occlusione dell’arteria polmonare, vedi post del 3 maggio 2015).

Un post non può certo esaurire un argomento così complesso, spero comunque di aver dato qualche utile spunto di riflessione.

Un sorriso 🙂 a tutti gli amici di ventilab.

Bibliografia.

1) Myatra SN et al. The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017; 45;415-21

PS: per un piccolo ringraziamento a Mario e Pippo, clicca qui.

Saturday, February 25, 2017

VENTILAZIONE MECCANICA NELL'OBESO

Sora Lella la  conosciamo tutti, resa famosa da innumerevoli film di successo e dalla sua passione culinaria.  Non conosco il Body Mass Index (BMI) della sora Lella: il Body Mass Index è quell’indicatore che ci permette di categorizzare le persone obese e si calcola dividendo il peso per il quadrato dell’altezza. Il CDC di Atlanta definisce obesa una persona con un BMI ≥ 30, distinguendo tre classi (30 – 35; 35 – 40; ≥40). Se sora Lella fosse alta 160 cm per 110 Kg di peso avrebbe un BMI di 42. Qualunque fosse il BMI di sora Lella era sicuramente direttamente proporzionale alla sua boccaccesca simpatia.

Fig. 1

Se dovessimo sottoporre sora Lella a ventilazione meccanica la prima cosa di cui dobbiamo tenere conto è che, come mostrato nella Figura 1, la sua Capacità Funzionale Residua è nettamente ridotta a meno del 50% rispetto ad una persona con Body Mass Index di 20. Conseguentemente anche il Volume di Riserva Espiratorio (VRE) è gravemente ridotto. Come possiamo vedere nella figura 2 la Capacità Funzionale Residua è il volume che rimane nell’apparato respiratorio alla fine di una espirazione normale: se l’espirazione prosegue in modo massimale viene espirato il Volume di Riserva Espiratorio (VRE) portando l’apparato respiratorio al Volume Residuo (che è il volume che non possiamo in nessun caso espirare). L’apparato respiratorio dell’obeso è caratterizzato da una riduzione della Capacità Funzionale Residua. 

Fig. 2

Come si vede nella Figura 1 la Capacità Funzionale Residua ed il Volume di Riserva Espiratorio si riducono esponenzialmente al crescere del BMI[2].

 

 

 

Fig. 3

 

Fin dagli anni 60 sono stati pubblicati studi in cui veniva misurata la Compliance dell’apparato respiratorio (CRS) di soggetti obesi in respiro spontaneo: questi hanno riportato una ridotta Compliance del chest wall (Ccw) smentiti da altri su soggetti in respiro spontaneo e in anestesia. Ancora negli anni 90 Pelosi[3] riferisce, in soggetti obesi anestetizzati e dopo chirurgia addominale, una riduzione della Compliance del polmone (CL) e del chest wall.

 

 

Ho trovato perciò interessante un lavoro pubblicato qualche anno fa (2010) dal gruppo di Loring e Talmor che riporto in bibliografia[1]. La loro ipotesi è che i gravi obesi hanno una Pressione Pleurica (Ppl) più alta dei soggetti normali e che la Pressione esofagea è un utile indicatore della Pressione Pleurica. Studiano 50 soggetti con BMI > 38, confrontati con 10 soggetti normali, anestetizzati e paralizzati in posizione supina prima dell’inizio della chirurgia. Lo studio è piuttosto complesso (oltre ad utilizzare la misura diretta della Pressione esofagea utilizzano una misura dalla quale inferire la Pressione Pleurica) e non è mia intenzione analizzarlo in questa sede: voglio però condividere quello che, credo, di aver appreso dagli Autori. I ricercatori hanno anche misurato la Pressione Gastrica (PGa) in 30 soggetti obesi rinvenendo in 23 (= 76%) una PGa ≥ 10 cmH20. Pressione Gastrica e Pressione esofagea hanno tra loro una buona correlazione e la Pressione esofagea ha mostrato mediamente valori più alti: questo perché l’esofago, rispetto al fondo gastrico, è più vicino al piano del letto e subisce il peso del mediastino, inoltre la variabile tensione del diaframma rilasciato può modificare le pressioni in gioco. Inoltre dal BMI non è possibile predire il valore di Pressione esofagea. Il dato che ho fatto mio è che, in questi soggetti obesi, la CRS è ridotta per riduzione della CL mentre la Ccw è normale.

Tab. 1

Il fatto che la Ccw è normale nei soggetti obesi è argomentata dagli Autori con il “mass loading” (potremmo definirlo come il “peso che grava”) in alternativa allo “stiffening of the chest” tipico del lavoro elastico. Nell’obeso non c’è quindi un chest wall più rigido ma c’è semmai “più peso” sul (intorno al) polmone. E’ il grasso variamente ed imprevedibilmente disposto tra i visceri (nel mediastino dove pesa, letteralmente, sulla misura della Pressione esofagea e compete con il volume polmonare, tra i visceri sottodiaframmatici dove contribuisce al volume ed al peso che grava sul diaframma), sulla e nella parete toracica, dove pesa come colonna idrostatica rispetto all’esofago (dove misuriamo la Pressione esofagea) e sulle porzioni declivi del polmone. Utilizzando la Pressione esofagea come stima della Pressione Pleurica dobbiamo tenere conto che, in posizione supina, la Pressione esofagea è probabilmente più alta della Pressione Pleurica alla stessa altezza e che la Pressione Pleurica, in posizione supina, passa da negativa a meno negativa (o positiva) andando dalle regioni anteriori a quelle più prossime al piano del letto. L’assenza di correlazione tra BMI e Pes esprime la personale distribuzione del grasso corporeo (quindi anche nel mediastino, visceri addominali, strutture di parete e sottocute) e la variabile dislocazione del diaframma in torace. Nell’obeso supino la Pressione esofagea esprime quella pressione che circonda parte del polmone soprattutto a fine espirazione correlata ad un ridotto volume di fine espirazione (riduzione del volume aerato).

Questi sono i meccanismi che portano alla riduzione del volume polmonare, nel soggetto obeso anestetizzato, supino. La compliance esprime, come sempre, il volume aerato del polmone: nel caso della sora Lella il peso che grava intorno agli alveoli determina la chiusura delle porzioni più declivi e quelle più prossime al diaframma, porzioni teoricamente riapribili completamente.

Nel caso del paziente obeso da sottoporre ad anestesia le cose si complicano quando vengono ad aggiungersi fattori che possono modificare, in senso favorevole o sfavorevole, questa condizione: per esempio la possibilità della posizione seduta o la chirurgia open come condizioni favorevoli, di contro la necessità di Trendelenburg o lo pneumoperitoneo. Ma questo sarà oggetto di un prossimo post.

In pratica quale può essere un approccio ragionevole, se dovessimo anestetizzare sora Lella per un intervento chirurgico e sottoporla a ventilazione? Dobbiamo innanzitutto essere consapevoli, come emerso da studi epidemiologici, che i pazienti obesi sono particolarmente esposti all’utilizzo di volumi correnti maggiori di quelli fisiologici in rapporto alla loro altezza. L’impiego della PEEP resta il cardine del “trattamento”. Il valore di PEEP più indicato può essere individuato (se non possiamo fare l’occlusione di fine inspirazione) impostando una ventilazione a volume controllato con una pausa inspiratoria, frequenza fisiologica, verifica che il flusso espiratorio raggiunga il valore zero prima dell’inspirazione successiva, calcolando la Compliance dell’apparato respiratorio [ CRS  = volume inspiratorio / (Ppausa – PEEP impostata)], magari con PEEP incrementali (http://www.ventilab.org/2013/10/06/la-peep-nella-ards-tabelline-o-compliance/) compatibilmente con le condizioni cardiocircolatorie ed eventualmente la presenza di monitoraggio cruento della Pressione Arteriosa. Sceglieremo, a parità di Volume Corrente, il livello di PEEP associato alla minor differenza di pressione tra la pressione di plateau e la PEEP (cioè la driving pressure). In casi particolari potrebbe essere eventualmente utile la misurazione della pressione esofagea per stimare lo stress tidal e di fine espirazione.

 

In conclusione:

pazienti con Body Mass Index elevati, in posizione supina ed anestetizzati, sono caratterizzati da una riduzione esponenziale della Capacità Funzionale Residua, ovvero da un ridotto volume polmonare di fine espirazione.

Questa riduzione della Capacità Funzionale Residua può essere corretta utilizzando una PEEP appropriata valutandola attraverso la Driving Pressure; ovvero, per i diversi livelli di PEEP sperimentati a parità di volume corrente, utilizzando quella che comporta la migliore compliance dell’apparato respiratorio.

Un caro saluto a tutti i lettori di Ventilab.

 

Bibliografia

 

  1. Behazin N et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol 108: 212–218, 2010.
  2. Pelosi P et al.The Effects of Body Mass on lung Volumes, Respiratory Mechanics, and Gas Exchange During General Anesthesia. Anesth Analg 1998;87:654-60.
  3. Pelosi P et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol (1985). 1997 Mar;82(3):811-8.
  4. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes?  Am J Respir Crit Care Med 1998;153:3-11.

Ventilab.org è definitivamente sostituito da www. ventilab.it

Come già da tempo preannunciato, l'attività di ventilab proseguirà unicamente su www.ventilab.it . Da questo momento www.ventilab.org ...